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ON THE PICARD GROUP FOR

NON-COMPLETE ALGEBRAIC VARIETIES

by

Helmut A. Hamm & Lê Dũng Tráng

Abstract. — In this paper we show some relations between the topology of a complex

algebraic variety and its algebraic or analytic Picard group. Some of our results

involve the subgroup of the Picard group whose elements have a trivial Chern class

and the Néron-Severi group, quotient of the Picard group by this subgroup. We are

also led to give results concerning their relations with the topology of the complex

algebraic variety.

Résumé(Sur le groupe de Picard des variétés algébriques non complètes). — Dans cet

article, nous montrons quelques relations entre la topologie d’une variété algébrique

complexe et son groupe de Picard algébrique ou analytique. Certains de nos résultats

concernent le sous-groupe du groupe de Picard dont les éléments ont une classe de

Chern triviale et le groupe de Néron-Severi, quotient du groupe de Picard par ce

sous-groupe. Nous obtenons aussi des résultats sur leurs relations avec la topologie

de la variété algébrique complexe.

1. Statements

Let X be a complex algebraic variety, i.e. a (sc. separated) integral (i.e. irreducible

and reduced) scheme of finite type over Spec C. Then we have a corresponding com-

plex space Xan. The notion of the Picard group exists in the category of complex

algebraic varieties and in the category of complex spaces, since both algebraic vari-

eties and complex spaces are locally ringed spaces. Recall that, for a locally ringed

space, the Picard group is the group of isomorphism classes of invertible sheaves. For

algebraic varieties it coincides with the Cartier divisor class group [H] II 6.15.

If X is complete, i.e. Xan is compact, both Picard groups are isomorphic to each

other by the GAGA principle: PicX ' Pic(an) Xan. If X is projective, this is a

classical result of Serre [S]; for the general case see [G2] XII Th. 4.4. This is no longer

true in general if X is not complete. This fact will be an easy consequence of Corollary
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1.3 below. A more interesting example is due to Serre, cf. [H] Appendix B 2.0.1; we

thank the referee for drawing our attention to it: there are non-singular surfaces X1

and X2 such that Xan
1 ' Xan

2 and Pic X1 6' PicX2. So Pic(an) Xan
1 ' Pic(an) Xan

2 ,

X1 is not isomorphic to X2, and we cannot have PicXj ' Pic(an) Xan
j , j = 1, 2.

We will concentrate here upon the case where X is non-singular. Remember that

we have a canonical mixed Hodge structure on the cohomology groups of Xan [D1].

As usual, if (H, F, W ) is a mixed Hodge structure on H, F is the Hodge filtration

· · · ⊃ FnHC ⊃ Fn+1HC ⊃ . . . on HC := H ⊗ C and W is the weight filtration on

HQ := H⊗ Q

· · · ⊂ WkHQ ⊂ Wk+1HQ ⊂ . . .

We write

GrW
` HQ = W`HQ/W`−1HQ and Gri

F HC = F iHC/F i+1HC.

Recall also that the Hodge filtration induces a filtration on each GrW
` HC.

In contrast to the approach of A.Grothendieck [G1] we apply transcendental meth-

ods which lead to results involving transversality conditions.

First let us study the question whether PicX is trivial:

1.1. Theorem. — Let X be a non-singular complex algebraic variety, assume that

GrW
1 H1(Xan; Q) = 0, Gr1F GrW

2 H2(Xan; C) = 0 and H2(Xan; Z) is torsion free. Then

PicX = 0, i.e. every divisor on X is a principal divisor.

Note that there is no difference between Weil and Cartier divisors here because X

is supposed to be non-singular (see [H] Chap. II 6.11.1 A). Of course, this theorem

shows that it is sufficient to suppose that H1(Xan; Q) = 0 and H2(Xan; Z) = 0 to

obtain Pic X = 0. In particular, it is not possible to distinguish X from the affine

space An = An(C) := Spec C[x1, . . . , xn] by the Picard group if Xan is contractible.

Conversely, we have:

1.2. Theorem. — Let X be a non-singular complex algebraic variety and suppose

PicX = 0. Then

GrW
1 H1(Xan; Q) = 0 and H2(Xan; Z) is torsion free.

Then we also get the following easy consequence of both theorems:

1.3. Corollary. — Let X be a non-complete non-singular irreducible complex curve,

g the genus of its non-singular compactification X. Then g = 0 if and only if the

algebraic Picard group PicX of X is trivial.

Note, however, that the analytic Picard group Pic(an) Xan is always trivial in the

case of a non-complete irreducible complex curve.

Now let us turn to the Picard group in the case where it is non-trivial. In general,

the structure of the Picard group can be quite complicated but we have a comparison

theorem:
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1.4. Theorem. — Let f : Y → X be a morphism between non-singular complex alge-

braic varieties. Suppose that the induced map

Hk(Xan; Z) −→ Hk(Y an; Z)

is bijective for k = 1, 2. Then the natural map Pic X → PicY is bijective.

As a consequence, there is a theorem of Zariski-Lefschetz type, using a correspond-

ing topological theorem [HL]. Let us state it in a slightly more general form, admitting

singularities.

Now, X might be singular. Let ClX be the Weil divisor class group of X and

Sing X the singular locus of X .

1.5. Theorem. — Let Sing X be of codimension > 2 in X and let X be a compactifica-

tion of X to a projective variety embedded in Pm = Pm(C). Let us fix a stratification

of X such that X and X r Sing X are unions of strata. Let Z be a complete intersec-

tion in Pm which is non-singular along X and intersects all strata of X transversally

in Pm , and let Y := X ∩ Z. Suppose dimY > 3. Then Cl X ' Cl Y . If X is affine,

we have Pic(an) Xan ' Pic(an) Y an, too.

Note that Cl may be replaced by Pic if X is non-singular ([H] Chap. II 6.16).

1.6. Corollary. — Suppose that X is a non-singular affine variety of dimension > 3

in Pm. Then there is a linear subspace L of Pm such that Y = X ∩L is non-singular,

dimY = 3 and PicX ' PicY , Pic(an) Xan ' Pic(an) Y an.

1.7. Corollary. — Let Y be a non-singular closed subvariety of the affine space Am,

dimY > 3. Assume that the closure Y in Pm is a non-singular complete intersection

which is transversal to Pm r Am. Then PicY = 1, Pic(an) Y an = 1.

In fact, this last corollary is a simultaneous consequence of Theorem 1.1 and 1.5,

which justifies to treat both theorems here at the same time.

We are grateful to U. Jannsen for drawing our attention to related developments

in the theory of mixed motives [J].

2. Proofs of Theorems 1.1 and 1.2

Let X be a smooth complex algebraic variety of dimension n. Recall that we can

attach to each invertible sheaf on X its first Chern class. This gives a homomorphism

α : Pic X → H2(Xan; Z). Let Pic0 X be the kernel.

Since X is separated there is a compactification X by Nagata [N]. Since X is

smooth we can obtain by Hironaka [Hi] that X is smooth and that X rX is a divisor

with normal crossings D = D1 ∪ · · · ∪ Dr, where the components D1, . . . , Dr are

smooth.
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Recall that, for all k, Wk−1H
k(Xan; Q) = 0, because X is non-singular, see [D1]

3.2.15.

2.1. Lemma. — The canonical mapping H1(X
an

; Q) → H1(Xan; Q) is injective, the

image is W1H
1(Xan; Q) ' GrW

1 H1(Xan; Q).

Proof. — Let us look at the exact sequence

H1(X
an

, Xan; Q) −→ H1(X
an

; Q) −→ H1(Xan; Q)

By Lefschetz duality H1(X
an

, Xan; Q) is dual to the vector space H2n−1(Dan; Q)

which vanishes because dim D = n − 1. This proves the injectivity.

On the other hand, the image of H1(X
an

; Q) → H1(Xan; Q) is W1H
1(Xan; Q) '

GrW
1 H1(Xan; Q) by [D1] p. 39, Cor. 3.2.17.

2.2. Proposition. — The following conditions are equivalent:

a) PicX is a finitely generated group,

b) GrW
1 H1(Xan; Q) = 0,

c) Pic0 X = 0.

Proof. — Let us first consider the case where X is complete. Since X is also supposed

to be smooth, the mixed Hodge structure on H1(Xan; Q) is pure of weight 1, so

H1(Xan; Q) = GrW
1 H1(Xan; Q).

Therefore b) is equivalent to the condition b1(Xan) = 0, where b1 denotes the first

Betti number. Now the latter can be expressed by the Hodge numbers: b1(Xan) =

h01(Xan) + h10(Xan) = 2h01(Xan). Note that Xan need not be a Kähler manifold,

since X might not be projective. Anyhow X is algebraic, and we have hpq(Xan) =

dimC Hq(Xan, Ωp
Xan) because of the definition of the Hodge filtration in general, see

[D1] (2.2.3) et (2.3.7).

So b) is equivalent to the condition that H1(Xan,OXan) = 0.

Now the exponential sequence leads to the following exact sequence:

H1(Xan; Z) −→ H1(Xan,OXan) −→ PicX
α

−→ H2(Xan; Z).

Here we use the fact that Pic X ' Pic(an) Xan ' H1(Xan,O∗

Xan) by GAGA, be-

cause X is complete. Now H1(Xan; Z) and H2(Xan; Z) are finitely generated abelian

groups, i.e. Noetherian Z-modules. In particular, PicX/ Pic0 X is finitely generated.

a) ⇒ b): By the exact sequence above, if PicX is finitely generated, the cohomology

group H1(Xan,OXan) is also a finitely generated group. But, since we consider a

complex vector space, it is a finitely generated group if and only if it is trivial.

b) ⇒ c): follows from the surjectivity of H1(Xan,OXan) → Pic0 X .

c) ⇒ a) As said before, PicX/ Pic0 X is finitely generated.

This finishes the special case where X is complete.
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Now let us turn to the general case. Since X and X are smooth we can replace

the Picard group by the Weil divisor class group, so we have an exact sequence of the

form

Zr −→ PicX −→ PicX −→ 0

see [H] II Prop. 6.5, p. 133 in the case r = 1.

a) ⇒ b): Since PicX is finitely generated, the same holds for PicX . By the first

case, H1(X
an

, Q) = 0. Now Lemma 2.1 yields GrW
1 H1(Xan; Q) = 0.

b) ⇒ c): By Lemma 2.1, H1(X
an

; Q) ' GrW
1 H1(Xan; Q) = 0, so

Pic0 X = 0

by the first case applied to X which is complete. Now, let us consider the commutative

diagram with exact rows:

Zr //

o
��

Pic X //

α
��

PicX //

α
��

0

��

H2(X
an

, Xan; Z) // H2(X
an

; Z) // H2(Xan; Z) // H3(X
an

, Xan; Z)

Here we were allowed to put the right hand vertical arrow by a diagram chase. Since

Pic0 X = 0, we know that α is injective. The five lemma shows therefore that α is

also injective. This means that Pic0 X = 0.

c) ⇒ a): This follows from the fact that Pic X/ Pic0 X is finitely generated.

Proof of Theorem 1.1. — By Proposition 2.2 we have that Pic0 X = 0, so the natural

mapping PicX → H2(Xan; Z) is injective.

If X is complete, we obtain an exact sequence

0 −→ PicX −→ H2(Xan; Z) −→ H2(Xan,OXan)

We can factorize the last map through H2(Xan; C). The image P of PicX in

H2(Xan; C) is obviously contained in the kernel of the map

H2(Xan; C) −→ H2(Xan,OXan) ' Gr0F H2(Xan; C).

This kernel is

U := F 1H2(Xan; C)

because H2(Xan; C) = F 0(H2(Xan; C)) and

Gr0F (H2(Xan; C)) = F 0(H2(Xan; C))/F 1(H2(Xan; C)).

Since Pic X injects in H2(Xan; Z), P is also invariant under conjugation, so P is

contained in U ∩ U .

We observe that, by definition of the Hodge structure (see [D1] (B) of (2.2.1)) we

have

U ∩ U ' Gr1F H2(Xan; C)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005



76 H.A. HAMM & LÊ D.T.

because H2(Xan; C) = F 2(H2(Xan; C)) ⊕ F
1
(H2(Xan; C)) which induces

F 1(H2(Xan; C)) = F 2(H2(Xan; C)) ⊕ (F 1(H2(Xan; C) ∩ F
1
(H2(Xan; C)))

and gives

Gr1F H2(Xan; C) ' (F 1(H2(Xan; C) ∩ F
1
(H2(Xan; C))).

Since X is complete, H2(Xan; C) = GrW
2 H2(Xan; C), so P = 0, which means that

PicX is a torsion group, but by hypothesis H2(Xan; Z) has no torsion, so PicX = 0.

If X is not necessarily complete, we get that PicX is mapped to

V ∩ V ,

with V := F 1W2H
2(Xan; C), because of the commutative diagram with surjective

upper row

Pic X //

��

PicX

��

U ∩ U // W2H
2(Xan; C)

where U := F 1H2(X
an

; C).

As above we have by definition of the Hodge structure (see [D1] (B) of (2.2.1))

V ∩ V ' Gr1F W2H
2(Xan; C).

In fact, since X is non-singular, we have

W2H
2(Xan; C) = GrW

2 H2(Xan; C).

Since Gr1F GrW
2 H2(Xan; C) = 0 by hypothesis, we get that

PicX ⊂ TorH2(Xan; Z) = 0.

Proof of Theorem 1.2. — By Proposition 2.2 we get that

GrW
1 H1(Xan; Q) = 0.

Let us look at the commutative diagram

Zr //

o
��

Pic X //

α
��

PicX //

α
��

0

��

H2(X
an

, Xan; Z) // H2(X
an

; Z) // H2(Xan; Z) // H3(X
an

, Xan; Z)

Let z be a torsion element of H2(Xan; Z), so nz = 0 for some integer n > 0. The image

of z in H3(X
an

, Xan; Z) is a torsion element, too, but H3(X
an

, Xan; Z) is without

torsion, by the universal coefficient formula, because otherwise H2(X
an

, Xan; Z) '

H2n−2(Dan; Z) ' Zr would have torsion, which is a contradiction. So z is the image

of some element y ∈ H2(X
an

; Z). Then ny is mapped to nz = 0, so ny is the

image of some x ∈ H2(X
an

, Xan; Z), hence ny has an inverse image in PicX . So

in the exponential sequence of X, ny is mapped to 0 in H2(X,OX). Therefore y is
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mapped to 0, too, because H2(X,OX) is without torsion, which means that y has an

inverse image by α in Pic X, which implies that z = 0, since Pic X = 0. Therefore,

H2(Xan; Z) has no torsion.

Proof of Corollary 1.3. — Of course, since X is a non-complete curve, H2(Xan, Z)=0.

By Lemma 2.1, we have

GrW
1 H1(Xan; Q) ' H1(Xan; Q) = 0 (resp. 6= 0)

if g = 0 (resp. g > 0). This implies our statement.

More complicated examples can be constructed using the theory of toric varieties.

Using the results of [DK] one can calculate the mixed Hodge numbers for X if X is a

non-degenerate complete intersection, in particular one can calculate the dimension of

GrW
1 H1(Xan; Q) ' H1(X

an
; Q),

see Lemma 2.1.

An easier example is given by the Cartesian product of two non-complete nonsin-

gular curves: X := X1 × X2, where Xj has the genus gj . Here to get Pic X = 0, we

have to decide whether b1(X1 × X2) = 0. By the Künneth formula, b1(X1 × X2) =

2(g1 + g2). So to get PicX = 0, it is necessary that g1 = g2 = 0. The condition is

obviously sufficient, too. Recall that the Künneth formula respects the mixed Hodge

structures [D2] 8.2.10.

As for the analytic Picard group that we denote here by Pic(an) to avoid possible

confusions, we have the following obvious lemma, using the exponential sequence.

Note that in contrast to algebraic varieties the integral cohomology of a complex

space may not be finitely generated.

2.3. Lemma. — Let X be a complex space such that the cohomology groups H1(X; Z)

and H2(X; Z) are finitely generated. Then the following conditions are equivalent:

a) H1(X,OX) = 0,

b) Pic0
(an) X = 0,

c) Pic(an) X is finitely generated.

For the triviality of the analytic Picard group we have the following criterion:

2.4. Lemma. — Let X be a complex space such that H1(X; Z) is finitely generated. The

following conditions are equivalent:

a) H1(X,OX) = 0 and the mapping H2(X; Z) → H2(X,OX) is injective,

b) Pic(an) X = 0.

The case of Stein spaces is quite easy:

2.5. Lemma. — If X is a Stein space the map L 7→ c1(L) induces an isomorphism

Pic(an) X → H2(X; Z).
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Proof. — Use the exponential sequence.

In particular, Xan is Stein if X is a non-complete curve. Therefore we have

Pic(an) Xan = 0, independently of the genus g, in contrast to Pic X (see Corollary

1.3).

Note that in general Pic(an) Xan need not be simpler than Pic X .

For instance, if X = X1 × X2, where X1 and X2 are curves chosen as above, we

have an exact sequence

Z2g1+2g2+c−1 −→ Γ(Xan
1 ,OXan

1
)g2 −→ Pic(an) Xan −→ Z(2g1+c−1)2g2+1

where c := #(X1 r X1), so Pic(an) Xan has to be very large. Note that

H1(Xan,OXan) = Γ(Xan
1 , R1pan

∗
OXan) = Γ(Xan

1 ,OXan
1

)g2 ,

by using Grauert’s continuity theorem (see Theorem 4.12 p. 134 of [BS]), p : X → X1

being the projection. So dimC H1(Xan,OXan) = ∞ if g2 > 0.

As for Corollary 1.7, note that by the topological Lefschetz-Zariski theorem we

have Hk(Y an; Z) ' Hk(Cm; Z) = 0, k = 1, 2. Therefore the Corollary follows from

Theorem 1.1 resp. Lemma 2.5.

3. The Néron-Severi group

Let X be a non-singular complex algebraic variety. Let Pic0 X be the kernel of the

morphism

α : PicX −→ H2(Xan; Z).

We denote the Néron-Severi group of X by NS(X) := Pic X/ Pic0 X . It is isomorphic

to the image of the Chern class homomorphism α, hence it is a finitely generated

abelian group. The following result should be compared with [J] Theorem 5.13.

3.1. Theorem. — The Chern class homomorphism α induces an isomorphism of the

Néron-Severi group NS(X) of X with γ−1(V ), where

γ : H2(Xan; Z) −→ H2(Xan; C)

is the canonical mapping, V := F 1W2H
2(Xan; C).

Proof: a) Let us treat first the case where X is compact. Then the exponential

sequence leads to the exact sequence:

PicX −→ H2(Xan; Z) −→ H2(Xan,OXan)

The image of α coincides with the kernel of the map

H2(Xan; Z) −→ H2(Xan,OXan)

which can be factorized through H2(Xan; C). Now

H2(Xan,OXan) ' Gr0F H2(Xan; C) ' H2(Xan; C)/F 1H2(Xan; C),
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so the kernel in question coincides with γ−1(F 1H2(Xan; C)) which is our assertion in

this case.

Now let us turn to the general case. We take the notations of the proof of Propo-

sition 2.2. Let us consider the commutative diagram with exact rows:

Zr //

o
��

Pic X //

α
��

PicX //

α
��

0

��

H2(X
an

, Xan; Z) // H2(X
an

; Z) // H2(Xan; Z) // H3(X
an

, Xan; Z)

Here we were allowed to put the right hand vertical arrow by a diagram chase. We can

apply our preliminary result to X and deduce that the image of α is γ−1(U) where

γ : H2(X
an

; Z) → H2(X
an

; C) is the canonical mapping and U := F 1H2(X
an

; C).

If we tensorize the diagram above with C we get a commutative diagram with exact

rows:

Cr //

o
��

PicX ⊗Z C //

��

PicX ⊗Z C //

��

0

��

H2(X
an

, Xan; C) // H2(X
an

; C) // H2(Xan; C) // H3(X
an

, Xan; C)

Note that H2(X
an

, Xan; Q) is dual to H2n−2(Dan; Q) ' ⊕r
j=1H

2n−2(Dan
j ; Q), so, by

the Theorem 1.7.1 of [F], the mixed Hodge structure on H2(X
an

, Xan; Q) is pure of

weight 1, the corresponding Hodge numbers being trivial except maybe h11. So

H2(X
an

, Xan; C) = F 1W2H
2(X

an
, Xan; C).

By the first case we have that the image of

PicX ⊗Z C −→ H2(X
an

; C)

is contained in F 1H2(X
an

; C) = F 1W2H
2(X

an
; C). Since X is smooth, we have

WkH3(X
an

, Xan; C) = 0 for k < 3. So we get an induced diagram with exact rows

Cr //

o
��

PicX ⊗Z C //

��

PicX ⊗Z C //

��

0

F 1W2H
2(X

an
, Xan; C) // F 1W2H

2(X
an

; C) // F 1W2H
2(Xan; C) // 0

In particular, this shows that the image of α is contained in γ−1(V ).

Let us prove that every element of γ−1(V ) is contained in the image of α. Consider

the commutative diagram

H2(Xan; Z) //

��

H3(X
an

, Xan; Z)

��

H2(Xan; C) // H3(X
an

, Xan; C)
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Now H3(X
an

, Xan; Z) is without torsion. Otherwise, by the universal coefficient for-

mula, we would have torsion in

H2(X
an

, Xan; Z) ' H2n−2(Dan; Z) '
r⊕

i=1

H2n−2(Dan
i ; Z) ' Zr ,

which is a contradiction.

This shows that the right vertical arrow is injective.

Let z ∈ γ−1(V ). Then z is mapped to an element zC of V = F 1W2H
2(Xan; C),

so it is mapped to 0 in H3(X
an

, Xan; C), since W2H
3(X

an
, Xan; C) = 0. By the

preceding remark, this implies that z is mapped to 0 in H3(X
an

, Xan; Z). So z has

a preimage y in H2(X
an

; Z). Let yC be the image of y in H2(X
an

; C). On the other

hand, zC has a preimage y′ in U . So the element y′−yC is mapped to 0 in H2(Xan; C),

which implies that it is the image of some element x ∈ H2(X
an

, Xan; C). But as we

saw this space coincides with F 1W2H
2(X

an
, Xan; C), so y′ − yC ∈ U , hence yC ∈ U ,

which means

y ∈ γ−1(U).

By our preliminary result, we can find an element in PicX, whose image in Pic X is

mapped to z. So z is in the image of α.

3.2. Corollary. — Let X be a non-singular complex algebraic variety.

a) rkNSX 6 dimC Gr1F GrW
2 H2(Xan; C),

b) α induces an isomorphism Tor(NS X) ' TorH2(Xan; Z).

Proof. — a) We saw from the proof of Theorem 1.1 that the image of Pic X is

contained in V ∩ V and also in H2(Xan; R). Since X is smooth, we have that

W1H
2(Xan; Q) = 0, so W2H

2(Xan; Q) = GrW
2 H2(Xan; Q) has a pure Hodge structure

of weight 2. In the proof of Theorem 1.1 we found that V ∩ V ' Gr1F W2H
2(Xan; C),

so V ∩ V ' Gr1F GrW
2 H2(Xan; C).

Now let dimC V ∩ V = k := dimC Gr1F GrW
2 H2(Xan; C). This implies that

dimR V ∩ V ∩ H2(Xan; R) = k.

(This is due to some general fact of linear algebra: Let W be a k-dimensional complex

linear subspace of Cn such that W = W . Then dimR W ∩ Rn = k. Let f : W → W

be the conjugation map z 7→ z. Since f2 = idW the minimal polynomial divides

X2 − 1, so W is the direct sum of the eigenspaces W1 and W−1 corresponding to the

eigenvalues ±1. Of course, W1 = W ∩ Rn, W−1 = W ∩ iRn, so the multiplication by

i defines a (real) isomorphism of W1 onto W−1, so dimR W1 = k.)

Note that the image of H2(Xan; Z) in H2(Xan; C) is discrete, the same holds for the

image of PicX which is a discrete subgroup of a real vector space of real dimension k.

Since NSX ⊗Z Q and PicX ⊗Z Q have the same image in H2(Xan; C), NSX ⊗Z Q is

also embedded in a k dimensional real vector space, so we obtain that rkNSX 6 k.
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b) This is an obvious consequence because the torsion of H2(Xan; Z) is mapped

to 0 in H2(Xan; C), so it belongs to γ−1(V ).

3.3. Corollary. — Assume that f : Y → X is a morphism of smooth algebraic varieties

such that f induces an injective (resp. bijective) mapping H2(Xan; Z) → H2(Y an; Z).

Then the natural mapping NS X → NS Y is injective (resp. bijective).

Of course, the injectivity is obvious.

For any analytic space X, define NSan
X as the quotient of Pic(an) X by Pic0

(an) X.

Using Theorem 3.1 we get

3.4. Proposition. — Let X be a smooth algebraic variety. Then the mappings

NS X → NSan Xan → H2(Xan; Z) are injective, they induce isomorphisms

Tor(NSX) ' Tor(NSan Xan) ' TorH2(Xan; Z).

Proof. — We know that the mappings NSX → H2(Xan; Z) is injective, as well as

NSan Xan −→ H2(Xan; Z)

since, by definition, Pic0
(an) Xan is the kernel of the map of Pic(an) Xan into

H2(Xan; Z), so NS X → NSan Xan is also injective. In particular we get injective

mappings Tor(NS X) → Tor(NSan Xan) → TorH2(Xan; Z). Since Tor(NSX) →

TorH2(Xan; Z) is bijective by Corollary 3.2, the mapping Tor(NSan Xan) →

TorH2(Xan; Z) is surjective, hence bijective, and so is

Tor(NSX) −→ Tor(NSan Xan).

4. The group Pic0X

Again, let X be a non-singular complex algebraic variety. Now let us consider

Pic0 X . It seems quite difficult to say too much about this group if X is not compact:

4.1. Proposition. — We have:

a) Pic0 X ' Ck/H, where k = dimGr0F GrW
1 H1(Xan; C) and H is a free abelian

subgroup of rank 6 s := rkH1(Xan; Z).

b) If GrW
2 H1(Xan; Q) = 0 the image H of H1(Xan; Z) → Gr0F H1(Xan; C) is a

lattice, and Pic0 X ' Gr0F H1(Xan; C)/H has the structure of an abelian variety, so

we can speak of the Picard variety of X.

Proof. — a) In the case where X is complete, this is a well-known consequence of the

exponential sequence, which gives the following exact sequence

0 −→ H1(Xan; Z) −→ H1(Xan;OXan) −→ Pic0 X −→ 0.

Therefore we obtain

Pic0 X = H1(Xan;OXan)/H1(Xan; Z).
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Now, H1(Xan; Z) has a pure Hodge structure, because X is supposed complete and

non-singular, so in this case

H1(Xan;OXan) = Gr0F H1(Xan; C) = Gr0F W1H
1(Xan; C).

In general, let X be chosen as in section 2. From chasing on the following diagram:

Pic0 X //

��

Pic0 X

��

Zr //

o
��

PicX //

α
��

PicX

α
��

0 // G // H2(X
an

, Xan; Z) // H2(X
an

; Z) // H2(Xan; Z)

we have an exact sequence

G −→ Pic0 X −→ Pic0 X −→ 0

where G is the kernel of H2(X
an

, Xan; Z) → H2(X
an

; Z), i.e. the image of

H1(Xan; Z) → H2(X
an

, Xan; Z). Since G is contained in

H2(X
an

, Xan; Z) ' Zr,

the group G is free abelian. Now the kernel of the map

H1(Xan; Q) −→ H2(X
an

, Xan; Q)

is the image of H1(X
an

; Q) → H1(Xan; Q). By Lemma 2.1, this image is

W1H
1(Xan; Q). Therefore we obtain

G ⊗Z Q ' H1(Xan; Q)/W1H
1(Xan; Q) ' GrW

2 H1(Xan; Q).

So rkG = dimGrW
2 H1(Xan; Q).

On the other hand, by the preliminary consideration, applied to X, and Lemma

2.1, we have

Pic0 X = Gr0F H1(X
an

; C)/H1(X
an

; Z) = Gr0F W1H
1(Xan; C)/H1(X

an
; Z)

Now, rkH1(X
an

; Z) = dimW1H
1(Xan; Q), by Lemma 2.1 again, and

W1H
1(Xan; Q) = GrW

1 H1(Xan; Q).

Since G is a free abelian group we can lift the map G → Pic0 X to

G −→ Gr0F W1H
1(Xan; C)

We have

Pic0 X ' Gr0F W1H
1(Xan; C)/H = Gr0F GrW

1 H1(Xan; C)/H

where H is generated by the images of G and H1(X
an

; Z), so

rkH 6 rkG + rk H1(X
an

; Z)
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Since

rkG + rk H1(X
an

; Z) = dim GrW
2 H1(Xan; Q) + dim GrW

1 H1(Xan; Q)

and

dim GrW
2 H1(Xan; Q) + dimGrW

1 H1(Xan; Q) = rkH1(Xan; Z),

this implies our statement.

b) Since we assume GrW
2 H1(Xan; Q) = 0, the group G vanishes. The proof above

shows that Pic0 X ' Pic0 X , so we have an abelian variety. Furthermore

GrW
2 H1(Xan; Q) = W2H

1(Xan; Q)/W1H
1(Xan; Q)

and W2H
1(Xan; Q) = H1(Xan; Q). Lemma 2.1 gives

W1H
1(Xan; Q) = H1(X

an
; Q)

So our assumption implies H1(X
an

; Q) ' H1(Xan; Q). In particular

Gr0F H1(Xan; C) = Gr0F H1(X
an

; C) = Gr0F W1H
1(Xan; C).

From the exact sequence

0 −→ H1(X
an

; Z) −→ H1(Xan; Z) −→ H2(X
an

, Xan; Z)

where the last group is free abelian, we get H1(X
an

; Z) ' H1(Xan; Z). This gives

Pic0 X ' Gr0F H1(Xan; C)/H.

4.2. Theorem. — Let f : Y → X be a morphism between smooth algebraic varieties,

and suppose that f induces an isomorphism

H1(Xan; Z) −→ H1(Y an; Z)

Then the natural mapping Pic0 X → Pic0 Y is bijective.

Proof. — Note that f can be extended to f : Y → X where Y and X are smooth

and compact and the complement of Y resp. X in Y resp. X is a divisor with normal

crossings, using passage to the graph and resolution of singularities (see [D1] p. 38

remark before 3.2.12).

By Lemma 2.1, H1(X
an

; Q) ' GrW
1 H1(Xan; Q), similarly for Y

H1(Y
an

; Q) ' GrW
1 H1(Y an; Q),

so we get H1(X
an

; Q) ' H1(Y
an

; Q) since the isomorphism

H1(Xan; Z) −→ H1(Y an; Z)

induces a strictly compatible morphism of the corresponding Hodge structures (see

Theorem 2.3.5 of [D1]). In particular

H1(X,OX) ' H1(Y ,OY ).
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Furthermore, we have a commutative diagram with exact rows

0 // H1(X
an

; Z) //

��

H1(Xan; Z) //

o
��

H2(X
an

, Xan; Z)

��

0 // H1(Y
an

; Z) // H1(Y an; Z) // H2(Y
an

, Y an; Z)

So the first vertical is injective and, the ranks being equal, the cokernel is a finite

group.

Now all involved groups are free abelian (for the first cohomology groups this is

obvious from the universal coefficient formula). Let us look at H1 := H1(X
an

; Z) and

H2 := H1(Y
an

; Z) as subgroups of the free abelian group G := H1(Y an; Z). Then

H1 ⊂ H2, and there is a natural number n 6= 0 with nH2 ⊂ H1. Now H1 is a saturated

subgroup of G, so nx ∈ H1 ⇒ x ∈ H1 for x ∈ G. So H1 = H2, which implies that the

first vertical is an isomorphism. Furthermore, we get the commutative diagram

H1(X
an

; Z) //

o
��

H1(X,OX) //

o
��

Pic0 X //

��

0

H1(Y
an

; Z) // H1(Y ,OY ) // Pic0 Y // 0

Therefore Pic0 X → Pic0 Y is bijective. Finally let us look at the commutative dia-

gram

G1
//

��

Pic0 X //

o
��

Pic0 X //

��

0

G2
// Pic0 Y // Pic0 Y // 0

where G1 is the kernel of H2(X
an

, Xan; Z) → H2(X
an

; Z), and G2 is the kernel of

H2(Y
an

, Y an; Z) → H2(Y
an

; Z).

Note that we have the commutative diagram

H1(Xan; Z) //

o
��

G1
//

��

0

H1(Y an; Z) // G2
// 0

Therefore the right vertical is surjective, and the previous diagram leads to the desired

statement.

5. Proofs of Theorem 1.4 and 1.5

Theorem 1.4 is a consequence of

5.1. Theorem. — Let f : Y → X be a morphism between non-singular complex alge-

braic varieties. Suppose that the induced mapping

Hk(Xan; Z) −→ Hk(Y an; Z)
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is bijective for k = 1 and injective for k = 2 (resp. bijective for k = 1, 2). Then the

natural mapping PicX → PicY is injective (resp. bijective).

Proof. — Look at the commutative diagram

0 // Pic0 X //

��

PicX //

��

NS X //

��

0

0 // Pic0 Y // Pic Y // NS Y // 0

and use Corollary 3.3 and Theorem 4.2.

Proof of Theorem 1.5. — By the Zariski-Lefschetz theorem (see [HL] Theorem 4.2.5

for a very general version) we have: Hk(Xan; Z) ' Hk(Y an; Z), k 6 2. Furthermore,

Sing Y is of codimension > 2 in Y . As for the statement about the Weil divisor class

group, we may therefore replace X by X r Sing X and Y by Y r Sing Y , cf. [H] II

Proposition 6.5. So we may suppose that X and Y are non-singular and work with

the Picard group instead of the Weil divisor class group. By Theorem 1.4 we obtain

that PicX ' PicY . Suppose now that X is affine. Then Y is affine, too, and, by

Lemma 2.5, Pic(an) Xan ' H2(Xan; Z), Pic(an) Y an ' H2(Y an; Z), so Pic(an) Xan '

Pic(an) Y an.

Proof of Corollary 1.6. — We may find a compactification X of X as in Theorem 1.5.

If L is a generic linear subspace of codimension dimX − 3 we get the hypothesis of

Theorem 1.5 with L instead of Z.

Proof of Corollary 1.7. — This follows from Theorem 1.5 taking X = Am and Z = Y .

Note that PicAm = 1, Pic(an) Cm = 1.
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[D2] , Théorie de Hodge, III, Publ. Math. Inst. Hautes Études Sci. 44 (1974), p. 5–77.

[F] A. Fujiki – Duality of mixed Hodge structures on algebraic varieties, Publ. RIMS,
Kyoto Univ. 16 (1980), p. 635–667.

[G1] A. Grothendieck – Cohomologie locale des faisceaux cohérents et théorèmes de Lef-
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(Grenoble) 6 (1956), p. 1–42.

H.A. Hamm, Mathematisches Institut der WWU, Einsteinstrasse 62, D-48149 Münster, FRG

E-mail : hamm@math.uni-muenster.de
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