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RESIDUES OF CHERN CLASSES

ON SINGULAR VARIETIES

by

Tatsuo Suwa

Abstract. — For a collection of sections of a holomorphic vector bundle over a complete

intersection variety, we give three expressions for its residues at an isolated singular

point. They consist of an analytic expression in terms of a Grothendieck residue on

the variety, an algebraic one as the dimension of a certain complex vector space and

a topological one as a mapping degree. Some examples are also given.

Résumé(Résidus de classes de Chern sur les variétés singulières).— Étant donnée une

famille de sections d’un fibré vectoriel complexe sur une variété intersection complète,

on donne trois expressions pour le résidu en un point singulier isolé. Elles consistent

en une expression analytique en termes d’un résidu de Grothendieck sur la variété,

une expression algébrique comme dimension d’un certain espace vectoriel complexe et

une expression topologique comme degré d’une application. Quelques exemples sont

aussi donnés.

This is a partially expository article, in which we give various expressions for the

residues of Chern classes of vector bundles, mainly over complete intersection varieties.

Let E be a complex vector bundle of rank r over some reasonable space X of real

dimension m. For an `-tuple of sections s = (s1, . . . , s`) of E, we denote by S(s) its

singular set, i.e., the set of points where the si’s fail to be linealy independent. Let

ci(E) denote the i-the Chern class of E, which is in H2i(X). For i > r − ` + 1, there

is a natural lifting ci
S(E, s) in H2i(X, X rS) of ci(E), S = S(s). We call ci

S(E, s) the

localization of ci(E) at S with respect to s. Suppose S is a compact set with a finite

number of connected components (Sλ)λ. Then, by the Alexander homomorphism

H2i(X, X r S) → Hm−2i(S) = ⊕λHm−2i(Sλ), the class ci
S(E, s) determines, for
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266 T. SUWA

each λ, the “residue” Resci(s, E; Sλ) in Hm−2i(Sλ). If X is compact, we have the

“residue formula” ∑

λ

(ιλ)∗ Resci(s, E; Sλ) = ci(E) _ [X ],

where ιλ ↪→ X denotes the inclusion and [X ] the fundamental class of X . The formula

itself is of rather trivial nature. However, everytime we have an explicit expression

for the residues, it becomes really an interesting one.

In this article, we consider the case where X is a complex manifold M or a (locally)

complete intersection variety V of dimension n. We also assume that r−`+1 = n and

look at cn(E) so that the residue Rescn(s, E; Sλ) under consideration is a number. In

tha case Sλ consists of an isolated point p, we give analytic, algebraic and topological

expressions for Rescn(s, E; p). As a consequence we have the fact that these three

expressions are the same, which is rather well-known in some cases, in particular in

the case X = M , r = n and ` = 1 (see, e.g., [DA], [GH], [O]). For the analytic

expression, we quote results of [Su4] and for the algebraic one we try to give a

complete proof. The proof for the topological one is not so difficult and we only state

the outline.

In Section 1, we recall the residues and describe them in the case we consider.

This is done in the framework of Chern-Weil theory adapted to the Čech-de Rham

cohomology. In Section 2, we give fundamental properties of residues at isolated

singularities. In particular, we show that they are positive integers and satisfy the

“conservation law” under perturbations of sections. In Section 3, we give an analytic

expression of the residue as a Grothendieck residue (on a variety), quoting the results

in [Su4]. After we recall some commutative algebra in Section 4, we give an algebraic

expression of the residue as the dimension of some complex vector space in Section 5.

The proof is done by showing that this algebraic invariant also satisfies the conser-

vation law. It should be noted that the idea of proof is inspired by [EG1] and [Lo,

Ch. 4]. In Section 6, we give a topological expression as the degree of some map of

the link of the singularity to the Stiefel manifold. This is also done by noting that

the degree satisfies the conservation law. Finally in Section 7, we give some examples

and applications.

After the preparation of the manuscript, the author’s attention was drawn to a

recent preprint of W. Ebeling and S.M. Gusein-Zade [EG2]. They consider also

characteristic numbers (not only Chern classes) and define the index of a collection of

sections topologically. Their algebraic formula in Theorem 2 is more general than the

one in Theorem 5.5 below. They also give a formula (Theorem 4), which corresponds

to the one in Theorem 5.8 below, for collections of 1-forms.

1. Residues of Chern classes

We refer to [Su2, Ch. IV, 2, Ch.VI, 4] and [Su4] for details of the material in this

section.
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RESIDUES OF CHERN CLASSES ON SINGULAR VARIETIES 267

1a. Non-singular base spaces. — Let M be a complex manifold of dimension n

and E a (C∞, for the moment) complex vector bundle of rank r over M . Then, for

i = 1, . . . , r, we have the i-th Chern class ci(E) in H2i(M). If we use the obstruc-

tion theory, it is the primary obstruction to constructing r − i + 1 sections linearly

independent everywhere (see, e.g., [St]). The Chern-Weil theory provides us with a

canonical way of constructiong a closed 2i-form representing the class ci(E) in the

de Rham cohomology. To be a little more precise, let ∇ be a connection for E. For

the i-th Chern polynomial ci, we have a closed 2i-form ci(∇) on M . Moreover, for

two connections ∇ and ∇′, we have the “Bott difference form” ci(∇,∇′), which is a

(2i − 1)-form satisfying

ci(∇′,∇) = −ci(∇,∇′) and d ci(∇,∇′) = ci(∇′) − ci(∇).

Then the class of ci(∇) is independent of the choice of ∇ and is equal to ci(E). Here-

after we assume that r > n and look at the class cn(E), which is in the cohomology

of M of the top dimension.

For an `-tuple of sections s = (s1, . . . , s`) of E, we denote by S(s) its singular set,

i.e., the set of points where s1, . . . , s` fail to be linearly independent. Suppose we

have such an s with ` = r − n + 1 and set S = S(s). Then there is the “localization”

cn
S(E, s) in H2n(M, M rS; C), with respect to s, of the n-th Chern class cn(E), which

is described as follows.

Letting U0 = M r S and U1 a neighborhood of S, we consider the covering U =

{U0, U1} of M . Recall that, in the Čech-de Rham cohomology for the covering U , the

class cn(E) is represented by a cocycle of the form

(1.1) cn(∇?) = (cn(∇0), c
n(∇1), c

n(∇0,∇1)),

where ∇0 and ∇1 denote connections for E on U0 and U1, respectively. If we take as

∇0 an s-trivial connection (i.e., a connection ∇0 with ∇0(si) = 0 for i = 1, . . . , `),

then cn(∇0) = 0 and the cocycle naturally defines a class in the relative cohomology

H2n(M, M r S; C), which we denote by cn
S(E, s). It is sent to cn(E) by the canonical

homomorphism j∗ : H2n(M, M r S; C) → H2n(M, C).

Suppose now that S = S(s) is a compact set with a finite number of connected

components (Sλ)λ. Then for each λ, the class cn
S(E, s) defines a number, which we

call the residue of s at Sλ with respect to cn and denote by Rescn(s, E; Sλ). It is also

briefly called a residue of cn(E). For each λ, we choose a neighborhood Uλ of Sλ in U1

so that the Uλ’s are mutually disjoint, and let Rλ be a real 2n-dimensional manifold

with C∞ boundary ∂Rλ in Uλ containing Sλ in its interior. Then the residue is given

by

(1.2) Rescn(s, E; Sλ) =

∫

Rλ

cn(∇1) −
∫

∂Rλ

cn(∇0,∇1).

We have the “residue formula” (cf. [Su2, Ch. III, Theorem 3.5]):
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Proposition 1.3. — If R is a compact real 2n-dimensional manifold with C∞ boundary

containing S in its interior, then
∑

λ

Rescn(s, E; Sλ) =

∫

R

cn
R(E, s),

where the right hand side is defined as that of (1.2) with ∇0 an s-trivial connection

for E on a neighborhood of ∂R, ∇1 a connection for E on a neighborhood of R and

Rλ replaced by R.

In particular, if M is compact, the right hand side is equal to
∫

M
cn(E).

Remark 1.4. — Comparing with the obstruction theoretic definition of Chern classes,

we see that the residue Rescn(s, E; Sλ) is in fact an integer. However, in the sequel

we prove this fact more directly in the pertinent cases.

1b. Singular base spaces. — Let V be an analytic variety of pure dimension n

in a complex manifold W of dimension n + k. We denote by Sing(V ) the singular set

of V and let V ′ = V r Sing(V ) be the non-singular part.

Let S be a compact set in V (V may not be compact). We assume that S has a

finite number of connected components, S ⊃ Sing(V ) and that S admits a regular

neighborhood in W . Let Ũ1 be a regular neighborhood of S in W and Ũ0 a tubular

neighborhood of U0 = V r S in W . We consider the covering U = {Ũ0, Ũ1} of the

union Ũ = Ũ0 ∪ Ũ1, which may be assumed to have the same homotopy type as V .

For a complex vector bundle E over Ũ of rank r (> n), the n-th Chern class cn(E)

is in H2n(Ũ) ' H2n(V ). The corresponding class in H2n(V ) is denoted by cn(E|V ).

The class cn(E) is represented by a Čech-de Rham cocycle cn(∇?) on U given as (1.1)

with ∇0 and ∇1 connections for E on Ũ0 and Ũ1, respectively. Note that it is sufficient

if ∇0 is defined only on U0, since there is a C∞ retraction of Ũ0 onto U0. Suppose

we have an `-tuple s = (s1, . . . , s`) of C∞ sections linearly independent everywhere

on U0, ` = r−n + 1, and let ∇0 be s-trivial. Then we have the vanishing cn(∇0) = 0

and the above cocycle cn(∇?) defines a class cn
S(E|V , s) in H2n(V, V r S; C). It is

sent to cn(E|V ) by the canonical homomorphism j∗ : H2n(V, V r S; C) → H2n(V, C).

Let (Sλ)λ be the connected components of S. Then, for each λ, cn
S(E|V , s) defines

the residue Rescn(s, E|V ; Sλ). For each λ, we choose a neighborhood Ũλ of Sλ in

Ũ1, so that the Ũλ’s are mutually disjoint. Let R̃λ be a real 2(n + k)-dimensional

manifold with C∞ boundary ∂R̃λ in Ũλ containing Sλ in its interior such that ∂R̃λ

is transverse to V . We set Rλ = R̃λ ∩ V . Then the residue is a number given by a

formula as (1.2). We also have the residue formula:

Proposition 1.5. — If R̃ is a compact real 2(n + k)-dimensional manifold with C∞

boundary in Ũ containing S in its interior such that ∂R̃ is transverse to V ,
∑

λ

Rescn(s, E|V ; Sλ) =

∫

R

cn
R(E|V , s),
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where the right hand side is defined as that of (1.2) with ∇0 an s-trivial connection

for E on a neighborhood of ∂R in V , ∇1 a connection for E on a neighborhood of R̃

in W and Rλ replaced by R, R = R̃ ∩ V .

In particular, if V is compact, the right hand side is equal to
∫

V
cn(E).

Remarks

(1) If Sλ is in the non-singular part V ′, Rescn(s, E|V ; Sλ) coincides with the one

defined in (1a) and if V itself is non-singular, Proposition 1.5 reduces to Proposition

1.3.

(2) If s extends to an `-tuple s̃ of sections of E linearly independent everywhere

on Ũλ, we may let both ∇0 and ∇1 equal to an s̃-trivial connection so that we have

Rescn(s, E|V ; Sλ) = 0.

(3) As in the case of non-singular base spaces (cf. Remark 1.4), the residue

Rescn(s, E|V ; Sλ) is in fact an integer. In the sequel we prove this fact more directly

in the pertinent cases.

1c. Residues at an isolated singularity. — Let V be a subvariety of dimension n

in a complex manifold W of dimension n + k, as before. We do not exclude the case

k = 0, where V = W is a complex manifold of dimension n.

Suppose now that V has at most an isolated singularity at p and let E be a

holomorphic vector bundle of rank r (> n) on a small coordinate neighborhood Ũ

of p in W . Sometimes we identify Ũ with a neighborhood of 0 in Cn+k and p with 0.

We may assume that E is trivial and let e = (e1, . . . , en) be a holomorphic frame of E

on Ũ . Let ` = r−n+1 and suppose we have an `-tuple of holomorphic sections s̃ of E

on Ũ . Suppose that S(s̃) ∩ V = {p}. Then we have Rescn(s, E|V ; p) with s = s̃|V .

Let R̃ be a compact real 2(n + k)-dimensional manifold with C∞ boundary in Ũ

containing p in its interior such that ∂R̃ is transverse to V and set R = R̃ ∩ V . We

also set U = Ũ ∩V and let ∇0 be an s-trivial connection for E on U r{p}. We choose

∇1 to be e-trivial. Then we have cn(∇1) = 0 and

(1.6) Rescn(s, E|V ; p) = −
∫

∂R

cn(∇0,∇1).

In the subsequent sections, we give various expressions of this number.

2. Fundamental properties of the residues

2a. Non-singular base spaces. — In the situation of (1c), suppose V = W = M

is a complex manifold of dimension n and write Ũ and s̃ by U and s, respectively.

Thus our assumption is S(s) = {p}.
Let us first assume that r = n. Thus ` = 1 and we have only one section s. We

write s =
∑n

i=1 fi ei with fi holomorphic functions on U .
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Lemma 2.1. — If r = n and ` = 1, we have

Rescn(s, E; p) =

∫

∂R

f∗βn,

where βn denotes the Bochner-Martinelli kernel on C
n and f = (f1, . . . , fn).

Proof. — Recall that the residue is given by (1.7). Let {U (i)} be the covering of

U r {p} given by U (i) = { q ∈ U | fi(q) 6= 0 }. For each i, let ei be the frame of E on

U (i) obtained from e replacing ei by s and let ∇(i) be the connection for E on U (i)

trivial with respect to ei. Also, let ρi = |zi|2/‖z‖2 and let ∇0 be the connection for E

on U0 = U r {p} given by ∇0 =
∑n

i=1 ρi∇(i). Then ∇0 is s-trivial, since each ∇(i) is.

If we compute cn(∇0,∇1) using this connection, we get cn(∇0,∇1) = −f∗βn, as in

the proof of [Su2, Ch. III, Theorem 4.4].

We may think of s (or f) as a map from ∂R to Cn r {0}, which has the homotopy

type of S2n−1.

Corollary 2.2. — If r = n and ` = 1,

Rescn(s, E; p) = deg s|∂R,

the mapping degree of s|∂R. Thus Rescn(s, E; p) is a positive integer.

We say that p is a non-degenerate zero of s if det ∂(f1,...,fn)
∂(z1,...,zn) (p) 6= 0. In this case,

(f1, . . . , fn) form a coordinate system around 0. Hence we have

Corollary 2.3. — If p is a non-degenerate zero of s,

Rescn(s, E; p) = 1.

Now we go back to the general case of vector bundle E of rank r > n with an

`-tuple s = (s1, . . . , s`) of sections, ` = r−n+1. We consider the bundle E∗ = E×T

over U∗ = U × T , where T is a small neighborhood of 0 in C = {t}. Suppose we

have an `-tuple of holomorphic sections s
∗ of E∗ on U∗ such that s

∗(z, 0) = s(z).

For t in T , we set Et = E∗|U×{t} and st(z) = s
∗(z, t). We call such an s

∗ (or st) a

perturbation of s. Sometimes we identify U × {t} with U and E|t with E. Since we

assumed that S(s) = {p}, by the upper semi-continuity of dimS(st), S(st) consists

at most of a finite number of points.

Lemma 2.4. — The sum
∑

q∈S(st)
Rescn(st, Et; q) is continuous in t.

Proof. — Let ∇∗
0 be an s

∗-trivial connection for E∗ on U∗
0 = U∗ r S(s∗) and ∇∗

1 a

connection for E∗ on U∗. The statement follows computing the residues taking the

restrictions of ∇∗
0 and ∇∗

1 and using (1.2) and Proposition 1.3.
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Next we consider the case where s1(p) 6= 0 so that we have an exact sequence of

vector bundles on a neighborhood of p:

(2.5) 0 −→ I −→ E −→ E′ −→ 0,

where I denotes the trivial line bundle determined by s1 and E′ is a vector bundle

(still trivial) of rank r− 1. Let s
′ = (s′2, . . . , s

′
`) denote the (`− 1)-tuple of sections of

E′ determined by (s2, . . . , s`).

Lemma 2.6. — In the above situation, we have

Rescn(s, E; p) = Rescn(s′, E′; p).

Proof. — Let ∇ be the connection for I trivial with respect to s1. Let ∇′
0 be an

s
′-trivial connection for E′ on U0 and take an s-trivial connection ∇0 for E so that

(∇,∇0,∇′
0) is compatible (cf. [BB]) with (2.5). Also, let ∇′

1 be a connection for E′

on U and take a connection ∇1 for E so that (∇,∇1,∇′
1) is compatible with (2.5).

Then we have

cn(∇1) = cn(∇′
1) and cn(∇0,∇1) = cn(∇′

0,∇′
1).

The identity follows from (1.2).

Lemma 2.7. — The residue Rescn(s, E; p) is a non-negative integer.

Proof. — We proceed by induction on `. By Corollary 2.2, it is true if ` = 1. Suppose

it is true for arbitrary ` − 1 sections with isolated singularity. Take a perturbation

s1,t of s1 such that s1,t(p) 6= 0 and set st = (s1,t, s2, . . . , s`). Recalling that none of

the si’s vanish on U r {p}, we see that, for t 6= 0, at each point of S(st), at least

one of the sections of st does not vanish. Hence the lemma follows from Lemmas 2.4

and 2.6.

Corollary 2.8. — In the situation of Lemma 2.4, the sum
∑

q∈S(st)
Rescn(st, Et; q) is

constant. In particular,

Rescn(s, E; p) =
∑

q∈S(st)

Rescn(st, Et; q).

Remarks

(1) If ` = 1, there exists always a “good perturbation” of s, i.e., a holomorphic

sections s∗ of E∗ near 0 such that s∗(z, 0) = s(z) and that st has only non-degenerate

zeros, for t 6= 0 ([GH, Ch. 5]).

(2) By Lemma 5.1 below, Rescn(s, E; p) is in fact a positive integer.
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2b. Singular base spaces. — Now we consider the situation of (1c) with k > 0.

Let p be an isolated singular point in V and suppose that V is a complete intersection

defined by h = (h1, . . . , hk) : (Ũ , p) → (Ck, 0). Let T be a small neighborhood of 0

in Ck. For a point t in T , we set Vt = h−1(t). Let C(h) denote the critical set of h

and D(h) = h(C(h)) the discriminant, which is a hypersurface in T (see, e.g., [Lo]).

We have Sing(Vt) = C(h) ∩ Vt, which consists of at most a finite number of points.

We set st = s̃|Vt
and S(st) = S(s̃) ∩ Vt. By the assumption S(s̃) ∩ V = {p}, we have

dimS(s̃) 6 k. Hence S(st) also consists of at most a finite number of points. Note

that even if q is in Sing(Vt), if q /∈ S(st), then Rescn(st, E|Vt
; q) = 0 (cf. Remark

1.6.2).

Lemma 2.9. — The sum
∑

q∈S(st)
Rescn(st, E|Vt

; q) is continuous in t.

Proof. — Let ∇0 be an s̃-trivial connection for E on Ũ r S(s̃) and ∇1 a connection

for E on Ũ . Then by Proposition 1.5, the above sum is equal to an integral over

Rt = R̃ ∩ Vt, which is continuous in t.

Since T r D(h) is dense in T , by Lemma 2.7, we have

Corollary 2.10. — The sum
∑

q∈S(st)
Rescn(st, E|Vt

; q) is constant. In particular,

Rescn(s, E|V ; p) =
∑

q∈S(st)

Rescn(st, E|Vt
; q),

which is a non-negative integer.

Remark 2.11. — By Lemma 5.6 below, Rescn(s, E|V ; p) is in fact a positive integer.

3. Analytic expression

In this section, we review [Su4], see also [Su3].

3a. Grothendieck residues relative to a subvariety. — Let Ũ be a neighbor-

hood of 0 in Cn+k and V a subvariety of dimension n in Ũ which contains 0 as at most

an isolated singular point. Also, let f1, . . . , fn be holomorphic functions on Ũ and

V (f1, . . . , fn) the variety defined by them. We assume that V (f1, . . . , fn) ∩ V = {0}.
For a holomorphic n-from ω on Ũ , the Grothendieck residue relative to V is defined

by (e.g., [Su2, Ch. IV, 8])

Res0

[
ω

f1, . . . , fn

]

V

=

(
1

2π
√
−1

)n ∫

Γ

ω

f1 · · · fn

,

where Γ is the n-cycle in V given by

Γ = { q ∈ Ũ ∩ V | |fi(q)| = εi, i = 1, . . . , n }
for small positive numbers εi. It is oriented so that d arg(f1) ∧ · · · ∧ d arg(fn) > 0.
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If k = 0, it reduces to the usual Grothendieck residue (e.g., [GH, Ch. 5]), in which

case we omit the suffix V .

If V is a complete intersection defined by h1 = · · · = hk = 0 in Ũ , we have

Res0

[
ω

f1, . . . , fn

]

V

= Res0

[
ω ∧ dh1 ∧ · · · ∧ dhk

f1, . . . , fn, h1, . . . , hk

]
.

3b. The analytic expression. — We consider the situation of (1c). We write

s̃i =
∑r

j=1 fij ej, i = 1, . . . , `, with fij holomorphic functions on Ũ . Let F be the

` × r matrix whose (i, j)-entry is fij . We set

I = { (i1, . . . , i`) | 1 6 i1 < · · · < i` 6 r }.
For an element I = (i1, . . . , i`) in I, let FI denote the `× ` matrix consisting of the

columns of F corresponding to I and set ϕI = detFI . If we write eI = ei1 ∧ · · · ∧ ei`
,

we have

s̃1 ∧ · · · ∧ s̃` =
∑

I∈I

ϕI eI .

Note that S(s̃) is the set of common zeros of the ϕI ’s. From the assumption

S(s̃) ∩ V = {p}, we have ([Su4, Lemma 5.6]):

Lemma 3.1. — We may choose a holomorphic frame e = (e1, . . . , er) of E so that

there exist n elements I(1), . . . , I(n) in I with V (ϕI(1) , . . . , ϕI(n)) ∩ V = {p}.

In general, let Ω = (ωij) be an r×r matrix with differential forms ωij in its entries.

We define the determinant of Ω by

detΩ =
∑

σ∈Sr

sgn σ · ωσ(1)1 · · ·ωσ(r)r,

where Sr denotes the symmetric group of degree r and the products of forms are

exterior products.

Let e be a frame of E as in Lemma 3.1. We write I(α) = (i
(α)
1 , . . . , i

(α)
` ), α =

1, . . . , n, and let F (α) be the r× r matrix obtained by replacing the i
(α)
j -th row of the

r × r identity matrix by the j-th row of F , j = 1, . . . , `. Note that detF (α) = ϕI(α) .

Let F̌ (α) denote the adjoint matrix of F (α) and set

Θ(α) = F̌ (α) · dF (α),

which is an r × r-matrix whose entries are holomorphic 1-forms. Let A denote the

set of n-tuples of integers (a1, . . . , an) with 1 6 a1 < · · · < an 6 r. For an element

A = (a1, . . . , an) in A, we denote by Θ
(α)
A the n × n matrix whose (i, j)-entry is the

(ai, aj)-entry of Θ(α). For a permutation ρ of degree n, we denote by ΘA(ρ) the

n×n-matrix whose i-th column is that of Θ
(ρ(i))
A and, for the collection Θ = {Θ(α)}α,

we set

σn(Θ) =
1

n!

∑

A∈A

∑

ρ∈Sn

sgnρ · det ΘA(ρ),
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which is a holomorphic n-form on Ũ . With these we have ([Su4, Theorem 5.7]):

Theorem 3.2. — In the above notation,

Rescn(s, E|V ; p) = Resp

[
σn(Θ)

ϕI(1) , . . . , ϕI(n)

]

V

.

3c. Special cases

(1) The case ` = 1 and r = n. Let e = (e1, . . . , en) be an arbitrary frame of E

and write s =
∑n

i=1 fiei. Then we may set ϕI(i) = fi, i = 1, . . . , n, and we have

σn(Θ) = df1 ∧ · · · ∧ dfn.

(2) The case n = 1 and ` = r. Let e = (e1, . . . , er) be an arbitrary frame of E and

write si =
∑r

j=1 fij ej , i = 1, . . . , r. Let F = (fij) and set ϕ = detF . Then we may

set ϕI(1) = ϕ and we have σn(Θ) = dϕ.

See [Su4] for more cases where the form σn(Θ) is computed explicitly.

4. Algebraic preliminaries

In this section, we recall some commutative algebra which we use subsequently.

We list [E], [Mat] and [Se] as general references.

In this section, we denote by R be a Noetherian local ring with maximal ideal m,

and by M a finitely generated R-module.

The height of a proper ideal I in R is denoted by ht I. The (Krull) dimension of M

is denoted by dimR M , or simply by dimM . Let I be an ideal in R with IM 6= M .

The depth of I on M , denoted by depth(I; M), is the length of a maximal M -regular

sequence in I. The depth of I on R is simply called the depth of I and is denoted

by depth I. Let (S, n) be another Noetherian local ring and ϕ : R → S a local

homomorphism. Then S has a natural R-module structure. We say that ϕ is finite

if S is finitely generated over R. In this case, we have (e.g., [Se, IV, Proposition 12])

(4.1) dimS S = dimR S, depth(n; S) = depth(m; S).

An R-module M is said to be Cohen-Macaulay (simply CM), if M = 0, or if M 6= 0

and depth(m; M) = dim M . The ring R is a CM ring if it is CM as an R-module.

Note that a regular local ring is CM. From (4.1), we have:

(4.2) If ϕ : R −→ S is finite and if S is a CM ring, then S is a CM R-module.

We need another fact about CM rings, which says that, if R is a CM ring, then for

every proper ideal I of R,

(4.3) ht I = depth(I; R), ht I + dim R/I = dimR,

The projective dimension of M , denoted by pdR M , is the minimum of the lengths

of projective resolution of M . We quote the following Auslander-Buchsbaum formula
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([Mat, p. 114], [E, p. 475]), which says that if pd M is finite,

(4.4) depth(m; M) + pd M = depth m.

We also need some facts about determinantal ideals. Let f : Rm → Rn be an

R-homomorphism, which may be represented by an n × m matrix. We assume that

m > n and denote by I(f) the ideal generated by all the n × n minors of f . We

assume I(f) 6= R. Then we have ([Mac]):

(4.5) ht I(f) 6 m − n + 1.

We also have (see, e.g., [E, Theorem 18.18]):

(4.6) If R is CM and if ht I(f) = m − n + 1, then R/I(f) is CM.

Let On = C{z1, . . . , zn} denote the ring of covergent power series in n variables. A

ring R is an analytic ring if R ' On/I for some proper ideal I in On (for some n). In

this case R is a Noetherian local ring for which the maximal ideal m is generated by

the images of z1, . . . , zn. For an ideal I in On, we denote by V (I) the germ at 0 (in

Cn) of the variety defined by I. If R = On/I, then dimR R = dim V (I). We denote

by dimC the dimension of a complex vector space. By the Hilbert Nullstellensatz,

(4.7) dimR R = 0 if and only if dimC R is finite.

Let ϕ : R → S be a local homomorphism of analytic rings. The homomorphism ϕ

induces C = R ⊗R R/m → S ⊗R R/m. We say that ϕ is quasi-finite if this homo-

morphism makes S ⊗R R/m a finite dimensional complex vector space. Clearly a

finite homomorphism is quasi-finite. The coverse is also true (see, e.g., [N, Ch. II,

Theorem 1]):

(4.8) ϕ is finite if and only if it is quasi-finite.

Let π : (X,OX) → (T,OT ) be a morphism of analytic spaces. For each point x

of X , π induces a local homomorphism

π∗
x : OT,t −→ OX,x, t = π(x).

For a point t in T , the fiber Xt of π over t is the analytic space with support π−1(t)

and structure sheaf OXt
= OX/mtOX , where mt is the maximal ideal of OT,t. Thus,

for a point x in π−1(t),

OXt,x = OX,x/mtOX,x = OX,x ⊗OT,t
OT,t/mt = OX,x ⊗OT,t

C.

Hence by (4.7) and (4.8), we see that x is an isolated point in π−1(t) if and only if π∗
x

is finite.

Suppose now that π is a finite morphism (i.e., proper with finite fibers) of analytic

spaces. Let t be a point in T . For a point x in π−1(t), we set ν(x) = dimC OXt,x

and ν(t) =
∑

x∈π−1(t) ν(x). Recall that π is flat if, for every x in X , OX,x is a flat

OT,t-module, t = π(x). If T is reduced, we have ([Do]):

(4.9) π is flat if and only if ν(t) is locally constant.
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5. Algebraic expression

5a. Non-singular base spaces. — We consider the situation of (1c). We assume

that k = 0 and set Ũ = U and s̃ = s. In general, by (4.5), codimS(s) 6 r− `+1 = n.

Here we assume that S(s) = {p} so that S(s) attains its maximum codimension. Let F

and ϕI be defined as in (3b). We denote by OU the sheaf of germs of holomorphic

functions on U and by F the ideal sheaf in OU generated by the (germs of) ϕI ’s.

Note that F does not depend on the choice of the frame e of E.

Let s
∗ = (s∗1, . . . , s

∗
` ) be a perturbation of s as in Lemma 2.4. We define F ∗

I and ϕ∗
I

as above, using the s∗i ’s. Let T be a small neighborhood of 0 in C and F∗ the ideal

sheaf generated by the ϕ∗
I ’s in OU∗ , U∗ = U × T . Also, let Ft be the ideal sheaf

generated by the ϕI,t’s in OUt
, Ut = U × {t}.

Lemma 5.1. — We have dim S(s∗) = 1 and S(st) is a non-empty finite set.

Proof. — By the upper semicontinuity of dim S(st), we have dimS(s∗) 6 1. On the

other hand, by (4.5) we have codimS(s∗) 6 r − ` + 1 = n.

Lemma 5.2. — In the above situation,

dimC OU,p/Fp =
∑

q∈S(st)

dimC OUt,q/Ft,q.

Proof. — Let X be the analytic space in U∗ with support S(s∗) and structure sheaf

OX = OU∗/F∗. By Lemma 5.1, dim X = 1 and the restriction π to X of the projection

U∗ → T is a finite morphism. We claim that π is flat. Let x be a point in X and set

t = π(x). In the following, we set O′
x = OU∗,x, Ox = OX,x and Ot = OT,t. Note that

O′
x and Ot are regular local rings of dimensions n + 1 and 1, respectively. We have

ht F∗
x = n = r − ` + 1. Hence by (4.6), the ring Ox is CM. Since the homomorphism

π∗ : Ot → Ox is finite, by (4.2), Ox is a CM Ot-module. By (4.4), denoting by mt

the maximal ideal in Ot,

depth(mt;Ox) + pdOt
Ox = depth mt.

We have depth(mt;Ox) = dimOt
Ox = dimOx

Ox = 1 and depth mt = dimOt = 1.

Therefore, pdOt
Ox = 0 and π is flat.

Set Xt = π−1(t), which has a natural structure of (discrete) analytic space and is

supported by S(st). For x in Xt, we have OXt,x = OUt,x/Ft,x. Hence the lemma

follows from (4.9).

Suppose r = n and ` = 1. Then we have one section s =
∑n

i=1 fiei and Fp =

(f1, . . . , fn). If p is a non-degenerate singularity of s, we have

dimC On/(f1, . . . , fn) = 1.

From Corollaries 2.3 and 2.8, Remark 2.9.1 and Lemma 5.2, we have
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Corollary 5.3. — In the case r = n and ` = 1,

Rescn(s, E; p) = dimC OU,p/Fp = dimC On/(f1, . . . , fn).

Now we go back to the general situation with r > n. We assume that s1(p) 6= 0

as in the situation of Lemma 2.6. Then we may write s′i =
∑r

j=2 f ′
ij e′j , i = 2, . . . , `,

with f ′
ij holomorphic functions on U and e

′ = (e′2, . . . , e
′
`) a frame of E′ (cf. (2.5)).

Let F ′ be the (` − 1) × (r − 1) matrix whose (i, j)-entry is f ′
ij . We set

I ′ = { (i2, . . . , i`) | 2 6 i2 < · · · < i` 6 r }.
For an element I ′ = (i2, . . . , i`) in I ′, let F ′

I′ denote the (` − 1) × (` − 1) matrix

consisting of the columns of F ′ corresponding to I ′ and set ϕ′
I′ = detF ′

I′ .

Note that the set of common zeros of the ϕ′
I′ ’s consists only of p. Let F ′

p denote

the ideal of OU,p generated by the ϕ′
I′ ’s.

Lemma 5.4. — We have Fp = F ′
p, and thus dimC OU,p/Fp = dimC OU,p/F ′

p.

Proof. — We may assume, without loss of generality, that f11(p) 6= 0. Then, we may

take as (e′2, . . . , e
′
`) the sections determined by (e2, . . . , e`). For i > 2, we have

si =
1

f11

(
fi1s1 +

r∑

j=2

∣∣∣∣
f11 f1j

fi1 fij

∣∣∣∣ ej

)
.

Hence

f ′
ij =

1

f11

∣∣∣∣
f11 f1j

fi1 fij

∣∣∣∣ .

For I ′ = (i2, . . . , i`), we compute ϕ(1,I′) = f11 ·ϕ′
I′ . Thus the ideal F ′

p is generated

by {ϕ(1,I′) | I ′ ∈ I′ }. On the other hand, for any I = (i1, . . . , i`), considering

the determinant of the (` + 1) × (` + 1) matrix whose first and second rows are

(f11, f1i1 , . . . , f1i`
) and whose k-th row is (fk−1,1, fk−1,i1 , . . . , fk−1,i`

), k > 3, we have

f11 · ϕI =
∑̀

j=1

(−1)j−1f1ij
· ϕ(1,i1,...,bij ,...,i`)

.

Hence we have F ′
p = Fp.

Theorem 5.5. — We have

Rescn(s, E; p) = dimC OU,p/Fp.

Proof. — We prove this by induction on `. The case ` = 1 is Corollary 5.3. Suppose

that the statement is true for ` − 1 sections (with isolated singularity). Take a per-

turbation s1,t of s1 so that s1,t(p) 6= 0. For t 6= 0, the support of St consists of p,

zeros of s1,t and the zeros of s1,t ∧ · · · ∧ s`. However, at any one of these points, at

least one of the sections is non-zero. The theorem follows from Lemmas 2.6 and 5.4

and the induction hypothesis.
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5b. Singular base spaces. — Now we consider the situation of (1c) with k > 0. As

in (2b), we suppose that V is a complete intersection defined by h : (Ũ , p) → (Ck, 0).

Let T be a small neighborhood of 0 in Ck and, for a point t in T , we set Vt = h−1(t).

Also let S(st) = S(s̃) ∩ Vt, as before. From the assumption S(s̃) ∩ V = {p} we have

Lemma 5.6. — dimS(s̃) = k and S(st) is a non-empty finite set.

Proof. — By the assumtion, we have dim S(s̃) 6 k. On the other hand, if by (4.5),

codim S(s̃) 6 r − ` + 1 = n.

Let F and ϕI be defined as in (3b). We denote by OeU
the sheaf of germs of

holomorphic functions on Ũ , by F the ideal sheaf in OeU
generated by the ϕI ’s, by

I(V ) = (h1, . . . , hk) the ideal sheaf of V in OeU
and by F(V ) the ideal sheaf generated

by F and I(V ). Also, for t = (t1, . . . , tk) ∈ T , we denote by F(Vt) the ideal sheaf

generated by F and I(Vt) = (h1 − t1, . . . , hk − tk).

Lemma 5.7. — In the above situation,

dimC OeU,p
/F(V )p =

∑

q∈S(st)

dimC OeU,q
/F(Vt)q.

Proof. — This is proved as Lemma 5.2. Let X be the analytic space in Ũ with

structure sheaf OX = OeU
/F . The support of X is S(s̃) and is k-dimensional, by

Lemma 5.6. Thus the restriction π to X of the map h : Ũ → Ck is a finite morphism.

We claim that π is flat. Let x be a point in X and set t = π(x). In the following, we set

O′
x = OeU,x

, Ox = OX,x and Ot = OCk,t. Note that O′
x and Ot are regular local rings

of dimensions n + k and k, respectively. We have ht Fx = n + k − k = n = r − ` + 1.

Hence by (4.6), the ring Ox is CM. Since the homomorphism π∗ : Ot → Ox is finite,

Ox is a CM Ot-module. By (4.4), denoting by mt the maximal ideal in Ot,

depth(mt;Ox) + pdOt
Ox = depth mt.

We have depth(mt;Ox) = dimOt
Ox = dimOx

Ox = k and depth mt = dimOt = k.

Therefore, pdOt
Ox = 0 and π is flat.

Set Xt = π−1(t), which has a natural structure of (discrete) analytic space and is

supported by S(st). For x in Xt, we have OXt,x = OeU,x
/F(Vt)x. Hence the lemma

follows from (4.9)

Since the regular values of h are dense, by Corollary 2.11, Theorem 5.5 and Lemma

5.7, we have the following theorem.

Theorem 5.8. — We have

Rescn(s, E|V ; p) = dimC OeU,p
/F(V )p.

Remark 5.9. — As we can see from the above proofs, the assumption that V is a

complete intersection is necessary only to ensure that V admits a “smoothing” in Ũ .
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6. Topological expression

Let V , Ũ , E and s be as in (1c). We assume that V is a complete intersection in Ũ

with at most an isolated singularity at p. Let W`(C
r) denote the Stiefel manifold

of `-frames in Cr. It is known that the space W`(C
r) is 2(r − `)-connected and

π2n−1(W`(C
r)) ' Z (recall 2r−2`+1 = 2n−1). Let L denote the link of (V, p). Note

that both of W`(C
r) and L have a natural generator for the (2n − 1)-st homology.

Thus the degree of the map

s|L : L −→ W`(C
r)

is well-defined.

As for the algebraic expression in the previous section, Theorem 6.1 below is proved

by the following steps, noting that the mapping degree satisfies the conservation law

under perturbations of sections:

(1) reducing to the case of non-singular base space (as Corollary 2.11 or Lemma

5.7),

(2) reducing the number of sections (as Lemma 2.6 or Lemma 5.4), and going to

the case of one section,

(3) applying Corollary 2.2 (or further reducing to the case of non-degenerate sin-

gularities, where everything is 1).

Theorem 6.1. — We have

Rescn(s, E|V ; p) = deg s|L.

7. Examples and applications

7a. Index of a 1-form and multiplicity of a function. — Let M be a complex

manifold of dimension n. The holomorphic cotangent bundle T ∗M of M is naturally

identified with its real cotangent bundle. Thus a C∞ 1-form θ on M may be thought

of as a section of T ∗M . For a compact connected component S of the zero set S(θ)

of θ having a neighborhood disjoint from the other components, we define the index

Ind(θ, S) of θ at S by

Ind(θ, S) = Rescn(θ, T ∗M ; S).

If M is compact and if S(θ) admits only a finite number of connected components

(Sλ), by Proposition 1.3, we have
∑

λ

Ind(θ, Sλ) = (−1)nχ(M).

If θ is holomorphic and if Sλ consists of a point p, Ind(θ, p) has the analytic,

algebraic and topological expressions as given in the previous sections.

If we do similarly for a vector field v, we have the Poincaré-Hopf theorem for v.
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For a C∞ function f on M , its differential df is a section of T ∗M and we have

S(df) = C(f), the critical set of f . For a compact connected component S of C(f)

as above, we define the multiplicity m(f, S) of f at S by

m(f, S) = Ind(df, S) = Rescn(df, T ∗M ; S).

Note that, if f is holomorphic and if S consists of a point p, it coinsides with the

usual multiplicity of f at p (cf. (3c) 1).

Now we consider the global situation. Let f : M → C be a holomorphic map of

M onto a complex curve (Riemann surface) C. The differential df : TM → f∗TC

of f determines a section of the bundle T ∗M ⊗ f∗TC, which is also denoted by df .

The set of zeros of df is the critical set C(f) of f . Suppose C(f) is a compact set

with a finite number of connected components (Sλ)λ. Then we have the residue

Rescn(df, T ∗M ⊗ f∗TC; Sλ) for each λ. If M is compact, by Proposition 1.3,

(7.1)
∑

λ

Rescn(df, T ∗M ⊗ f∗TC; Sλ) =

∫

M

cn(T ∗M ⊗ f∗TC).

If the critical value set D(f) of f consists of only isolated points, we have

Rescn(df, T ∗M ⊗ f∗TC; Sλ) = Rescn(df, T ∗M ; Sλ) = m(f, Sλ).

and, if moreover M is compact,
∫

M

cn(T ∗M ⊗ f∗TC) = (−1)n(χ(M) − χ(F )χ(C)),

where F denotes a general fiber of f (cf. [IS, 2]). Thus in this situation, (7.1) becomes
∑

λ

m(f, Sλ) = (−1)n(χ(M) − χ(F )χ(C)),

In particular, if C(f) consists of isolated points, we recover a formula of [I] (see

also [F, Example 14.1.5] and [HL, VI 3]):

(7.2)
∑

p∈C(f)

m(f, p) = (−1)n(χ(M) − χ(F )χ(C)).

7b. Index of a holomorphic 1-form of Ebeling and Gusein-Zade

Let V be a complete intersection in Ũ with an isolated singularity at p and defined

by (h1, . . . , hk), as before. Also, let L be the link of (V, p). For a holomorphic 1-form θ

on Ũ , we consider the (k + 1)-tuple s̃ = (θ, dh1, . . . , dhk) of sections of T ∗Ũ , which is

of rank n+k. Thus r−`+1 = n+k−(k+1)+1 = n. We assume that S(s̃)∩V = {p}.
Let s = s̃|V , which defines a map of V r{p} to W`(C

r). It should be emphasized that

here we take the restrictions of components of s̃ as sections and not as differential

forms.

Following [EG1], with different naming and notation, we define the V -index

IndV (θ, p) of θ at p by

IndV (θ, p) = deg s|L.
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Then by Theorem 6.1, it coincides with Rescn(s, T ∗Ũ |V ; p) and by Theorems 3.2

and 5.8, it has analytic and algebraic expressions. In fact the algebraic one is already

given in [EG1].

Remark 7.3. — For a vector field, there is a similar index, which is called the GSV-

index ([GSV], [SS1]). Namely, in the above situation let v be a holomorphic vector

field on Ũ . Assume that v is tangent to V r {p} and non-vanishing there. Set

s̃ = (v, grad h1, . . . , grad hk) and s = s̃|V . Then the GSV-index of v at p is defined by

GSV(v, p) = deg s|L.

Since s involves anti-holomorphic objects, we cannot directly apply our previous

results. Note that it coincides with the “virtual index” of v ([LSS], [SS2]) and that

there is an algebraic formula for it as a homological index, when k = 1 ([Go]).

7c. Multiplicity of a function on a local complete intersection. — We refer

to [IS] for details of this subsection. Let V be a subvariety of dimension n in a

complex manifold W of dimension n + k. We assume that there exist a holomorphic

vector bundle N of rank k and a holomorphic section σ of N , generically transverse

to the zero section, with V = σ−1(0). Thus V is a local complete intersection defined

by the local components of σ. Note that the restriction of N to the non-singular

part V ′ coincides with the normal bundle of V ′ in W . We denote the virtual bundle

(T ∗W − N∗)|V by τ∗
V and call it the virtual cotangent bundle of V . Let g be a C∞

function on W and let f and f ′ be its restrictions to V and V ′, respectively. We

define the singular set S(f) of f by S(f) = Sing(V )∪C(f ′). As in the case of vector

bundles, we may define the localization of the n-th Chern class of τ∗
V by df , which in

turn defines the residue Rescn(df, τ∗
V ; S) at each compact connected component S of

S(f). We define the virtual multiplicity m̃(f, S) of f at S by

(7.4) m̃(f, S) = Rescn(df, τ∗
V ; S).

The multiplicity of f at S is then defined by

(7.5) m(f, S) = m̃(f, S) − µ(V, S),

where, µ(V, S) denotes the (generalized) Milnor number of V at S as defined in [BLSS]

(cf. [A], [P], [PP] in the case k = 1). Note that if S consists of a point p, it is the

usual Milnor number µ(V, p) of the isolated complete intersection singularity (V, p)

([Mi], [H], see also [Lo]).

Note that, if S is in V ′, we have Rescn(df, τ∗
V ; S) = Rescn(df, T ∗V ′; S). On the

other hand, in this case we have µ(V, S) = 0 so that m(f, S) coincides with the one

in (7a).

Let g : W → C be a holomorphic map onto a complex curve C and set f = g|V ,

f ′ = g|V ′ and S(f) = Sing(V )∪C(f ′). We assume that S(f) is compact. We further

set V0 = V r S(f) and f0 = g|V0 . Thus df0 is a non-vanishing section of the bundle
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T ∗V0 ⊗ f∗
0 TC, which is of rank n. If we look at cn(ε), ε = τ∗

V ⊗ f∗TC and we see that

there is a canonical localization cn
S(ε, df) in H2n(V, V r S; C) of cn(ε).

Let (Sλ)λ be the connected components of S and let (Rλ)λ be as in (1b). Then

cn
S(ε, df) defines, for each λ, the residue Rescn(df, τ∗

V ⊗ f∗TC; Sλ), which is given by

a formula similar to (1.2). Note that, if Sλ is in the non-singular part V ′, it coincides

with the one in (7a). If V is compact, by Proposition 1.5, we have

∑

λ

Rescn(df, τ∗
V ⊗ f∗TC; Sλ) =

∫

V

cn(τ∗
V ⊗ f∗TC).

The both sides in the above are reduced as follows. If f(S(f)) consists of isolated

points, we may write

Rescn(df, τ∗
V ⊗ f∗TC; Sλ) = m̃(f, Sλ) = m(f, Sλ) − µ(V, Sλ)

and, if moreover, V is compact, then we have
∫

V

cn(τ∗
V ⊗ f∗TC) = (−1)n (χ(V ) − χ(F )χ(C)) +

∑

λ

µ(V, Sλ),

where F is a general fiber of f ([IS, Lemma 5.2]). Thus, in the above situation, we

have ([IS, Theorem 5.5]):
∑

λ

m(f, Sλ) = (−1)n (χ(V ) − χ(F )χ(C)) .

In particular, if S(f) consists only of isolated points,

(7.6)
∑

p∈S(f)

m(f, p) = (−1)n (χ(V ) − χ(F )χ(C)) ,

which generalizes (7.2) for a singular variety V .

If Sλ consists of a single point p, the residue Rescn(df, τ∗
V ; p) is given as follows.

Let Ũ be a small neighborhood of p in W so that the bundle N admits a frame

(ν1, . . . , νk) on Ũ . We write σ =
∑k

i=1 hi νi with hi holomorphic functions on Ũ .

Then V is defined by (h1, . . . , hk) in Ũ . Consider the (k + 1)-tuple of sections

s̃ = (dg, dh1, . . . , dhk)

of T ∗Ũ . By the assumption, we have S(s̃)∩V = {p}. Since the rank of T ∗Ũ is n+ k,

we have the residue Rescn(s, T ∗Ũ |V ; p), s = s̃|V . Then we have ([IS, Theorem 4.6])

(7.7) m̃(f, p) = Rescn(s, T ∗Ũ |V ; p).

The virtual multiplicity m̃(f, p) was defined as the residue of df on the virtual

bundle τ∗
V (cf. (7.4)) and this definition led us to a global formula as (7.6). The

identity (7.7) shows that it coincides with the residue of s = (dg|V , dh1|V , . . . , dhk|V )

on the vector bundle T ∗Ũ |V . Thus we have various expressions for m̃(f, p) as given in
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RESIDUES OF CHERN CLASSES ON SINGULAR VARIETIES 283

the previous sections; by Theorem 3.2 we have a way to compute m̃(f, p) explicitly,

by Theorem 5.8 we may express

(7.8) m̃(f, p) = dimC On+k/(J(g, h1, . . . , hk), h1, . . . , hk),

where J(g, h1, . . . , hk) denotes the Jacobian ideal of the map (g, h1, . . . , hk), i.e., the

ideal generated by the (k + 1) × (k + 1) minors of the Jacobian matrix ∂(g,h1,...,hk)
∂(z1,...,zn+k) ,

and by Theorem 6.1,

(7.9) m̃(f, p) = IndV (dg, p).

From (7.5), (7.8) and the identity (cf. [Gr], [Le])

µ(V, p) + µ(Vg, p) = dimC On+k/(J(g, h1, . . . , hk), h1, . . . , hk),

where Vg denotes the complete intersection defined by (g, h1, . . . , hk), assuming

g(p) = 0, we get

(7.10) m(f, p) = µ(Vg, p).

7d. Some others. — Let V be a complete intersection defined by (h1, . . . , hk) in Ũ

and p an isolated singularity of V , as before.

The n-the polar multiplicity mn(V, p) of Gaffney ([Ga]) is defined by

mn(V, p) = dimC On+k/(J(`, h1, . . . , hk), h1, . . . , hk),

where ` is a general linear function. By (7.8) and (7.9), we may write

mn(V, p) = IndV (d`, p) = m̃(`|V , p).

Also, in the expression

Eu(V, p) = 1 + (−1)n+1µ(V`, p)

for the Euler obstruction Eu(V, p) of V at p (cf. [Du], [K], see also [BLS]), we have

by (7.10),

µ(V`, p) = m(`|V , p).

Note that these local invariants appear in the comparison of the Schwartz-

MacPherson, Mather and Fulton-Johnson classes of a local complete intersection

with isolated singularities (cf. [OSY], [Su1]).
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(1971), p. 235–252.

[HL] F.R. Harvey & H.B. Lawson – A theory of characteristic currents associated with
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