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TAME PRO-p GALOIS GROUPS:

A SURVEY OF RECENT WORK

by

Farshid Hajir

Abstract. — In this paper, we examine some recent results concerning Galois groups

of tamely ramified pro-p extensions of numbers fields.

Résumé (Groupes de Galois pro-p modérés : un survol des travaux récents). — Dans

cet article, on examine quelques résultats récents au sujet des groupes de Galois des

extensions pro-p modérées des corps des nombres.

Fix a prime p, a number field K, and a finite set S of places of K none of which has

residue characteristic p. Fix an algebraic closure K of K and let KS be the maximal

p-extension of K inside K which is unramified outside S; it is the compositum of

all finite p-power degree extensions of K unramified outside S. We assume that

real places of K not contained in S do not complexify in the extension KS/K. Put

GK,S = Gal(KS/K) for its (pro-p) Galois group. Very little is known about this

“tame arithmetic fundamental group.” Before Shafarevich’s pioneering work [Sh], a

few examples where it was possible to determine GK,S explicitly (and show that it

was finite), were known, and it was in fact generally believed that all such GK,S are

finite. That this is not so was first demonstrated in [GS] by Golod and Shafarevich.

As was noted by Artin and Shafarevich, the mere existence of infinite GK,S (with

S finite) has an arithmetic application to the estimation of discriminants because

the discriminants of successive fields in a tamely and finitely ramified tower grow as

slowly as possible. For a more detailed discussion of this topic (and the analogy with

curves over finite fields with many rational points) see, for example, [HM1] and the

references therein.

Infinite GK,S satisfy a number of interesting group-theoretic properties (stemming

from class field theory) which we will discuss below, but little attention was focussed
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on the group-theoretical structure of these infinite groups in the decades following

their discovery. In the 1990s, through an important and influential work of Fontaine

and Mazur [FM] on p-adic Galois representations, to this list of properties was added

a conjectural one. This development is concurrent with a revitalization of the study

of tame arithmetic fundamental groups.

In this brief survey, I sketch two recent contributions to this subject, the first,

due to Khare, Larsen, and Ramakrishna concerning the case where S is infinite, and

the second, due to Boston, suggesting a purely group-theoretical approach to the

Fontaine-Mazur conjecture. I would like to thank all of these researchers for making

preprints of their work available; it should be clear that the present article is merely

a summary of some of their beautiful ideas. I am grateful to R. Ramkrishna and N.

Boston for helpful remarks on earlier drafts of this article. Finally, I would like to

thank Y. Aubry, G. Lachaud and M. Tsfasman (the organizers of AGCT-9), as well as

the staff of CIRM at Luminy, for making possible a wonderful conference and inviting

me to it.

1. The Tame Fontaine-Mazur Conjecture

The main thrust of attempts over the last forty years to understand the absolute

Galois group Gal(Q/Q) has rested on its action on p-adic vector spaces arising from

étale cohomology groups attached to geometric/analytic objects (varieties/modular

forms) defined over number fields, and especially on the identification of cases where

the geometric and modular ones coincide. Tremendous progress in this direction has

been achieved recently, the developments leading to and resulting from the proof of

Fermat’s Problem comprising the most striking examples. The p-adic Galois represen-

tations arising via étale cohomology have long been suspected (and are now known

[Ts]) to share two key features, one local, the other global. The local one is that

at primes dividing p, the restriction to the decomposition group satisfies a technical

condition called potential semi-stability [F]. The global condition, namely that rep-

resentations arising from geometry are unramified outside a finite set of primes S, is

more easily grasped and has been known practically from the beginning of the subject.

More precisely, outside the primes dividing pN where N is the conductor (level) of the

variety (modular form), the geometric p-adic representations are always unramified.

A fairly recent conjecture of Fontaine and Mazur [FM, Conj. 1] asserts that this

local/global pair of properties in fact characterize representations arising from étale

cohomology.

Conjecture 1.1(Fontaine-Mazur). — Suppose ρ : Gal(K/K) → GLn(Qp) is a contin-

uous irreducible representation which satisfies

(i) for every K-prime p of residue characteristic p, the restriction of ρ to a decom-

position group at p is potentially semi-stable,

(ii) ρ is unramified outside a finite set S of primes of K.

SÉMINAIRES & CONGRÈS 11
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Then ρ is (Tate-twist of) a subquotient of the action of Gal(K/K) on the étale

cohomology of some smooth projective variety over K.

The study of this conjecture, indeed of the entire subject of p-adic Galois rep-

resentations, is governed by a “tame-wild dichotomy.” In particular, the state of

our knowledge and available tools and examples are quite rich (poor) depending on

whether the set S where the representation is ramified contains (wild case) or does

not contain (tame case) places of residue characteristic p. This is so largely because

representations arising from étale cohomology are typically wild; for recent advances

regarding Conjecture 1.1 “on the wild side,” see Taylor [T] and Kisin [KI] (as well as

the corresponding “Featured” Math Reviews).

Since tame representations are automatically potentially semi-stable (by a theo-

rem of Grothendieck [ST, Appendix]), a consequence of the Fontaine-Mazur conjec-

ture (when we assume some standard conjectures in algebraic geometry – see Kisin-

Wortmann [KW] for more details) is the following (cf. [FM, Conj. 5a]).

Conjecture 1.2(Tame Fontaine-Mazur). — If ρ is a p-adic representation of Gal(K/K)

unramified outside S where

(i) S contains no primes dividing p, and

(ii) S is finite,

then the image of ρ is finite.

Some preliminary evidence for Conjecture 1.2 exists (Boston [B1], Hajir [H1],

Wingberg [W]). In Section 3, we will describe a new purely group-theoretical ap-

proach to this conjecture for K = Q due to Boston.

2. A result of Khare, Larsen, and Ramakrishna

One-dimensional p-adic representation with finite image are well-understood,

thanks to class field theory; the study of those with infinite image, which is essen-

tially the study of Zp-extensions, was pioneered by Iwasawa in the 1960’s. One knows,

for example, that a Zp-extension, is unramified at primes of residue characteristic

different from p; moreover, since Zp is abelian, a Zp-extension cannot be everywhere

unramified (by the finiteness of the class number). Thus, condition (i) cannot be

dropped from Conjecture 1.2, and moreover condition (ii) holds automatically for

1-dimensional representations.

Fontaine and Mazur ask in [FM, p. 44] whether condition (ii) of Conjecture 1.1

holds automatically for every semi-simple n-dimensional p-adic representation. The

answer to this question for n = 2 was shown to be negative by Ramakrishna [R1]. In

that paper he also constructed, under GRH, an irreducible 2-dimensional representa-

tion ramified at infinitely many primes but potentially semistable at p. In [KRm],

Khare and Ramakrishna gave such a construction unconditionally; in so doing, they
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showed that the two conditions (i) and (ii) in Conjecture 1.1 are independent. We

should mention also that in [KR], Khare and Rajan showed that the set of primes

ramified in a semi-simple representation is always of density 0.

The next natural question along the same lines is whether condition (ii) in Con-

jecture 1.2 is necessary. We say a representation is deeply ramified at a prime if it

does not vanish on any of the corresponding higher ramification groups of finite index

(in the upper numbering, say). The question on the necessity of condition (ii) in

Conjecture 1.2 can be rephrased as follows.

Question 2.1. — Is there a p-adic representation ramified at infinitely many primes of

a number field K but not deeply ramified at p?

In a recent preprint, Khare, Larsen, and Ramakrishna [KLR] give a positive answer

to the above question, at least for n = 2, p > 7. I hasten to point out that this is

but one small application of their striking main theorem, an existence theorem for

2-dimensional p-adic representations, which under mild hypotheses, allows one to fix

the characteristic polynomial of Frobenius at a density 1 set of primes, at the cost of

introducing ramification at an infinite (density 0) set of primes. For more details, the

reader is referred to the preprint [KLR].

Theorem 2.2(Khare-Larsen-Ramakrishna). — Suppose ρ : Gal(Q/Q) → SL2(Z/pZ)

is a surjective residual representation unramified at p > 7. Then there exists a sur-

jective characteristic 0 lift ρ : Gal(Q/Q) → SL2(Zp) of ρ such that, letting K =

Q
ker ρ ⊂ L = Q

ker ρ
be the fields cut out by ρ and ρ respectively, there are infinitely

many K-primes which ramify tamely in L/K whereas all the K-primes of residue

characteristic p split completely in L/K.

One interpretation of this theorem is that Conjectures 1.1 and 1.2 are “taut,” you

can drop neither the local condition (i) nor the global one (ii). Let us put it another

way: The Fontaine-Mazur Conjecture does not reduce in a simple way to a local

problem.

In an attempt to flesh out a little the meaning of the above, admittedly vague,

statement, let us recall a theorem of Sen [S]. Suppose F is a finite extension of Qp and

E/F is a totally ramified infinite extension with p-adic Lie Galois group Gal(E/F ).

Then E/F is deeply ramified, i.e. the filtration of Gal(E/F ) by (upper-numbering)

higher ramification groups does not stop after finitely many steps; when this is not so,

we call the ramification “shallow.” In particular, tame ramification is always shallow.

Now, suppose the answer to Question 2.1 were negative. Then, Conjecture 1.2

would have reduced to the following problem (a global version of Sen’s Theorem):

Suppose K is a number field, and L/K is an infinite extension with p-adic Lie Galois

group. Show that for some prime P of L of residue characteristic p, the local ex-

tension LP/Kp is deeply ramified. The Khare-Larsen-Ramakrishna Theorem shows

that to the hypotheses of this problem, one must add that L/K is ramified at only a
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finite set of primes. Exactly how this global (tame) property would force deep (wild)

ramification is not at all clear.

Let us approach the above discussion on a slightly different tack, from which one

may catch a glimpse of a pheonomenon possibly responsible for the global-local inter-

action at play. The root discriminant of a number field is defined to be the nth root of

the absolute value of its discriminant, where n is the degree of the number field. Let

K be a number field and L an infinite extension of it. We say L/K is asymptotically

good if there is no infinite sequence of distinct intermediate subfields of L/K with

root discriminant tending to infinity, otherwise we call L/K asymptotically bad.

If L/K is ramified at infinitely many primes (“horizontally infinitely ramified”),

then it is asymptotically bad. Similarly, if L/K is deeply ramified at some prime

(“vertically infinitely ramified”), then it is asymptotically bad also. On the other

hand, if the ramification is horizontally and vertically finite, then the extension is

asymptotically good; for a precise bound, see [HM2, Theorem 4.2]. Since a shallow

p-adic representation is potentially tame (essentially by Sen’s theorem, see [HM2,

§7]), we obtain an alternate description of Conjecture 1.2.

Theorem 2.3(Hajir-Maire [HM2 ]). — The Tame Fontaine-Mazur Conjecture holds if

and only if infinite p-adic Lie extensions of number fields are always asymptotically

bad.

Given a number field K and a p-adic Galois representation ρ of Gal(K/K) with

infinite image, the Tame Fontaine-Mazur Conjecture asserts that ρ is either vertically

or horizontally infinitely ramified. The above Theorem unifies these two notions

of “infinitely ramified” under one umbrella: that of the rate of growth of the root

discriminant. This reinterpretation suggests that it might prove profitable to study

the problem analytically via the zeta and L-functions whose functional equations

capture subtle information about the growth of root discriminants in the tower cut

out by ρ.

3. Boston’s experiment

Throughout this section, we assume S is finite and contains no primes of residue

characteristic p. Then GK,S is a finitely generated profinite group. To see this, recall

that by the Burnside Basis Theorem, the minimal number of generators of a pro-p

group G is the same as that of its maximal abelian quotient Gab. By class field

theory, Gab
K,S is canonically isomorphic to the p-Sylow subgroup of the ray class group

of K modulo PS :=
∏

p∈S p, hence finite. Moreover, if H is an open (equivalently

finite-index) subgroup of GK,S , and K ′ = KH
S is its corresponding fixed field, then

H = GK′,S′ where S′ is the set of places of K ′ lying over those in S (since KS =

K ′
S′). Thus, GK,S satisfies the property Boston calls fifa (“Finite Index → Finite
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Abelianization”), which is also called fab elsewhere in the literature: every subgroup

of finite index has finite abelianization.

In a remarkable computer experiment, Boston [B2] has determined for the first

time, albeit conjecturally, a family of examples of infinite GK,S admitting an explicit

presentation in terms of generators and relations. Prior to his work, the information

available on infinite tame fundamental groups was always fragmentary and circum-

stantial. To my knowledge, no one had even written down a guess for what a single

specific such group might be.

As discussed earlier, by contrast, the study of p-adic Galois representations ramified

at primes of residue characteristic p, many of which arise from algebraic geometry and

modular forms, has been at the forefront of the advance of knowledge in algebaric

number theory. Boston’s work, therefore, has the potential of opening a vista in

a part of the subject where the standard methods are predicted (by the Fontaine-

Mazur Conjecture) to play a minor role. As such, it is a psychological as well as

scientific breaktrough, in the sense that it renders tangible certain objects that in

all previous experience had seemed visible only hazily and from a remote distance.

This is especially so, as the glimpses provided by Boston’s experiment point the way

to connections with a circle of ideas where exciting new developments are taking

place, namely quantum field theory, multi-zeta values, and the fundamental group of

P1 − {0, 1,∞}.

3.1. Boston’s experiment begins by restricting attention to the simplest base field,

namely Q, and taking stock of all group-theoretical facts that we know about tame

GQ,S with S finite. We have already mentioned that it has property fifa. By local-

izing at the ramifying primes, and using the fact that the ring of integers of our base

has finite unit group {±1}, one can show that GQ,S has p-deficiency 0, meaning it

has a pro-p presentation with d generators and d relations, where S = {∞, p1, . . . , pd}
consists of d distinct finite primes as well as the archimedean prime ∞ (which we

include for convenience if p = 2). The triviality of the unit group modulo torsion as

well as that of the class group make this a most favorable situation since we know, in

a sense, where all the global relations originate. Namely we have one global relation

coming from the local relation at each ramified prime. What these global relations

exactly are we do not know (at the outset), of course. More details will be given

momentarily in the proof of Theorem 3.2 below.

Boston observes that the presentation of GQ,S dating back to [Sh] and [Ko] (see

also [Fr]) can be written in a more pleasant form, motivating the following definition

and ensuing theorem.

Definition 3.1. — Suppose m = (m1, . . . , md) = (pr1 , . . . , prd) is a d-tuple of positive

powers of p. We say a pro-p group G has a Boston presentation of type m if it is
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TAME PRO-p GALOIS GROUPS: A SURVEY OF RECENT WORK 117

isomorphic to

Γ(α; m) := 〈x1, . . . , xd : xαi

i = x1+mi

i , 1 6 i 6 d〉p,
for some d-tuple α = (α1, . . . , αd) of words in the free pro-p group on x1, . . . , xd. If,

in addition, G is fifa (every subgroup of finite index has finite abelianization), then

we say G is an NT-group.

Remark. — The index p decorating the above presentation is a reminder that this

presentation takes place in the category of pro-p groups. In other words, our group is

the quotient of F pro-p
d , the free pro-p group on d generators x1, . . . , xd, by the closed

normal subgroup generated by relations xαi

i = x1+mi

i ; here we are using the conju-

gation notation xα = α−1xα. Note that the maximal abelian quotient of Γ(α, m) is

Z/m1 × · · · × Z/md.

Theorem 3.2. — Let p1, . . . , pd be d distinct primes congruent to 1 modulo p. Put

S = {∞, p1, . . . , pd}. Let m = (m1, . . . , md), where mi is the highest power of p

dividing pi − 1. For p = 2, we assume that each mi > 4. Then GQ,S is an NT-group

of type m.

Proof. — By [Ko, §11], GQ,S has a presentation of the form

(1) 〈s1, . . . , sd : sδi

i = spi

i , 1 6 i 6 d〉p.
The relation sδi

i = spi

i says that conjugation by δi has the same effect on si as raising

it to the pith power, so conjugation by a power of δi raises si to that power of pi, i.e.

(2) δ−n
i siδi = s

pn

i

i .

Our assumptions on pi imply that it generates the same subgroup of Z×
p as 1 + mi.

Therefore, there is some νi ∈ Zp such that pνi

i = 1+mi. By (2), when we let αi = δνi

i ,

we obtain the desired shape for the relations.

3.2. Theorem 3.2 is the starting point of Boston’s experiment, which is predicated on

(a) the daring assumption (or hope) that GQ,S admits a presentation Γ(α, m) where α

consists of relatively short words in the free group, as well as (b) the equally important

insight that this type of presentation and the property of being fifa together may go

rather far toward characterizing a pro-2 group!

To maximize the range of computations, we take K = Q, p = 2, S =

{∞, p1, . . . , pd}, where the pi are distinct odd primes. We look for the simplest

situation where GQ,S is infinite and seek to learn what kind of group we get in that

case. If d = 1, i.e. S = {∞, p1}, then GQ,S is cyclic, hence finite, so we take d = 2,

S = {∞, p1, p2}.
That NT-groups of type (2, 2) are finite follows from a classic result of Taussky-

Todd, so one of our ramifying primes, say p1, should be taken 1 modulo 4. If p2 ≡ 3

(mod 4), then GQ,S is of type (2, 4); a separate experiment using his method with
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Leedham-Green [BL] leads Boston to suspect that NT-groups of type (2, 4) are always

finite. This brings us to NT-groups of type (4, 4), which correspond to the choice

(3) p1 ≡ p2 ≡ 5 (mod 8).

Boston uses the software package magma to perform the calculations to be de-

scribed presently. Perhaps we should note here that, in practice, one works in magma

with the discrete free group and considers only those subgroups with core of 2-power

index – these correspond to subgroups of the pro-2 completion of the free discrete

group. (The core of H in G is the intersection of all G-conjugates of H).

Given a finite presentation for a group G and a small positive integer n (say less

than 5), magma can compute the list of all subgroups H of G of index 2n and

determine for each whether the maximal abelian pro-2 quotient of H is finite or not.

We are most interested in infinite fundamental groups so would like to eliminate

those groups G = Γ(α1, α2; 4, 4) which are finite. To this end, consider the “2-central

series” of G, Pn(G) = Pn, defined as follows. Let P0 = G, and for n > 0, put Pn+1 =

P 2
n [Pn, G]; here P 2

n and [Pn, G] are, respectively, the closed sugbroup generated by the

squares of elements of Pn, respectively commutators of Pn and G. For later reference,

also define the graded F2-Lie algebra g = ⊕n>0Pn/Pn+1 with the natural bracket

coming from the commutator. The maximal 2-class n quotient of G is Qn = G/Pn(G).

If Qn is strictly smaller than Qn+1 for n < 64, we consider it a good bet (for α1, α2

of short length) that Γ(α1, α2; 4, 4) is probably infinite. (In any given case, we have

number-theoretic as well as group-theoretic criteria which we can hope to apply to

verify the infinitude of the groups in question.)

Boston thus sets up algorithm IFF(L,C,D), an “infinite/fifa filter,” with parame-

ters L, C, D (for length, class, and depth) as follows. We let α1, α2 run over all words

in F pro-2
2 of length at most L, and discard any G = Γ(α1, α2; 4, 4) for which either

(i) [infinite] |Pn(G))| = |Pn+1(G)| for some n 6 C,

(ii) [fifa] G has some subgroup of index 2n, n 6 D, with infinite abelian pro-2

quotient.

In practice, memory constraints and the complexity of calculations allows only

small values of L, C, D, so what has been described is a simplification of the process

Boston actually employed, which involves using low values of L, C, D at first, (say

L = 10, C = 7, D = 3), then running the remaining candidates into a similar filter

with slightly higher values of C and D, and so on. Happily, this process eliminated

in a single overnight calculation a huge number (but, even more happily, not all!) of

some 15,000 candidates. There remained 92 groups (all of large 2-class and satisfying

fifa to a large depth). Here appeared the first surprise: All of the survivors of the

infinite-fifa filter turned out to be extremely similar to each other, which similarity

is most succinctly and elegantly expressed in the fact that they all (appear) to have

the same Lie algebra g! We will elaborate more on this a little later.
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Now let us move on to the second surprise. magma has a facility for replacing a

given presentation of a group by a simpler one. When Boston ran this for the survivors

of his filter, he found that they all admit a presentation of type Γ(α, 1; 4, 4)! (Here,

“1” is the identity element of F pro-p
2 ). In other words, Boston obtained in every case

a presentation

(4) G ∼= 〈x, y : xϕ = x5, y4 = 1〉2,

for ϕ ∈ F , a certain subset of the free pro-2 group on 2 generators. This was yet

another pleasant discovery since one expected every tame fundamental group to have

non-trivial torsion; in particular, since every open subgroup is a tame fundamental

group, the expectation is that tame fundamental groups are “torsion-riddled”, i.e.

every open subgroup has non-trivial torsion (another conjecture of Boston).

The shortest elements in F have length 6 (48 of them), including y2xyxy and

y2xyx−1y−1. There are 28 of length 7, 26 · 3 · 5 of length 8, 26 · 32 · 5 of length 9,

and 28 · 5 · 7 of length 10. In all of these cases, the three index 2 subgroups of the

group (4) all have abelianization Z/2 × Z/4 × Z/4. Moreover, in all these cases one

can show that G is infinite, for there is an index 4 subgroup H with generator- and

relation-rank both equal to 4, so the Golod-Shafarevich bound (r > d2/4 for a finite

p-group) applies.

An important problem is to understand the class F of elements which appear in

torsion-presentations of NT-groups of type [4, 4] (and more general ones). In partic-

ular, we may ask

Question 3.3. — For a fixed type m = (m1, . . . , md), is there a class Fd of elements

of (F pro-p
d )d−1 such that every infinite NT-group G of type m has a presentation of

type

G ≈ Γ(α1, . . . , αd−1, 1; m)

with (α1, . . . , αd−1) ∈ Fd?

Summarizing some of the experimental findings so far, we have

Conjecture 3.4

(a) There exists a subset F of the free pro-2 group on 2 generators such that every

infinite NT-group of type (4, 4) admits a presentation Γ(ϕ, 1, ; 4, 4), i.e. of type (4),

with ϕ ∈ F .

Moreover, for any such group G,

(b) the dimensions of graded pieces of G, namely log2 |Pn(G)/Pn+1(G)|, is the

sequence (5) to be described below.

(c) the index 2 subgroups of G all have abelianization Z/2 × Z/4 × Z/4.

(d) G has a subgroup of index 4 of generator rank and relation rank both equal

to 4.
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3.3. To return to our original arithmetic problem, given a pair of primes p1, p2,

satisfying (3), we know that GQ,{∞,p1,p2} is NT of type (4, 4), so, according to the

results of the experiment, we expect that if it is infinite, then it has a presentation

(4) for some ϕ ∈ F . Given such a p1, p2, what is a possible such ϕ? Already, given

such a pair, it is not necessarily easy to determine whether the corresponding tame

fundamental group will be infinite or not (we can definitely check that it is sometimes

finite, however).

We can begin to answer this question by comparing the abelianization of subgroups

of small index. Namely, if H is a subgroup of index 2n in GQ,S , then Hab is isomorphic

to the 2-part of the S-ray class group of the degree 2n field fixed by H . Using class

field theory, one can show that the three quadratic extensions inside QS (namely

Q(
√

p1), Q(
√

p2), Q(
√

p1p2)) all have 2-ray class group mod S of type Z/2×Z/4×Z/4

if and only if one of the primes (say p1) is a quartic residue modulo the other but

not vice versa. Given Conjecture 3.4, therefore, together with this bit of arithmetic

input, we find a surprisingly simple (conjectural) answer to our question about which

prime pairs give infinite GQ,{∞,p1,p2}.

Conjecture 3.5. — Given distinct primes p1, p2 ≡ 5 (mod 8), the maximal 2-extension

of Q unramified outside S = {∞, p1, p2} is infinite if and only if

(

p1

p2

)

4

= −
(

p2

p1

)

4

.

In this case, GQ,S is of type (4) for some ϕ ∈ F .

Improvements of the Golod-Shafarevich bound due to Kuhnt [Ku] are in fact strong

enough to prove the “if part” of the first sentence in the above conjecture. The

“only if part” is theoretically susceptible to verification by the computational method

of Boston and Leedham-Green, though the calculations appear prohibitively long.

The point that should be emphasized is the remarkable fact that we arrived at this

arithmetic conjecture via a purely group-theoretical experiment!

Now, although the 92 survivors of IFF(10,63,4) are all rather similar, some of

them can be immediately eliminated as contenders for identification with a GQ,S by

pursuing further the abelianization of subgroups/class groups connection. Namely,

the subgroup fixing the quartic subfield of Q(ζp2
) (recall our convention that p2 is

not a fourth power modulo p1) has abelianization (Z/4)4 (again by computing the

2-ray class group modulo p1p2 of this field) and this eliminates a number of groups

of type (4) from consideration. Further winnowing of this sort by going to degree 8

fields is also possible.

What emerges then is that, in this way, given a set S = {∞, p1, p2} as in Conjecture

3.5, (examples of such prime pairs are (5, 61), (13, 29), (29, 53), (37, 53)), we come up

with a small list of candidate elements ϕ ∈ F such that GQ,S is possibly isomorphic

to (4). At the moment, there is no way to be sure if a particular ϕ is the right

one. But it is a rather remarkable experience to make the purely group-theoretical

and “elementary”calculation of the abelianization of small-index subgroups of a given
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group of type (4), then to do the highly non-trivial ray class group calculations and

observe the exact matchings that occur repeatedly.

When witnessing the correspondence of the data from ray class groups with that

coming from abelianizations of finite index subgroups, I had the distinct impression

of experiencing a “reciprocity law,” in the same sense that the modularity of elliptic

curves over Q is a reciprocity law: Namely, on the modular side, one has “elementary”

algorithms for calculating a basis of eigenforms of fixed weight (2) and level (say N),

and on the arithmetic side, one has the more challenging arithmetic problem of listing

all elliptic curves over Q of conductor N .

Perhaps a more accurate analogy for describing Conjecture 3.4 is to compare the

information we would then have about the ray class groups of conductor p1p2 in this

infinite (non-abelian, tame) tower with the celebrated result of Iwasawa specifying

the growth of the p-rank of the class groups of conductor 1 in (abelian, wild) Zp-

extensions. In the tame case, the presentation (4) would codify in one neat package

(albeit in a less explicit form than Iwasawa’s wonderful formula) a huge amount of

information about ray class groups of the stories of the tower.

3.4. While the arithmetic problem described in the previous paragraph (of determin-

ing an exact presentation for even one pair p1, p2 as above) is a subtle and interesting

problem, we should not lose sight of the more fundamental expectation that all of these

groups have the same Lie algebra over Fp, because practically any group-theoretical

question we are interested in is captured by the Lie algebra, including whether or not

the group has infinite analytic (p-adic Lie) quotients (Fontaine-Mazur). So, let us now

turn to perhaps the biggest and most exciting third surprise, namely what emerges

as a prime suspect for the common Lie algebra of infinite NT-groups of type (4, 4).

First of all, the dimension of its graded pieces is given by the sequence

S : (log2 |Pn(G)/Pn+1(G)|)n,

which for each of the 92 survivors of IFF is computed to be

(5) S : 3, 3, 3, 3, 2, 4, 4, 6, 6, 8, 8, 12, 12, 17, 17, 25, 25, 36, 54, 54, 79, 79, · · ·

When shorn of the repetitions, the sequence of S receives one hit from the Neil Sloane

Sequence Database [Sl]: It is A001461, which occurs in a preprint [Br] of Broadhurst

on multizeta values with connections to knots and quantum field theory.

It is also combinatorial in nature, being the number of certain necklaces. For lack

of space, we do not elaborate on this connection here, but mention only that aperiodic

binary necklaces of length n are in a natural bijective correspondence with irreducible

polynomials of degree n over F2. It is highly suggestive that that there is an Fp- Lie

algebra operating in the background in the theory of multizeta values, namely the free

Lie algebra with one generator in degree 1 and one in degree 2; its graded pieces have

the same dimensions as the observed dimensions for the NT-groups of type (4, 4),
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namely (5). Another candidate is the permutation group algebra of Cameron, see

Gilbey [G].

3.5. A surprising outcome of Boston’s experiment is a purely group-theoretical pro-

gram for attacking Conjecture 1.2 for base field Q. Namely, Step 1: for a fixed type

m, there are only finitely many Lie algebras which occur as the Fp-Lie algebra of

NT-groups of type m; and Step 2: the Lie algebra of an infinite NT-group has no

analytic quotients.

For the particular case of p = 2 and S = {∞, p1, p2}, there is a strong possibility

that GQ,S is torsion-riddled, which would immediately show that it has no infinite

analytic quotients. Boston conjectures, again based on strong experimental evidence,

that every group of type (4) is just-infinite. See [B2] for more details on this and a

number of other interesting questions/conjectures.

3.6. In conclusion, Boston’s experiment has revealed that the group-theoretical in-

formation stemming from algebraic number theory that we have had about tame

fundamental groups for the last forty years is perhaps of sufficient strength to con-

vert most problems of interest about them (such as Fontaine-Mazur) into interesting

problems purely in group theory. It also demonstrates once again how numerical

experimentation combined with bold but carefully chosen assumptions can at times

shed light on previously impervious number-theoretical problems and open up new

avenues of research.

3.7. Note added in proof.— In their very striking recent work, Labute [La] and

Labute-Minac [La-Mi] confirm some of Boston’s predictions. In particular, for odd

primes p, Labute gives examples of finite sets S away from p such that the cohomo-

logical dimension of GQ,S is 2! In particular, tame finitely ramified pro-p extensions

of Q are not always torsion-riddled as previously expected.
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