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ON TOWERS OF FUNCTION FIELDS

OVER FINITE FIELDS

by

Peter Beelen, Arnaldo Garcia & Henning Stichtenoth

Abstract. — The topic of this paper is the construction of good recursive towers of

function fields over finite fields. We give an exposition of a number of known results

and illustrate the theory by several examples.

Résumé (Tours des corps de fonctions sur des corps finis). — Le sujet de cet article

est la construction de tours de corps de fonctions sur des corps finis qui sont définies

récursivement. Nous donnons un exposé des quelques résultats connus en illustrant

la théorie avec plusieurs exemples.

1. Introduction

The study of solutions of polynomial equations over finite fields has a long history

in mathematics, going back to C.F. Gauss. In case these polynomials define a one-

dimensional object (i.e., they define a curve or equivalently an algebraic function

field), we have the famous result of A. Weil (see [16]) bounding the number of such

solutions having all coordinates in the finite field. This bound is given in terms of

the cardinality of the finite field and the genus of the curve, and it is equivalent to

the validity of the Riemann Hypothesis for the associated Congruence Zeta Function.

When the genus is large with respect to the cardinality of the finite field, Ihara

(see [14]) noticed that Weil’s bound cannot be reached. This observation led to the

consideration of towers of function fields over a fixed finite field.

The interest on towers was enhanced after Tsfasman-Vladut-Zink showed (using

towers and a construction of linear codes from function fields due to Goppa) the

existence of sequences of codes with limit parameters (transmission rate and relative

distance) above the so-called Gilbert-Varshamov bound (see [15]).
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In this paper we present several topics in the theory of towers of function fields

over finite fields. We will omit most proofs, since these are already given in other

papers by the authors. We will give references to these papers when necessary.

After starting with basic definitions and first properties of towers of function fields

over finite fields, we study the limit of a tower and give several examples in order to

illustrate the concept of towers. In Section 3 we present two interesting new examples

of asymptotically good towers, one of them over the field of cardinality q2, the other

over the field of cardinality q3. In the last two sections we use methods from graph

theory to investigate the splitting behaviour of places in a recursive tower. We obtain

a functional equation which gives in many cases further insight in completely splitting

places.

2. The limit of a tower

In this section we discuss some properties of towers of function fields over finite

fields, and we also give some examples. Let Fq be the finite field with q elements.

A function field F over Fq is a finitely generated field extension F/Fq of trans-cendence

degree one, with Fq algebraically closed in the field F . We denote by g(F ) the genus

of the function field F . A tower F over Fq is an infinite sequence F = (F1 ⊂ F2 ⊂
F3 ⊂ · · · ) of function field extensions Fn+1/Fn for all n ∈ N, satisfying:

a) Each extension Fn+1/Fn is finite and separable.

b) We have g(Fn) → ∞ as n→ ∞.

Let N(Fi) denote the number of rational places of Fi/Fq. We are interested in the

limit λ(F) of a tower F over Fq, i.e., by definition

λ(F) := lim
i→∞

N(Fi)

g(Fi)
.

It is an easy consequence of Hurwitz’s genus formula that the limit above exists

(see [9]). Towers are specially interesting if they have many rational places with

respect to the genera; we then say that the tower F is good over Fq if its limit λ(F)

satisfies λ(F) > 0, otherwise F is said to be bad. It is a non-trivial problem to find

such good towers over finite fields, since in most cases it happens that either g(Fi)

increases too fast or N(Fi) does not grow fast enough. We therefore divide the study

of the limit λ(F) into two limits:

(1) The genus γ(F) of F over F1

γ(F) := lim
i→∞

g(Fi)

[Fi : F1]
.

(2) The splitting rate ν(F) of F over F1

ν(F) := lim
i→∞

N(Fi)

[Fi : F1]
.
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TOWERS OF FUNCTION FIELDS 3

The two limits above do exist (see [12]) and we clearly have:

0 < γ(F) 6 ∞, 0 6 ν(F) 6 N(F1), and λ(F) =
ν(F)

γ(F)
.

In particular, the tower F is good over Fq if and only if ν(F) > 0 and γ(F) <∞.

Let F be a function field over Fq and let P be a rational place of F over Fq; i.e., the

degree of the place P satisfies degP = 1. We say that the place P splits completely

in the finite extension E/F if there are [E : F ] places of E above the place P . Let

F = (F1 ⊂ F2 ⊂ F3 ⊂ · · · ) be a tower over Fq and let P be a rational place of the

first field F1 in the tower F . We say that the place P splits completely in the tower

if the place P splits completely in the extension Fn+1/F1 for all n ∈ N. We denote

t(F/F1) = t(F) := #{P a rational place of F1 ; P splits completely in F}.

We clearly have ν(F) > t(F), for any tower F . Hence if the tower is completely

splitting (i.e., if we have t(F) > 0) then ν(F) > 0. Let us also denote by F the limit

field of the tower; i.e., let

F :=
⋃

n∈N

Fn.

Complete splitting is a reasonable condition; we have a partial converse of the

statement above (see [11]). If for some value of n ∈ N the field extension F/Fn is

Galois, then the condition ν(F) > 0 implies that the tower is completely splitting

over Fn (i.e., ν(F) > 0 implies that t(F/Fn) > 0).

Next we consider the genus γ(F) of the tower F over the first field F1. It is useful

to observe that the genus γ(F) does not change under constant field extensions, so we

can replace the function fields Fi/Fq by the function fields F i/Fq := (Fi ·Fq)/Fq, where

Fq denotes the algebraic closure of the finite field Fq. We clearly have [Fn+1 : Fn] =

[Fn+1 : Fn], for each n ∈ N. A place P of F 1 = F1 · Fq is ramified in Fn+1 if there

exist fewer than [Fn+1 : F1] places of Fn+1 above the place P . We then define the

ramification locus of F over F 1 by

V (F) := {P place of F 1 ; P ramifies in Fn+1 for some n ∈ N}.

Let E/F be a separable extension of function fields over the algebraic closure Fq.

Let P be a place of the field F and let Q1, Q2, . . . , Qr be all places of E above P .

There are natural numbers e(Qi|P ) called ramification indices of Qi over P , for all

1 6 i 6 r, and the following fundamental equality holds:

r
∑

i=1

e(Qi|P ) = [E : F ].

The place P is called tame in E/F if the characteristic p does not divide e(Qi|P ),

for all 1 6 i 6 r. Otherwise P is called wild. The extension E/F is called tame if all

places P of the field F are tame places. We call a tower F over Fq a tame tower if

the extensions Fn+1/F 1 are tame extensions, for all n ∈ N.
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Here is a simple sufficient criterion for the finiteness of the genus γ(F) of a tower

(see [11]): if the tower F is a tame tower with a finite ramification locus (i.e.,

#V (F) <∞), then it has a finite genus γ(F) <∞.

The statement above is false in general when F is a wild tower ; i.e., when the

tower F is not tame. Before giving some examples F of tame and wild towers, and

before discussing the splitting rate ν(F) and the genus γ(F) in these examples, we

introduce the concept of recursive towers. We say that a tower F is recursively given

by a polynomial f(X,Y ) ∈ Fq[X,Y ], if F1 = Fq(x1) is the rational function field and,

for each n ∈ N, the field Fn+1 is defined by

Fn+1 := Fn(xn+1), with f(xn, xn+1) = 0.

Further we demand that [Fn+1 : Fn] = degY f(X,Y ) for all n ∈ N. The polynomial

f(X,Y ) should have balanced degrees; i.e., degX f(X,Y ) = degY f(X,Y ). Otherwise

the limit λ(F) of the tower is equal to zero (see [10]).

An upper bound for the limit λ(F) of a tower F over the finite field Fq is the

following bound due to Drinfeld-Vladut (see [7]):

λ(F) 6
√
q − 1.

We now give some examples of towers:

Example 2.1(see [12]). — Consider the tower F over F4 given recursively by the poly-

nomial

f(X,Y ) = Y 3 + (X + 1)3 + 1 ∈ F4[X,Y ].

This is a tame tower with #V (F) = 4 and t(F) = 1 (the place at infinity of F1 =

F4(x1) splits completely). Its limit satisfies

λ(F) = 1 =
√

4 − 1;

i.e., it attains the Drinfeld-Vladut bound.

Example 2.2(see [9]). — Consider the tower F over Fq2 , defined recursively by

f(X,Y ) = (Xq−1 + 1)(Y q + Y ) −Xq ∈ Fq2 [X,Y ].

This is a wild tower F satisfying

ν(F) = q2 − q and γ(F) = q.

In particular it attains the Drinfeld-Vladut bound; i.e.,

λ(F) = q − 1.

For wild towers it is in general very hard to decide if the genus γ(F) is finite or

not. This is the case in Example 2.2 where to show that γ(F) = q involves long and

technical computations.
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TOWERS OF FUNCTION FIELDS 5

For simplicity we say for example that the tower over Fq2 in Example 2.2 is given

by the equation

Y q + Y =
Xq

Xq−1 + 1
.

Example 2.3(see [2, 3]). — Consider the tower F over Fq with q = pp (p an odd prime

number) defined by the following equation

Y p − Y =
(X + 1)(Xp−1 − 1)

Xp−1
.

The tower F is wild, and its ramification locus V (F) is a finite set. Also t(F) > p

(the places of F1 = Fq(x1) which are the zeros of the polynomial xp
1 − x1 − 1 are

completely splitting in the tower F). Nevertheless we have λ(F) = 0 for p > 3.

If one considers the tower in Example 2.3 in the case p = 2, one can show that it is

the same tower as in Example 2.2 with q = 2. In fact just consider the substitutions

X 7→ X + 1 and Y 7→ Y + 1.

Example 2.4(see [11]). — Consider the tower F over Fq, with q = p2 and p an odd

prime number, defined recursively by the equation

Y 2 =
X2 + 1

2X
.

It is easy to see that F is a tame tower with γ(F) = 2. The hard part here is to

show that ν(F) = 2(p−1). From this we conclude that F attains the Drinfeld-Vladut

bound over the finite field Fp2 ; i.e., we conclude

λ(F) = p− 1.

The proof that ν(F) = 2(p − 1) involves the investigation of Fq-rationality of the

roots of Deuring’s polynomial

H(t) :=

p−1
2

∑

j=0

(

p−1
2

j

)2

tj ∈ Fp[t].

The roots ofH(t) parametrize supersingular elliptic curves in Legendre’s normal form.

Now we consider some specific classes of polynomials f(X,Y ) ∈ Fq[X,Y ] which

lead to good towers over Fq in many cases. A tower over Fq is a Kummer tower if it

can be defined recursively by an equation as below

Y m = f(X), with f(X) ∈ Fq(X) and (m, q) = 1.

If m divides (q − 1), each step Fn+1/Fn in a Kummer tower is cyclic of degree m.

Example 2.4 above is a Kummer tower. A more specific class of towers consists of

towers of Fermat type which are given by

Y m = a(X + b)m + c, with a, b, c ∈ Fq.
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The equation above defines a tower if and only if abc 6= 0 (see [17]). The difficulty

here is to show that the equation remains irreducible in each step Fn+1/Fn in the

tower. In case abm + c = 0, this is easily seen, since the place x1 = 0 of F1 = Fq(x1) is

totally ramified in the tower. In case abm+c 6= 0, no place ramifies totally throughout

the tower and the proof that the equation remains irreducible in each step, is more

involved.

Even this simple looking class of towers of Fermat type presents examples with

quite interesting behaviour. Example 2.1 belongs to this class and it attains the

Drinfeld-Vladut bound over F4. We now give other examples in this class:

Example 2.5(see [12]). — Consider the tower F over F9 defined by the equation

Y 2 = −(X + 1)2 + 1.

We have #V (F) = 3 and t(F) = 1, since the place at infinity of F1 = F9(x1) splits

completely in this tower. We also have

λ(F) = 2 =
√

9 − 1;

i.e., this tower attains the Drinfeld-Vladut bound.

Example 2.6. — Consider the tower F over the prime field F3 defined by the equation

Y 2 = (X + 1)2 − 1.

In this tower the place at infinity of F1 = F3(x1) splits completely and one can check

that the ramification locus V (F) is infinite. It is not likely, but if it turns out that

this tower has a finite genus γ(F), then this would be the first example of an explicit

good tower over a prime field.

Another interesting class of recursive towers is the class of towers of Artin-Schreier

type. These towers can be given by an equation

ϕ(Y ) = ψ(X),

where ϕ(Y ) ∈ Fq[Y ] is an additive separable polynomial and where ψ(X) ∈ Fq(X) is

a rational function. If the additive polynomial ϕ(Y ) has all its roots in the finite field

Fq, then each step Fn+1/Fn is an elementary abelian p-extension with [Fn+1 : Fn] =

degϕ(Y ). Ramification in this class of towers is always wild. Examples 2.2 and 2.3

give towers belonging to this class. Another very interesting example is the following:

Example 2.7(see [13]). — Consider the tower F over F8 defined recursively by

Y 2 + Y =
X2 +X + 1

X
.

We have t(F) = 6, since the places corresponding to x1 = α with α ∈ F8\F2 are

completely splitting in the tower. The hard thing here is to prove that γ(F) = 4 and
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hence

λ(F) >
t(F)

γ(F)
=

3

2
.

T. Zink proved in [18], using degenerations of Shimura modular surfaces, that there

is a sequence of function fields (F1, F2, F3, . . . ) over a field of cardinality p3 (with p

any prime number) such that

lim
n→∞

N(Fn)

g(Fn)
>

2(p2 − 1)

p+ 2
.

For p = 2, this lower bound is 2(p2 − 1)/(p+ 2) = 3/2. The tower F/F8 in Example

2.7 is the first explicit example of a tower which attains Zink’s lower bound above.

It is then natural to look for towers F of Artin-Schreier type, given by ϕ(Y ) = ψ(X)

as above, satisfying λ(F) > 0. For a fixed additive polynomial ϕ(Y ) ∈ Fq[Y ] with

all roots in Fq, there are however just a few possibilities for the rational functions

ψ(X) ∈ Fq(X) which may lead to good towers over the finite field Fq (see [2]). To

illustrate this assertion, consider a recursive tower F over Fq given by an equation

Y p + αY = ψ(X), with α ∈ F∗

q and ψ(X) ∈ Fq(X).

If the tower F is a good tower (i.e., if λ(F) > 0), then we just have 3 possibilities for

the rational function ψ(X) ∈ Fq(X):

(1) ψ(X) = a + (X + b)p/f(X), with a, b ∈ Fq and f(X) a polynomial with

deg f 6 p.

(2) ψ(X) = f(X)/(X + b)p, with b ∈ Fq and f(X) a polynomial with deg f 6 p.

(3) ψ(X) = a+ 1/f(X), with a ∈ Fq and f(X) a polynomial with deg f = p.

We believe that case (3) above can be discarded; i.e., case (3) would always lead to

λ(F) = 0. The examples already given here (see Examples 2.2 and 2.7) belong to case

(1). The tower given in Example 2.3 satisfies λ(F) = 0, since its rational function

ψ(X) =
(X + 1)(Xp−1 + 1)

Xp−1

does not belong to any of the three cases above for p 6= 2. In characteristic p = 2 it

belongs to case (1) with a = 0, b = 1, and f(X) = X . A natural problem here is the

determination of the polynomials f(X) with deg f(X) 6 p leading to a finite genus

γ(F) <∞ and even better leading to λ(F) > 0.

We finish this section with two conjectures:

Conjecture 1. — Let F be a recursive tower over a finite field. If ν(F) > 0, then

t(F) > 0.

In other words, Conjecture 1 says that recursive towers with a positive splitting

rate are completely splitting. A refinement of Conjecture 1 would be that the equality

ν(F) = t(F) always holds for any recursive tower F over a finite field.
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Conjecture 2. — Let F be a recursive tower over a finite field. If γ(F) < ∞, then

#V (F) <∞.

In other words, Conjecture 2 says that recursive towers with a finite genus have a

finite ramification locus.

Both Conjecture 1 and Conjecture 2 are false without the hypothesis that the

tower F is a recursive tower (see [8]). We will give a partial answer to Conjecture 1

in Section 4 below.

3. Two new non-Galois towers

The aim of this section is to present two new towers, one over finite fields Fq2 with

square cardinality and the other over finite fields Fq3 with cubic cardinality. The new

feature of these two towers of function fields is that each step Fn+1/Fn is non-Galois

for q 6= 2. Even more, for any n > 2 and any intermediate field F1 ( E ⊂ Fn the

extension E/F1 is non-Galois.

Example 3.1(see [5]). — Consider the tower F over Fq2 defined recursively by the

equation
Y − 1

Y q
=
Xq − 1

X
.

It is easily seen that t(F) = q, since the places of F1 = Fq2(x1) which are zeros of

xq
1 + x1 − 1 are completely splitting in the tower F over Fq2 . The hard part here is

to show that γ(F) = q/(q − 1). Hence we conclude

λ(F) >
t(F)

γ(F)
= q − 1;

i.e., the tower F attains the Drinfeld-Vladut bound over Fq2 . This fact can also be

seen from the fact that our new tower F is a subtower of the tower in Example 2.2.

Indeed denoting by E the tower over Fq2 defined recursively by

W q +W =
V q

V q−1 + 1
,

and setting

X :=
1

V q−1 + 1
and Y :=

1

W q−1 + 1
,

one checks easily that these functions X and Y satisfy the equation defining the

tower F ; i.e.,
Y − 1

Y q
=
Xq − 1

X
.

Being a subtower, we have (see [9])

λ(F) > λ(E) = q − 1, and hence λ(F) = q − 1.
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One can also go the other way around; i.e., knowing that λ(F) = q − 1, one can

deduce that λ(E) = q− 1. In order to do this we will need the concept of a composite

tower. Let F = (F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · ) be a tower and let E1/F1 be a tame

function field extension which is linearly disjoint from Fn+1 over F1 for all n ∈ N.

Let E denote the composite tower ; i.e., the tower E = (E1 ⊂ E2 ⊂ E3 ⊂ · · · ) where

the field En is the compositum En := E1 ·Fn, for all n ∈ N. Under certain hypotheses

(see [12]) one has the following genus formula:

2g(E1) − 2γ(E) − 2 = [E1 : F1](2g(F1) − 2γ(F) − 2) + δ,

where γ(E) is the genus over E1 of the tower E , where γ(F) is the genus over F1 of the

tower F , and where δ is the degree of the part of the different Diff(E1/F1) supported

above the ramification locus V (F) of the tower F . If one assumes furthermore that

the whole of the different Diff(E1/F1) is supported at places of E1 lying above places

of F1 belonging to V (F), then we have

δ = deg Diff(E1/F1)

in the above genus formula. In this situation, from the classical Hurwitz genus formula,

we conclude:

γ(E) = [E1 : F1]γ(F).

We now return to the towers E and F as in Example 3.1. One checks easily that

the tower E is the composite tower of F with the extension E1 = F1(v1), where

vq−1
1 =

1 − x1

x1

.

From the discussion above we then conclude that

γ(E) = [E1 : F1]γ(F) = (q − 1) · q

q − 1
= q.

Also one sees easily that t(E) = q2− q, since the places of E1 = Fq2(v1) corresponding

to the elements of Fq2\Fq are completely splitting in the tower E over Fq2 . Hence

λ(E) >
t(E)

γ(E)
=
q2 − q

q
= q − 1.

Example 3.2(see [6]). — Consider the tower F over Fq3 , with q any prime power,

defined recursively by the equation

1 − Y

Y q
=
Xq +X − 1

X
.

Let

A := {α ∈ Fq ; αq+1 = α− 1}
and let

Ω =
{

ω ∈ Fq ;
ωq + ω − 1

ω
= α, for some α ∈ A

}

.

One checks easily that

#Ω = q(q + 1) and Ω ⊂ Fq3 ,
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and also that t(F) > q(q + 1) since the places of F1 = Fq3(x1) which are zeros of

(x1 − ω), for ω ∈ Ω, are completely splitting in the tower F over Fq3 . Much harder

here is to show that the genus γ(F) is given by

γ(F) =
q

q − 1
· q + 2

2
.

The limit λ(F) then satisfies:

λ(F) >
t(F)

γ(F)
=

q(q + 1)
q

q−1
· q+2

2

=
2(q2 − 1)

q + 2
.

In fact we will show in Section 5 below that the limit of the tower F is equal to

λ(F) = 2(q2 − 1)/(q + 2). This tower F over Fq3 gives in particular a generalization

of a theorem of T. Zink (see [18]) for non-prime values of q (see also Example 2.7).

4. Graphs and recursive towers

Suppose we are given a tower F of function fields recursively given by the poly-

nomial f(X,Y ). Throughout this and the following section we will assume that

degX f(X,Y ) = degY f(X,Y ), which is not a real restriction according to the remark

before Example 2.1. In this section we will associate to an absolutely irreducible

polynomial f(X,Y ) ∈ Fq[X,Y ] a combinatorial object, a graph, that will be useful in

the description of the places of the function fields in the tower F . In particular the

behaviour of completely splitting places will be clearer in many cases. For proofs of

the results in Sections 4 and 5 we refer to [1].

We first give some standard facts and notations concerning graphs. For more

information about graphs see for example [4]. We define a directed graph Γ to be a

triple (V,A, e), where

i) V is a set of elements called vertices,

ii) A is a set of elements called arcs, and

iii) e : A→ V × V is a map.

Observe that in the literature a directed graph is sometimes defined as a tuple

(V,A), with A a subset of V × V . We will not use that definition here, since we want

to allow multiple arcs from one vertex to another. For a ∈ A write e(a) = (v, w). We

say that the arc a connects v with w, and that it starts at v and it ends in w. Note

that the map e need not be injective, allowing the possibility of multiple arcs. With

slight abuse of notation we say that (v, w) occurs as an arc in Γ if there exists an

a ∈ A such that e(a) = (v, w).

If it is possible to write V as a disjoint union of non-empty sets V1 and V2 such

that no arcs exist connecting a vertex in V1 to a vertex in V2 or vice versa, then

we call the graph decomposable. The induced graphs with vertex sets V1 and V2

are called components of Γ. Any directed graph can be divided into indecomposable

components.
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Assume for the moment that the sets V and A are finite. We define the in-degree

degin v (resp. out-degree degout v) of a vertex v of the graph Γ to be the number of

arcs of Γ ending in (resp. starting at) v. Given an ordering v1, v2, . . . , vk of the vertex

set, we define the adjacency matrix M = (mij) of the graph Γ = (V,A, e) to be the

k × k matrix given by:

mij := the number of arcs a ∈ A with e(a) = (vi, vj).

Any other ordering of the vertex set gives a matrix that differs from M only by a

conjugation with a permutation matrix. We have the following elementary lemma

connecting in- and out-degrees with the adjacency matrix.

Lemma 4.1. — Let Γ = (V,A, e) be a directed graph with #V = n < ∞. Let M be

the adjacency matrix of Γ with respect to some ordering v1, v2, . . . , vk of the vertices.

Then for all 1 6 i 6 k we have

degout vi =

k
∑

j=1

mij and degin vi =

k
∑

j=1

mji.

Now we come to the definition of the graphs we will use in connection to the theory

of recursive towers. Let f(X,Y ) ∈ Fq[X,Y ] be an absolutely irreducible polynomial.

We denote by Fq the algebraic closure of Fq and by F a field satisfying Fq ⊂ F ⊂ Fq.

Denote by F(x, y) the function field defined by f(x, y) = 0 and let g ∈ F(x, y) be a

function and R an F-rational place of F(x, y). If the function g does not have a pole

at the place R, we denote as usual by g(R) the evaluation of g in R (i.e. the unique

element α of F such that g ≡ α (mod R)). If the function g has a pole at the place

R we define g(R) := ∞.

Definition 4.2. — We define the graph

Γ(f,F) := (V,A, e)

as follows:

V := F ∪ {∞},
A := PF(F(x, y)), and

e(R) = (x(R), y(R)), for R ∈ PF(F(x, y)).

Here PF(F(x, y)) denotes the set of F-rational places of the function field F(x, y).

Of course the sets V and A in the above definition depend on F and on f(X,Y ). If we

want to make this explicit we will write V (f,F) (resp. A(f,F)) instead of V (resp. A).

Note that the number of arcs of the graph Γ(f,F) is by definition the same as the

number of F-rational places of the function field F(x, y), while the number of vertices

equals the number of F-rational places of the rational function field F(x).

For α and β in F, the tuple (α, β) occurs as an arc in the graph Γ(f,F) only if

f(α, β) = 0. The converse implication need not be true, as can be seen by taking for
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12 P. BEELEN, A. GARCIA & H. STICHTENOTH

example f(X,Y ) = X3 +X2 +XY + Y 2 over the field F2. In this case f(0, 0) = 0,

but there does not exist an arc in the graph Γ(f,F2) connecting 0 to 0. Such an arc

only appears if we extend the constant field to F4. The reason for this behaviour

is that (0, 0) is a singular point of the curve defined by f(X,Y ) = 0. If F = Fq,

we have f(α, β) = 0 if and only if there exists a place R ∈ PF(F(x, y)) such that

(x(R), y(R)) = (α, β). If the curve given by f(X,Y ) = 0 is nonsingular, then this

provides a bijection between arcs of Γ(f,F) and places R ∈ PF(F(x, y)).

Example 4.3. — In this example we consider the absolutely irreducible polynomial

Y 3 + (X + 1)3 + 1 ∈ F4[X,Y ] (see also Example 2.1). We write F4 = F2(α), with

α2 = α+ 1. After some calculations we find that the graph Γ(f,F4) looks as follows:

uα

u0
u α2

u
1

@
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@
@

�
�

�
�

�
�

�
�

@
@

@
@

	

	

R

R
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�����
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u
∞

�������
���
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'$�

Using the ordering 1, α, α2, 0,∞ of the vertices, we find that the adjacency matrix M

of Γ(f,F4) is given by:

M =















1 1 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 3















.

We define a path of length n in a graph Γ = (V,A, e) to be a sequence of arcs

a1, a2, . . . , an such that for all 1 6 i 6 n− 1 the second coordinate of e(ai) is equal to

the first coordinate of e(ai+1). Corresponding to such a path, we have the sequence of

visited vertices v1, v2, . . . , vn+1; i.e., e(ai) = (vi, vi+1). We also say that a1, a2, . . . , an

is a path from vertex v1 to vertex vn+1.

Now we consider a path a1, a2, . . . , an of length n in the graph Γ(f,F) considered

above. An arc ai in this graph is by definition an F-rational place of the function

field F(x, y) (where f(x, y) = 0). The fact that a1, a2, . . . , an is a path in this graph

implies that y(ai) = x(ai+1) for 1 6 i 6 n− 1. Therefore we have for the sequence of

visited vertices v1, v2, . . . , vn+1:

f(vi, vi+1) = 0, for 1 6 i 6 n,
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where we do allow the possibility that vj is infinity for some values of j. In this

sense a path in the graph Γ(f,F) gives rise to a solution over F of the above system of

equations. Note that different paths may yield the same solution and that, conversely,

any solution with coefficients in Fq ∪{∞} can be found by considering an appropriate

path in the graph Γ(f,Fq).

Now we return to a tower F over Fq recursively defined by a polynomial f(X,Y ) ∈
Fq[X,Y ]. The function field Fn can be described as Fq(x1, x2, . . . , xn) with the re-

lations f(xi, xi+1) = 0, for 1 6 i 6 n − 1. An Fq-rational place P of the function

field Fn therefore gives rise to a path of length n − 1 in the graph Γ(f,Fq). The

corresponding sequence of visited vertices is x1(P ), . . . , xn(P ). The number of paths

of length n − 1 in the graph therefore gives some information on the number of Fq-

rational places of the function field Fn. We will now give some facts about paths in

graphs. The following lemma is well-known in graph theory (see [4]).

Lemma 4.4. — Let Γ = (V,A, e) be a directed graph and suppose that the sets A and V

are finite. Let M be the adjacency matrix of Γ for some ordering of the vertices. Then

the number of paths from vertex vi to vertex vj of length n is equal to the ij-th element

of the matrix Mn.

It is also well-known that given a square matrix M with entries in C, the growth

of the entries of the matrix Mn depends on the largest eigenvalue of M . Therefore

we define

σ(M) := max{|λ| ; λ ∈ C is an eigenvalue of M}.
This number is also called the spectral radius of the matrix M . We have the following

lemma.

Lemma 4.5. — Let M be a square matrix with entries in C and denote by mij(n) the

ij-th entry of the matrix Mn. Then for any ε > 0 we have

lim
n→∞

|mij(n)|
(σ(M) + ε)n

= 0.

The above lemma follows for example quite easily using the Jordan normal form of

a matrix. If M is the adjacency matrix of a graph Γ with finite vertex set and with

finite arc set, and M ′ the adjacency matrix of the graph corresponding to a different

choice of the ordering of the vertex set, we have σ(M) = σ(M ′). Therefore it makes

sense to speak of σ(Γ), the spectral radius of the graph Γ. We have the following

proposition:

Proposition 4.6. — Let Γ be a graph with finite arc and vertex set. Then for any ε > 0

we have:

lim
n→∞

#{paths in Γ of length n}
(σ(Γ) + ε)n

= 0.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005



14 P. BEELEN, A. GARCIA & H. STICHTENOTH

We can sharpen the above proposition for the graphs Γ(f,F), since for any vertex v

of such a graph we have degout v 6 degY f(X,Y ) and degin v 6 degX f(X,Y ). Recall

that we always assume degX f(X,Y ) = degY f(X,Y ). For graphs with this property

we have the following proposition:

Proposition 4.7. — Let Γ = (V,A, e) be an indecomposable directed graph with finitely

many vertices and arcs. Suppose that there exists a natural number m such that all

out-degrees are less than or equal to m. Then we have

σ(Γ) 6 m.

If σ(Γ) = m and all in- and out-degrees are bounded from above by m, then all in-

and out-degrees are equal to m.

The two propositions above imply the following corollary.

Corollary 4.8. — Let f(X,Y ) ∈ Fq[X,Y ] be an absolutely irreducible polynomial such

that m := degX f(X,Y ) = degY f(X,Y ). Then we have

lim
n→∞

#{paths of length n in Γ(f,Fq)}
mn

> 0

if and only if there exists an indecomposable component ∆ of Γ(f,Fq) whose vertices

all have in- and out-degree equal to m.

A graph ∆ as in the corollary above has the property that it is a finite indecom-

posable component of the graph Γ(f,Fq), since the number of arcs that occur in ∆ is

the maximal possible number.

Using the above results, we can prove a partial answer to Conjecture 1 (see end of

Section 2). We need some preliminaries. Consider a tower F recursively defined over

the field Fq by the polynomial f(X,Y ). We can extend the constant field to Fq. After

doing so we can interpret the ramification locus V (F) as a subset of Fq ∪ {∞}, hence

as a subset of the vertex set of the graph Γ(f,Fq). In the same way we can interpret

the ramification locus V (G) of the dual tower G given by the polynomial f(Y,X) (also

see [3]), as a subset of the vertex set of the graph Γ(f,Fq).

We denote by W (F) the vertex set of the smallest component ∆ of Γ(f,Fq) whose

vertex set contains V (F) ∪ V (G). In other words: any indecomposable component of

the graph ∆ has at least one element of V (F) or V (G) among its vertices. The set

W (F) ⊂ Fq ∪ {∞} can be interpreted as a set of places of the function field Fq(x1).

One associates to α ∈W (F) the place that is the unique zero of the function x1 − α

if α 6= ∞ and the unique pole of x1 if α = ∞. It is easy to see that the set of places

we have obtained in this way can be reinterpreted as a set of (possibly non-rational)

places of the function field F1 = Fq(x1). Hence we may view W (F) as a set of places

of F1.
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Definition 4.9. — Let F be a tower over the field Fq, then we define

ρ(F) := lim
n→∞

#{Fq-rational places P of Fn above W (F)}
[Fn : F1]

.

Using these concepts we obtain a partial answer to Conjecture 1:

Theorem 4.10. — Let F = (F1, F2, . . . ) be a tower over Fq recursively given by a

polynomial f(X,Y ). Suppose that ρ(F) = 0. Then t(F) = ν(F).

Proof. — As usual we define m := degX f = degY f . Further we denote by

F = (F 1, F 2, . . . ) the tower of function fields obtained from F by extending the

constant field of the tower to Fq. We first consider the graph Γ(f,Fq). Recall

that vertices of this graph are elements of Fq ∪ {∞} and that arcs in this graph

are places of the function field Fq(x, y) where f(x, y) = 0. Also recall that any

place of the function field Fn+1 gives rise to a path of length n, namely the path

P ∩ Fq(x1, x2), P ∩ Fq(x2, x3), . . . , P ∩ Fq(xn, xn+1). We implicitly assume the

relations f(xi, xi+1) = 0 for all 1 6 i 6 n. Conversely given a path a1, . . . , an of

length n in the graph Γ(f,Fq) we can construct at least one place P of Fn+1 such

that P ∩ Fq(xi, xi+1) = ai for all 1 6 i 6 n (this follows for example inductively from

[17, Lemma 2.1.3]).

Now suppose we work in a component ∆ of Γ(f,Fq) such that any vertex v of ∆

has in- and out-degree m. A necessary and sufficient condition for this property is

that the vertex set of ∆ is disjoint from the set W (F). Clearly the number of paths

of length n starting in a vertex α is mn. Conversely, the number of places of Fn+1

lying above the place P1 of F 1 defined by x1 = α is also mn. We see that paths

of length n in ∆ correspond bijectively to places P of Fn+1 such that x1(P ) is a

vertex of ∆. Moreover one can show that such a place P is Fq-rational if and only

if its corresponding path in ∆ is defined over Fq (i.e., all arcs P ∩ Fq(xi, xi+1) are

Fq-rational). This means that there is a bijective correspondence between Fq-rational

places P of Fn+1 such that x1(P ) is a vertex of ∆ and paths of length n in the graph

∆ ∩ Γ(f,Fq) (i.e., the subgraph of ∆ consisting of all vertices and arcs of ∆ defined

over Fq).

We are now ready to prove the theorem. By the above observations, we can count

the number of Fq-rational places of Fn+1 not lying above W (F) by counting suit-

able paths of length n in the graph Γ(f,Fq). On the other hand, since we assumed

ρ(F) = 0, the amount of Fq-rational places lying above W (F) do not contribute to

ν(F) asymptotically. If ν(F) = 0, there is nothing to prove. Hence from now on we

suppose that ν(F) > 0. By Corollary 4.8, we conclude that ν(F) > 0 if and only if

there exists a component of Γ(f,Fq) with all in- and out-degrees equal to m. More

precisely, writing ∆ for the maximal component of Γ(f,Fq) with the property that

any vertex of ∆ has in- and out-degree equal to m, we have ν(F) = # vertices of ∆.
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16 P. BEELEN, A. GARCIA & H. STICHTENOTH

But it is then clear that any place P1 of the function field F1 with x1(P ) a vertex

of ∆ is completely splitting, i.e., we have ν(F) = t(F).

5. The functional equation

From now on we assume that the recursive tower F over Fq can be defined by an

equation of the form:

ϕ(Y ) = ψ(X), with ϕ(t) and ψ(t) ∈ Fq(t) rational functions.

We still assume that the equation is balanced; i.e., degϕ(t) = degψ(t). This condition

can now also be expressed as:

[Fq(t) : Fq(ϕ(t))] = [Fq(t) : Fq(ψ(t))].

We will reformulate the results of the previous section for this special case. We

write

ϕ(t) =
ϕ1(t)

ϕ2(t)
, with ϕ1(t) and ϕ2(t) ∈ Fq[t] relatively prime polynomials.

Similarly we write

ψ(t) =
ψ1(t)

ψ2(t)
, with ψ1(t) and ψ2(t) ∈ Fq[t] relatively prime polynomials.

We saw in Section 4 that finite components of the graph Γ(f,Fq) are interesting,

particularly when all in- and out-degrees are maximal. We have the following lemma.

Lemma 5.1. — Let f(X,Y ) = ψ2(X)ϕ1(Y )−ψ1(X)ϕ2(Y ) ∈ Fq[X,Y ] be an absolutely

irreducible polynomial such that degX f(X,Y ) = degY f(X,Y ) =: m. Let ∆ be a

component of the graph Γ(f,Fq) and suppose that any vertex of ∆ has in- and out-

degree equal to m. Then there exists a homogeneous polynomial H(t, s) ∈ Fq[t, s] and

a non-zero constant c such that the following functional equation is satisfied:

H(ϕ1(T ), ϕ2(T )) = c ·H(ψ1(T ), ψ2(T )).

More specifically, writing S for the vertex set of ∆ and setting ϕ(t) := ϕ1(t)/ϕ2(t),

one can choose

H(t, s) :=
∏

α∈S

(t− ϕ(α)s),

with the convention that (t−∞s) := s.

We call a homogeneous polynomial H(t, s) satisfying the equation in the above

lemma, a solution of the functional equation for ϕ(t) and ψ(t).

Now suppose we are given a tower F over Fq defined by the equation ϕ(Y ) =

ψ(X) as above and write f(X,Y ) = ψ2(X)ϕ1(Y ) − ψ1(X)ϕ2(Y ). The significance

of components ∆ of the graph Γ(f,Fq) satisfying the assumptions of Lemma 5.1 has

also become apparent in the proof of Theorem 4.10; in fact, if one can find such a

component, then t(F) > 0 (and hence ν(F) > 0). More general, suppose that there
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exists a finite component ∆ of the graph Γ(f,Fq) such that any vertex has maximal

in- and out-degree. Denote by F the smallest extension of Fq over which all vertices

and arcs of ∆ are defined, and denote by F ′ the tower of function fields obtained

from F by extending the constant field to F. Then we have t(F ′) > 0.

We have seen that if a tower over Fq recursively defined by f(X,Y ) = 0, satisfies

ρ(F) = 0 and ν(F) > 0, then the graph Γ(f,Fq) will have a finite component with

maximal in- and out-degrees. If the polynomial f(X,Y ) has the special form as in

Lemma 5.1, we will find a solution of the functional equation. We will now give some

examples.

Example 5.2. — Consider, as in Example 2.2, the tower F over Fq2 defined recursively

by the equation

Y q + Y =
Xq

Xq−1 + 1

and define f(X,Y ) := (Xq−1 + 1)(Y q + Y ) − Xq. One can check that the graph

Γ(f,Fq2) has a finite component satisfying the conditions of Lemma 5.1 with vertex

set S = {α ∈ Fq2 ; αq + α 6= 0}. In this case the polynomial H(t, s) mentioned in

Lemma 5.1 is
∏

α∈S

(t− (αq + α)s) =
(

tq−1 − sq−1
)q
.

In this case one can check Lemma 5.1 directly by showing

(T q + T )q−1 − 1 = (T q)q−1 − (T q−1 + 1)q−1,

i.e., we can also choose tq−1 − sq−1 as a solution.

In general if a homogeneous polynomial H(t, s) is a solution of the functional

equation mentioned in Lemma 5.1 for certain ϕ(t) and ψ(t), and one can write

H(t, s) = H1(t, s)
a, then H1(t, s) is also a solution of the functional equation for

the same rational functions. There are other, similar properties. For example, if

H1(t, s) and H2(t, s) are two solutions of the functional equation for ϕ(t) and ψ(t),

then their product is also a solution. Conversely, if H1(t, s) and H2(t, s) are solutions

and H1(t, s) is a multiple of H2(t, s), then H1(t, s)/H2(t, s) is also a solution. Finally

note that trivially a constant polynomial is always a solution.

We give another example to illustrate that the solutions predicted by Lemma 5.1

can be highly non-trivial.

Example 5.3. — We now return to the tower F defined over Fp2 mentioned in Example

2.4. In this case we have

ϕ(t) = t2 and ψ(t) =
t2 + 1

2t
.

It is not hard to check that ρ(F) = 0 for this tower. Since we know that ν(F) > 0,

this means that there exists a solution of the functional equation for ϕ(t) and ψ(t).
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This solution involves Deuring’s polynomial H(t). A non-trivial result in [11] is the

following equality:

H(T 4) ≡ T p−1H

(

(T 2 + 1

2T

)2
)

(mod p).

We can interpret this equation as a solution to the functional equation for t2 and

(t2 + 1)/2t. Indeed, define H1(t, s) ≡ sp−1H(t2/s2) (mod p). Then H1(t, s) ∈ Fp[t, s]

is a homogeneous polynomial of total degree p− 1. The above equation immediately

implies

H1(T
2, 1) = H1(T

2 + 1, 2T ),

and indeed there exists a non-trivial solution of the functional equation for t2 and

(t2 + 1)/2t.

The point of formulating matters in terms of a functional equation, is that one can

sometimes prove a uniqueness result. We illustrate this with the following proposition.

Proposition 5.4. — Let ϕ(t) ∈ Fq[t] be a monic polynomial of degree m and ψ(t) ∈
Fq(t) be a rational function such that

ψ(t) =
ψ1(t)

ψ2(t)
,

with ψ1(t), ψ2(t) ∈ Fq[t] relatively prime polynomials satisfying

1) the polynomial ψ1(t) is monic and degψ1(t) = m,

2) 0 < degψ2(t) < m.

Then there exists a homogeneous polynomial H(t, s) ∈ Fq[t, s] such that for any solu-

tion H1(t, s) ∈ Fq[t, s] of the functional equation for ϕ(t) and ψ(t) there exist a ∈ Fq

and n ∈ N with H1(t, s) = a ·H(t, s)n.

In other words the above proposition states that there exists essentially only one

solution of the functional equation for ϕ(t) and ψ(t) if the assumptions of Proposition

5.4 hold. We give an example to illustrate the use of Proposition 5.4.

Example 5.5. — We consider again the tower F over Fq3 in Example 3.2 given by the

equation
1 − Y

Y q
=
Xq +X − 1

X
.

We have seen that for this tower we have

λ(F) >
2(q2 − 1)

q + 2

We will show that equality holds.

Using results in [6] one can show that ρ(F) = 0 for this tower. As we have seen in

Theorem 4.10 this implies t(F) = ν(F). Moreover, we have seen that the completely

splitting places in the tower F are described by solutions of the functional equation for

ϕ(t) := (1−t)/tq and ψ(t) := (tq +t−1)/t. If we could show as in Proposition 5.4 that
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TOWERS OF FUNCTION FIELDS 19

essentially only one solution H(t, s) exists, we would be done. All possible completely

splitting places Pω of F1 (i.e., Pω is defined as the zero of x1 − ω) would then be

given by H(ωq + ω − 1, ω) = 0. As it is, we cannot apply the proposition directly.

However, we can rewrite the defining equation of the tower F . Define V := 1/X and

W := 1/Y . From the defining equation of the tower we obtain

W q −W q−1 =
V q − V q−1 − 1

−V q−1
.

Hence we can apply Proposition 5.4 with

ϕ(t) = tq − tq−1 and ψ(t) = (tq − tq−1 − 1)/(−tq−1).

We find that for these ϕ(t) and ψ(t) there is essentially only one solution of the

functional equation. One can check that this solution can be chosen to be H(t, s) =

tq+1 − t · sq + sq+1. In particular we conclude

λ(F) =
2(q2 − 1)

q + 2
.

As another illustration of the use of Proposition 5.4, we discuss the following prob-

lem stated in [11].

Given α ∈ Fp2 such that H(α4) = 0, with H(t) Deuring’s polynomial in character-

istic p. It is proved in [11] that all roots of H(t4) lie in Fp2 . We have remarked in

Examples 2.4 and 5.3 that any β ∈ Fp2 such that β2 = (α2 + 1)/2α is again a root

of the polynomial H(t4). Of course, we can obtain more roots of H(t4) by iterating

this procedure. A natural question is to ask if in this way one can obtain all roots of

H(t4). For convenience, we define f(X,Y ) := 2XY 2 − (X2 + 1) and Γ := Γ(f,Fp2)

for the remainder of this section.

Reformulated in graph theoretical means, this question is equivalent to: What

vertices of the graph Γ can we reach with paths in Γ starting at the vertex α?

We know (see Example 5.3 and the remarks preceding Example 5.2) that the

graph Γ has a component ∆ with vertex set {β ∈ Fp2 ; H(β4) = 0} and that any

vertex of ∆ has in- and out-degree 2. Hence by Lemma 5.1 , any indecomposable

component of ∆ gives a solution of the functional equation for t2 and (t2 + 1)/2t.

However, by Proposition 5.4, there exists essentially only one solution, which implies

that ∆ is indecomposable. In general one can show that in an indecomposable graph

with all in- and out-degrees equal to a number m, one can reach any vertex with

paths starting in a certain fixed vertex. Hence the answer to the above question is

affirmative.
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