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INTEGRABILITY OF SOME FUNCTIONS ON

SEMI-ANALYTIC SETS

by

Adam Parusiński

Abstract. — Using the properties of Lipschitz stratification we show that some func-

tions on a semi-analytic sets, in particular the invariant polynomials of curvature

form, are locally integrable. The result holds as well for subanalytic sets.

Résumé(Intégrabilité de certaines fonctions sur les ensembles semi-analytiques)
En utilisant les propriétés des stratifications lipschitziennes on montre l’intégra-

bilité locale d’une classe de fonctions définies sur les ensembles semi-analytiques.

Cette classe contient les polynômes invariants de la courbure. Le résultat est vrai

aussi pour les ensembles sous-analytiques.

I wrote this paper as an appendix to [7] back in 1988. It contains the proof of

integrability of curvature of the regular part of a semi-analytic set, Proposition 1

below. This result can be proven in a simpler way using the functoriality of curvature

form as for instance shown in [1] and that is why back in 1988 I put this appendix

to a drawer. On the other hand the proof presented below is quite different than the

standard one and uses techniques that can be useful, see for instance [6].

The proof presented in this paper follows to a big extend the ideas of the proof of a

similar statement in the complex domain given by T. Mostowski in [5]. It is based by

a direct estimate of curvature in terms of second derivatives and consequently, thanks

to techniques developped in [7], in terms of the distances to strata of a Lipschitz

stratification. Let us now outline the main points of the proof. Let X ⊂ R
n be semi-

analytic and let k = dim X 6 n − 1. Decomposing X into finitely many pieces we

may suppose that it is the graph of a semi-analytic mapping U → Rn−k, with U ⊂ Rk

open and semi-analytic. The integrability of the curvature forms on X reduces to the

integrability on U of some combinations of the partial derivatives of F of the first and

second order. The former we may suppose bounded by a more precise decomposition

of X (we use the so called decomposition into L-regular sets). The second order

derivatives are then bounded by the first order ones divided the distances to the strata
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244 A. PARUSIŃSKI

of a stratification of U . This follows from an inequality (12) that plays an important

rôle in the proof of the existence of Lipschitz stratification of semi- and subanalytic

sets, see Lemma 4.5 of [7] and Proposition 3.1 of [9]. Therefore the integrability of

curvature is reduced to the integrability on U of functions of the form

A(x) =
(ds(x))γ

∏n−1
j=0 dj(x)

,

where dj denote the distances to the j dimensional strata. These functions are gen-

erally not integrable since the direct integration gives logarithms. A more delicate

analysis in Lemma 4 below, shows that A(x) is integrable on some “horn neighbour-

hoods” of strata, where the distance to a fixed stratum is dominated by the distances

to the smaller strata, and as we show in Lemma 7 this is precisely what we need

for the integrability of curvature. Finally Lemma 4 follows fairly easily by induction

on dimension thanks to Lemmas 2 and 3 below which relate the distance to a semi-

analytic set and the distances to its projections and to its sections. Note that Lemmas

2-4 follows from the regular projections theorem, see [5], Proposition 2.1 of [7], and

[9] section 5, and do not require the use of Lipschitz stratifications. In particular

Lemma 4 holds for any stratification, not necessarily Lipschitz.

The paper is presented below virtually in its original form. Only the evident

misprints and orthographic and gramatical errors were corrected. Since 1988 the

theory of Lipschitz stratification was further developed by T. Mostowski and myself.

The reader may consult [8] for an account of this development. In particular the

regular projection theorem and the existence of Lipschitz stratification was proven

for subanalytic sets [9], and hence all the results of this paper hold as well in the

subanalytic set-up. As follows from [9], it is easy to bound the number of regular

projections in Proposition 2.1 of [7]. In particular, in lemmas 2 and 3 we may take

N = n + 1 and any generic (n + 1)-tuple of vectors ξ1, . . . , ξn+1 from Rn satisfies the

statements.

For the reader convenience, we recall briefly Dubson’s argument [1]. Let X be

a k-dimensional subanalytic subset of an n dimensional real analytic manifold M

with a riemannian tensor. Let Gk (TM ) denote the k-Grassmann bundle of TM

whose fibre of x ∈ M is the Grassmannian of k-dimensional subspaces of TxM . We

denote by T the tautological k bundle on Gk (TM ). Note that the metric tensor on M

induces a metric tensor on T . Let Xreg denote the regular (k-dimensional) part of X .

The Nash blowing-up X̃ of X is the closure in Gk (TM ) of

{(x, ξ) ∈ Gk (TM ) | x ∈ Xreg and ξ = TxXreg}.

It is known that X̃ is subanalytic. Let π : X̃ → X denote the projection. Then,

clearly, π∗TX |Xreg
coincides with T |π−1(Xreg) and hence extends on X̃. As a conse-

quence the pull-back of the curvature form Ω of Xreg coincides, on π−1(Xreg), with
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INTEGRABILITY OF SOME FUNCTIONS ON SEMI-ANALYTIC SETS 245

the curvature form ΩT of T . Let P be an invariant homogeneous polynomial of de-

gree k. Then P (Ω) is integrable on each relatively compact subset Y of Xreg. Indeed,

since π is proper Ỹ = π−1(Y ) is relatively compact. Moreover, being subanalytic, Ỹ

has finite k-volume. On the other hand π∗P (Ω) = P (π∗Ω) = p(ΩT ) and the latter is

integrable on Ỹ .

I would like to thank Tadeusz Mostowski for encourangement in preparing this

paper for publication.

The aim of this paper is to prove the following proposition.

Proposition 1. — Let M be a real analytic manifold with a given metric tensor. Let

X ⊂ M be a compact k-dimensional semi-analytic set and let Ω be the curvature

form on the set Xreg of regular points of X of the induced metric tensor. Then, for

every invariant homogeneous polynomial P of degree k, the k-form P (Ω) is integrable

on Xreg. If Xreg is oriented, then Pf(Ω) is integrable. (see, for exemple, [4] for the

definition of the Pfaffian Pf).

First we investigate the function of distance to a semi-analytic set. Let X ⊂

Rn = Rn−1 × R be a compact semi-analytic set. For a given ξ ∈ Rn−1 we denote

by π(ξ) : R
n → R

n−1 the projection parallel to (ξ, 1) and by distξ(x, X) the distance

from x to X in (ξ, 1) direction

distξ(x, X) := dist(x, X ∩ (π(ξ))−1(π(ξ)(x))).

Of course distξ(x, X) > dist(x, X). It is a well-known fact, see [3], that dist(x, X)

is a subanalytic, but not necessarily semi-analytic, function. Note that for any ξ,

distξ(x, X) is also subanalytic.

Lemma 2. — Let X be a compact semi-analytic subset of Rn. Then there are a finite

number of vectors ξ1, . . . , ξN ∈ Rn, a positive constant C, and a semi-analytic subset

Y ⊂ X such that dim Y < n − 1 and

(1) min{min
j

distξj
(x, X), dist(x, Y )} 6 C dist(x, X),

for all x ∈ Rn.

Proof. — Since X is compact, it is sufficient to prove the lemma locally in a neigh-

bourhood of every x0 ∈ Rn. If x0 /∈ Fr(X) = X r Int(X), putting ξ = 0 we obtain

(1) with C = 1.

Let x0 ∈ Fr(X). It suffices to prove the lemma for Fr(X) instead of X , so we can

assume that dim X 6 n− 1. We complexify Rn and consider a complex hypersurface

X̃ in an open neighbourhood Ũ of x0 in Cn such that X ∩ Ũ ⊂ X̃ . Take constants

C, ε > 0 and vectors ξ1, . . . , ξN satisfying the assertion of Corollary 2.4 of [7] for

(X̃, x0). In particular, for every x close to x0 there exists ξ ∈ {ξ1, . . . , ξN} such that
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the intersection of the open cone

Sε(x, ξ) = {x + λ(η, 1) | |η − ξ| < ε, λ ∈ C
∗}

with X is of the form given in (8) of [7]. We recall for the reader’s convenience that

it means that

Sε(x, ξ) ∩ X =
⋃
i

{x + λi(η)(η, 1) | |η − ξ| < ε},

where λi, i = 1, . . . , r, are real analytic functions defined on |η− ξ| < ε and satisfying

λi(η) 6= λj(η) for i 6= j and all η, and |Dλi| 6 C|λi|. Furthermore we may assume

that for each j, π(ξj)|X is a branched analytic covering and let B(ξj) be its critical

locus. Put Y =
⋃

j π(ξj)−1(B(ξj))∩X . Clearly Y is semi-analytic and dim Y < n−1.

Let U be a sufficiently small neighbourhood of x0 such that U ⊂ Ũ ∩ Rn. Let

x ∈ U and we assume that the regular projection corresponding to x is standard

Rn → Rn−1. Let p ∈ X be one of the points nearest to x. Let p′ = π(p), x′ = π(x),

and let U ′ = π(U). If x′ = p′ then dist(x, X) = distξ(x, X). So, we assume x′ 6= p′

and consider the segment p′x′. Starting from p we lift p′x′ to a smooth curve γ on

X until we reach a point s ∈ Y or s of the form (x′, λi(0)) for some i = 1, . . . , r. We

denote π(s) by s′. It remains to prove that

(2) |x − s| 6 C|x − p|,

for a universal constant C. This follows from Remark 2.5 of [7]. More precisely, if

p ∈ Sε′(x, 0), where ε′ is given by Remark 2.5 of [7], the length of γ is estimated by

C′|p′ − s′|. Hence

|x − s| 6 |x − p| + |p − s| 6 |x − p| + C′|p′ − s′| 6 |x − p| + C′|p′ − x′|

and consequently (2) follows. If s /∈ Sε′(x, 0) then

|x − s| 6 C|x′ − s′| 6 C|x′ − p′| 6 C|x − p|.

If s ∈ Sε′(x, 0) and p /∈ Sε′(x, 0), then we may find r ∈ γ ∩ Fr(Sε′(x, 0)) and by the

above

|x − s| 6 |x − r| + |r − s| 6 C′|x′ − r′| 6 C′|x′ − p′| 6 C|x − p|.

Lemma 3. — Let X be a semi-analytic subset of Rn, dim X < n − 1, and x0 ∈ Rn.

Then there exist a finite number of vectors ξ1, . . . , ξN ∈ Rn and constants C, ε > 0

such that for a sufficiently small neighbourhood U of x0 and every x ∈ U there is ξj

such that X ∩ U ⊂ Rn r Sε(x, ξj). In particular

dist(x, X) 6 C max
j

{dist(π(ξj)(x), π(ξj)(X ∩ U))}.

Proof. — It is sufficient to prove the lemma for x0 ∈ X . Complexify Rn and consider

complex hypersurfaces X̃1, X̃2 in an open neighbourhood Ũ of x0 in Cn such that

X∩Ũ ⊂ X̃1∩X̃2 and dimC X̃1∩X̃2 = n−2. Then the lemma follows from Proposition

2.1 of [7] applied to X̃1 ∪ X̃2.
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INTEGRABILITY OF SOME FUNCTIONS ON SEMI-ANALYTIC SETS 247

Now we consider the following situation. Let X be a compact semi-analytic subset

of Rn and dim X = n. Let

X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X

be a family of semi-analytic subsets of X such that dim X i 6 i for each i. For

any N ∈ N, C > 0 and j = 0, . . . , n − 1, consider the following subsets of U =

X r (Fr(X) ∪ Xn−1)

UN,C,j = {x ∈ U | dj(x) < C[dj−1(x)]N},

where dj(x) = dist(x, Xj). (If Xj = ∅ then we mean dj ≡ 1).

Lemma 4. — For any N, N ′ > 1, C, C′ > 0, γ > 0, s = 0, . . . , n − 1, the function

A(x) =
(ds(x))γ

∏n−1
j=0 dj(x)

is integrable on UN,C,s r
⋃

j>s UN ′,C′,j.

Proof. — Induction on n = dim X .

Since X is compact, it suffices to prove the lemma locally, that is in a neighbourhood

of each point of X . Fix x0 ∈ X . Assume that X is contained in a sufficiently small

neighbourhood V of x0. We apply Lemma 2 to Xn−1 and Lemma 3 to Xn−2 at x0.

We can do it simultaneously and obtain a finite number ξ1, . . . , ξN of vectors and a

semi-analytic subset Y of X , dim Y < n − 1, such that for every x ∈ V (shrinking V

if necessary), either for some ξj

distξj
(x, Xn−1) 6 Cdn−1(x)(3)

and dr(x) 6 C dist(π(ξj)(x), π(ξj)(Xr)),(4)

for each r = 0, 1, . . . , n − 2, or

(5) dist(x, Y ) 6 Cdn−1(x),

for some C > 0. Indeed, we can find complex hypersurfaces X̃1, X̃2 of a neighbourhood

Ũ of x0 in C
n such that Xn−1∩Ũ ⊂ X̃1, Xn−2∩Ũ ⊂ X̃1∩X̃2, dimC(X̃1∩X̃2) < n−1.

Then ξ1, . . . , ξN given by Corollary 2.4 of [7] applied to (X̃1 ∪ X̃2, x0) satisfies the

properties claimed above (see also the proofs of Lemmas 2 and 3).

Apply again Lemma 3 to Y ∪ Xn−2 at x0 and add the obtained vectors to the set

ξ1, . . . , ξN . In conclusion, for each x ∈ V there is ξj so that the inequality (4) holds

for r = 0, . . . , n − 2 and

dist(x, Y ) 6 C dist(π(ξj)(x), π(ξj)(Y ))(6)

Sε(x, ξj) ∩ Y = ∅.(7)

Furthermore, we may require that for each ξj , π(ξj))|Xn−1 is finite and π(ξj)(Y ),

π(ξj)(Xr), r = 0, . . . , n, are semi-analytic subsets of Rn−1 (see [2]).
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Fix ξ = ξi for a moment and assume that π = π(ξi) is the standard projection.

Denote T = π(X) and T r = π(Xr) for r < n − 1. Let W be the subanalytic subset

of UN,C,s r
⋃

j>s UN ′,C′,j consisting of such x that (3) and (4) hold with ξj = ξ.

Consider first the case s < n − 2. Then

U ′ ∩ π(W ) ⊂ U ′
N,C,s r

⋃
j>s

U ′
N ′,C′,j ,

where U ′, U ′
N,C,s, . . . are constructed in an analogous manner for the family T 0 ⊂

T 1 ⊂ · · · ⊂ T n−1 (the constants C′, C, N, N ′ may be different). Denote dist(x′, T r)

by d′r(x′). If x ∈ W then

(8) distξ(x, Xn−1) > dn−1(x) > C[ds(x)](n−1−s)N ′

> C[d′s(π(ξ)))]N
′′

.

Fix x′ ∈ U ′. The set W ∩ π−1(x′), as subanalytic, consists of a finite union of

segments and their number is uniformly bounded. Therefore, by (8),

(9)

∫

π−1(x′)

[distξ(x, Xn−1)]−1
6 C max

x∈π−1(x′)
| ln distξ(x, Xn−1)| 6 C′| ln d′s(x′)|.

Note that, by construction, dim(T rU ′) < n−1, so dim(W rπ−1(U ′) < n and hence

W r π−1(U ′) is of measure 0 (see, for instance, [2]). Consequently,

∫

W

A(x) 6 C

∫

π(W )∩U ′

(
[d′s(x′)]γ

∏n−2
j=0 d′j(x′)

∫

π−1(x′)∩W

[distξ(x, Xn−1)]−1

)

6 C′

∫

π(W )∩U ′

[d′s(x′)]γ | ln d′s(x′)|
∏n−2

j=0 d′j(x′)

and the last integral is finite by the inductive hypothesis. A similar situation occurs

if we consider the subset W of UN,C,s r
⋃

j>s UN,C,j where (5)-(7) hold. By (7) the

entire length of π−1(x′) ∩ W is smaller than C dist(x′, π(Y )). Consequently

∫

π−1(x′)∩W

[distξ(x, Xn−1)]−1
6 C

∫

π−1(x′)∩W

[dist(x, Y )]−1
6 C,

and we prove the integrability of A on W in the same way as above.

Consider now the case s = n − 1. Let W be the subset of UN,C,n−1 for which (3),

(4) hold. For x′ ∈ U ′ the set π−1(x′)∩W consists of a finite number of segments and

their number is uniformly bounded. Consequently

∫

π−1(x′)∩W

[dn−1(x)]γ−1
6 C

∫

π−1(x′)∩W

[distξ(x, Xn−1)]γ−1

6 C max
x∈π−1(x′)

(dn−1(x))γ
6 C′(d′n−2(x′))Nγ .
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Hence
∫

W

A(x) 6 C

∫

π(W )∩U ′

(n−2∏

j=0

(d′j(x′))−1

∫

π−1(x′)∩W

(dn−1(x))γ−1

)

6 C′

∫

π(W )∩U ′

[d′n−2(x′)]γ
′

∏n−2
j=0 d′j(x′)

The last integral is finite on
⋃n−2

s=0 (U ′
N,C,s r

⋃
j>s U ′

N,C,s) since d′n−2(x′) 6 d′s(x′), for

each s = 0, . . . , n−2, and by the inductive hypothesis. On U ′ r
⋃n−2

s=0 U ′
N,C,s it is also

finite, since all (d′s)−1 are bounded.

For the subset W ⊂ UN,C,n−1 consisting of the points where (5)-(7) hold, we have
∫

π−1(x′)∩W

[dn−1(x)]γ−1
6 C

∫

π−1(x′)∩W

[dist(x, Y )]γ−1
6 (dist(x′, π(Y )))γ .

So we must add π(Y ) to T n−2 and repeat the above procedure. This ends the proof.

Now we assume X ⊂ Rn, dim X = k, to be L-regular in the sense of Definition

3.2 of [7]. In particular, X is the graph of a mapping F : U → Rn−k, where U is an

L-regular subset of Rk, U open in Rk, and the partial derivatives of the first order of

F are uniformly bounded on U . The regular part Xreg of X equals the graph of F

restricted to U . We denote ∂Fi/∂xj, for i = 1, . . . , n−k and j = 1, . . . , k, by Fij . Let

e1, . . . , en be the standard basis of R
n. Then

f j(x, F (x)) =

{
ej + DF (x)ej j = 1, . . . , k

− gradFj+k + ej for j > k

is a basis of Rn for each x ∈ Xreg. The first k vectors are tangent to Xreg. Let

ωij be the connection matrix for this frame. From the structural equation, see [4]

Appendix C,

(10) Ωαα′ = −

n∑

µ=k+1

ωα′µ ∧ ωµα + Ω′
α′α,

where Ω, Ω′ are the curvature matrices for Xreg and Rn. Given vector v ∈ Rn, we

define a vector field V (x, F (x)) = (v, DF (x)v) on Xreg. Then

(11) |ωi1i2(V )| 6 C

k∑

j=1

(|D(
∂F

∂xj
v| + 1)(|v| + 1),

for some constant C.

Our next purpose is to estimate D(Fij)(x)v for various vectors v. By Lemma 4.5

of [7], or more generally by [9] Proposition 3.1, there exists a stratification S of U ,

such that for any Lipschitz vector field w on U tangent to the strata of S

(12) |DFij(x)w(x)| 6 CL|Fij(x)|,
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where L is a Lipschitz constant of w and C is a universal constant. Denote di(x) =

dist(x, Si).

Lemma 5. — Let S be a Lipschitz stratification of a semi-analytic set X (in the sense

of [7]). Then for some positive constant C and any q ∈ S̊j there exist Lipschitz

S-compatible vector fields v0, . . . , vj−1 on Sj such that

(1) vi has the Lipschitz constant C[di(q)]−1 for all i = 1, . . . , j − 1,

(2) v0(x), . . . , vj−1(x) is an orthonormal basis of TqS̊
j.

(here we mean dr ≡ 1 for r < l, where l satisfies Sl 6= ∅, Sl−1 = ∅.)

Proof. — It is sufficient to show that, for i = 0, 1, . . . , j − 1, there exists an i-

dimensional linear subspace V i of TqS̊
j such that for each v ∈ TqS̊

j one can find a

Lipschitz S-compatible vector field w on Sj with the Lipschitz constant C[di(q)]−1|v|

and w(q) = v. We shall show it by induction on j. For j = l, it is a simple conse-

quence of [7] Proposition 1.5. Assume that the lemma is true for all j smaller than s.

Let q′ ∈ Ss−1 satisfies

|q − q′| 6
3

2
ds−1(q).

Let q′ ∈ S̊k. Then, of course, k < s. Take i such that k 6 i < s. Then as V i we

may chose any i-dimensional subspace of TqS̊
s. Indeed, take any v ∈ TqS̊

j . By (i) of

Proposition 1.5 of [7] we may construct a Lipschitz S-compatible vector field w on Ss

such that w(q) = v, w|Ss−1 ≡ 0 and with the Lipschitz constant C[di(q)]−1|v|.

Let i < k. By the inductive hypothesis we can find an i-dimensional vector subspace

W i of Tq′ S̊k with the desired properties for q′. Fix w ∈ W ′, |w| = 1. Let w̃ be a

S-compatible Lipschitz vector field on Sk, with the Lipschitz constant C[di(q
′)]−1|w|,

w̃(q′) = w. By (i) of Proposition 1.5 [7], we may extend w̃ on Ss in such a way

that w̃(q) = Pq(w̃(q′)) (and, of course, w̃ remains Lipschitz and S-compatible with a

Lipschitz constant L = C[di(q
′)]−1|w|). If additionally |q − q′| 6

1
2L−1, then

|w̃(q)| > |w̃(q′)| − |w̃(q′) − w̃(q)| >
1
2 |w| = 1

2 ,

and di(q) 6 di(q
′) + |q − q′| 6 Cdi(q

′). Hence V i = PqW
i has the desired properties.

Assume |q − q′| >
1
2L−1. Then

ds−1(q) > Cdi(q
′),

for a constant C > 0 and we may suppose C < 1
2 . Therefore

ds−1(q) > Cdi(q) − C|q − q′|,

and consequently

ds−1(q) > C̃di(q),

for some constant C̃ > 0. Hence, as in the case i > k, any i-dimensional subspace of

TqS̊
j has the desired properties.
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INTEGRABILITY OF SOME FUNCTIONS ON SEMI-ANALYTIC SETS 251

Corollary 6. — Let U , F , and S be as above. Then

(13) |P (Ω)(x, F (x))| 6 C

k−1∏

j=0

(
dj(x, F (x))

)−1
,

for all x ∈ U and some constant C.

Proof. — It follows easily from Lemma 5, (10), and (11).

Our next step is to use Lemma 4. In order to be able to do it we strengthen the

estimate (13).

Lemma 7. — Let U , F be as above. Then there exist an L-stratification S of U satis-

fying (12) for all Fij and Lipschitz S-compatible vector fields w, a positive integer N ,

and constants C > 0, 0 6 δ < 1, 0 < γ < 1, such that for any r = 0, . . . , n − 1 and

q ∈ UN,C,r there are w ∈ Rn, |w| = 1, and q′ ∈ S̊r which satisfy

|q − q′| 6 Cdj(q),(14)

|Pq′ w| < δ,(15)

|DFij(q)w| 6 C(dr−1(q))γ−1,(16)

for i = 1, . . . , n − k; j = 1, . . . , k (for j − 1 < l we mean dj−1 ≡ 1).

Proof. — To simplify the notation, we assume diam U 6
1
2 and consider only UN,r =

UN,1,r. Note that UN,r ⊃ UN ′,r for N ′ > N .

Let S be an L-stratification of U satisfying Lemma 5 for all Fij and the above

additional conditions of Lemma 7 for all r > s. We construct an L-stratification

S′ of U satisfying the conditions of Lemma 5 for all Fij and the above additional

conditions for all r > s. The first step is to enlarge Ss−1 in such a way that the

extra conditions hold for UN,s. Note that if Ss−1 is bigger, UN,j is smaller. By [7]

Proposition 3.5, Ss is the union of L-regular sets X i defined by gi : V → Rk−s (as in

Definition 3.2 of [7]), in some system of coordinates. We add all ∂Xi to Ss−1. Fix Xi

for a moment. Assume that the associated system of coordinates is standard and

π : Rk → Rs is the standard projection. Let Ui = π−1(Vi) ∩ U ′. Consider on Ui × V ,

where V = {(0, v) ∈ {0} × R
k−s ⊂ R

s × R
k−s | |v| = 1}, the semi-analytic function

β(x, v) =

n−k∑

i=1

k−s∑

r=1

|vrFir(x)|2 |x − (π(x), gi(π(x))|2.

The graph of β is not only a semi-analytic subset of Ui×V ×R, see [7] Lemma 2.3,

but also it is semi-algebraic in direction V × R. By  Lojasiewicz’s version of Tarski-

Seindenberg Theorem [3], the graph of

α(x) = min
v

β(x, v)
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is semi-analytic and semi-algebraic in direction R. Let πk : Rk × R → Rk denote the

standard projection. We shall prove that the dimension of

W = Xi ∩ πk(graph α r R
k × {0})

is smaller than s.

Suppose, by contradiction, that dim W = s. The sets

Xi(ε) = {x ∈ Ui | α(x) > ε} ∩ Xi

are semi-analytic and
⋃∞

n=1 Xi(1/n) = W , so by Baire’s theorem dim Xi(ε) = s for

ε > 0 sufficiently small (if dim Xi(ε) < s then Xi(ε) is closed and nowhere dense

in Xi). Consider a semi-analytic set Y = {x ∈ Ui ; α(x) > ε/2}. Then Xi(ε) is

contained in the closure of Y . Choose p = (p′, gi(p
′)) ∈ Xi(ε) such that Xi(ε) is

near p a nonsingular s-dimensional analytic manifold. We can assume that the pair

(Y, Xi(ε)) satisfies Whitney’s conditions near p, see [3]. In particular, p ∈ π−1(p′) ∩ Y

and therefore by the curve selection lemma there exists an R-analytic curve γ(t) :

[0, δ) → π−1(p′) ∩ Y such that γ(0) = p and γ(0, ε) ⊂ Y . Replacing eventually t

by tr, for some r ∈ N, we can assume that F ◦ γ and all Fij ◦ γ are analytic. Put

w(t) = γ̇(t)/|γ̇(t)|. Then, for f = Fij ,

∣∣∣t
d(f ◦ γ)

dt

∣∣∣
2

= |t|2|Df(γ(t))w(t)|2|γ̇(t)|2

> |Df(γ(t))w(t)|2|γ(t) − p|2 = Cβ(γ(t), w(t)).

Therefore, limt→0 α(γ(t)) = 0 and this contradicts our assumption.

So, we have dim W < s. Add W to Ss−1 and extend α to a continuous function

on Ui ∪ (Xi r Ss−1) putting α|XirSs−1 ≡ 0. By  Lojasiewicz Inequality, [3], there

exists M ∈ N such that α(x)(ds−1(x))M can be extended to a continuous function on

Ui∪Xi, vanishing on Xi. We apply the  Lojasiewicz Inequality again to find constants

C, α satisfying

(17) α(x)(ds−1(x))M
6 C[dist(x, Xi)]

α

for all x ∈ Ui. Take q ∈ UN,s (for N sufficiently large, N will be specified later). Let

p ∈ Ss satisfy

|q − p| 6
3

2
ds(q).

If p ∈ Xi and N sufficiently large, then, since Xi is L-regular, q ∈ Ui and the point

q′ = (π(q), gi(π(q))) satisfies

(18) |q − q′| 6 Cds(q),

for some constant C not depending on q, q′, Xi. In particular, then

dist(q, Xi) 6 Cds(q).

Therefore, (17) follows

(19) α(q)(ds−1(q))M
6 C(ds(q))α.
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By the assumption that diam U 6 1
2 , we can assume C = 1 in (19). We also require

N > 2M/α. Then, because q ∈ UN,s, (19) gives

α(q) 6 (ds(q))α/2.

This and (18) give (14) and (16), for some w satisfying (15) (If N is large, then

q′ ∈ S̊s). To complete the proof we find an L-stratification of Ss−1 compatible with

the initial stratification.

Corollary 8. — Let F , U , and S be as in Lemma 7. Then, for some N ∈ N, γ, C > 0,

and each j = 0, . . . , n − 1

|P (Ω)(q, F (q))| 6 C[dj(q)]γ
k−1∏

j=0

(dj(q))−1,

for all q ∈ UN,C,j.

Proof. — Assume, as above, that diam X 6
1
2 and consider only the sets UN,j =

UN,1,j. Fix N satisfying the assertion of Lemma 7. Let q ∈ UN,s and q′, w, δ be given

by Lemma 7. Let v0, . . . , vk−1 be the Lipschitz vector fields given by Lemma 5 for S

and q. If v is any combination of v0, . . . , vs−1 and |v(q)| = 1, then

|P⊥

q′ v(q)| 6= |P⊥

q′(v(q) − v(q′))| 6 C
|q − q′|

ds−1(q)
.

If N is sufficiently large then

|P⊥

q′ v(q)| 6

√
1 − δ

2
.

So the angle between W and the space generated by v0(q), . . . , vs−1(q) is grater than

some small but positive constant. This, Lemma 5, (10) and (11) give the desired

result.

Proof of Proposition 1. — Because X is compact it is, by [7] Propostion 3.5 a union

of L-regular sets. Thus we may assume that X is L-regular and the proposition follows

from Corollary 8 and Lemma 4.
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SÉMINAIRES & CONGRÈS 10


