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INTEGRABILITY OF SOME FUNCTIONS ON
SEMI-ANALYTIC SETS

by

Adam Parusinski

Abstract — Using the properties of Lipschitz stratification we show that some func-
tions on a semi-analytic sets, in particular the invariant polynomials of curvature
form, are locally integrable. The result holds as well for subanalytic sets.

RésuméIntégrabilité de certaines fonctions sur les ensembles isg-analytiques)

En utilisant les propriétés des stratifications lipschitziennes on montre 'intégra-
bilité locale d’une classe de fonctions définies sur les ensembles semi-analytiques.
Cette classe contient les polynoémes invariants de la courbure. Le résultat est vrai
aussi pour les ensembles sous-analytiques.

I wrote this paper as an appendix to [7] back in 1988. It contains the proof of
integrability of curvature of the regular part of a semi-analytic set, Proposition 1
below. This result can be proven in a simpler way using the functoriality of curvature
form as for instance shown in [1] and that is why back in 1988 T put this appendix
to a drawer. On the other hand the proof presented below is quite different than the
standard one and uses techniques that can be useful, see for instance [6].

The proof presented in this paper follows to a big extend the ideas of the proof of a
similar statement in the complex domain given by T. Mostowski in [5]. It is based by
a direct estimate of curvature in terms of second derivatives and consequently, thanks
to techniques developped in [7], in terms of the distances to strata of a Lipschitz
stratification. Let us now outline the main points of the proof. Let X C R™ be semi-
analytic and let k = dim X < n — 1. Decomposing X into finitely many pieces we
may suppose that it is the graph of a semi-analytic mapping U — R" %, with U C R*
open and semi-analytic. The integrability of the curvature forms on X reduces to the
integrability on U of some combinations of the partial derivatives of F' of the first and
second order. The former we may suppose bounded by a more precise decomposition
of X (we use the so called decomposition into L-regular sets). The second order
derivatives are then bounded by the first order ones divided the distances to the strata
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244 A. PARUSINSKI

of a stratification of U. This follows from an inequality (12) that plays an important
role in the proof of the existence of Lipschitz stratification of semi- and subanalytic
sets, see Lemma 4.5 of [7] and Proposition 3.1 of [9]. Therefore the integrability of
curvature is reduced to the integrability on U of functions of the form

(ds (@)
Alx) = ———~2—
) 1720 dj()

where d; denote the distances to the j dimensional strata. These functions are gen-
erally not integrable since the direct integration gives logarithms. A more delicate
analysis in Lemma 4 below, shows that A(x) is integrable on some “horn neighbour-
hoods” of strata, where the distance to a fixed stratum is dominated by the distances
to the smaller strata, and as we show in Lemma 7 this is precisely what we need
for the integrability of curvature. Finally Lemma 4 follows fairly easily by induction
on dimension thanks to Lemmas 2 and 3 below which relate the distance to a semi-
analytic set and the distances to its projections and to its sections. Note that Lemmas
2-4 follows from the regular projections theorem, see [5], Proposition 2.1 of [7], and
[9] section 5, and do not require the use of Lipschitz stratifications. In particular
Lemma 4 holds for any stratification, not necessarily Lipschitz.

The paper is presented below virtually in its original form. Only the evident

)

misprints and orthographic and gramatical errors were corrected. Since 1988 the
theory of Lipschitz stratification was further developed by T. Mostowski and myself.
The reader may consult [8] for an account of this development. In particular the
regular projection theorem and the existence of Lipschitz stratification was proven
for subanalytic sets [9], and hence all the results of this paper hold as well in the
subanalytic set-up. As follows from [9], it is easy to bound the number of regular
projections in Proposition 2.1 of [7]. In particular, in lemmas 2 and 3 we may take
N =n+1 and any generic (n + 1)-tuple of vectors &1, ...,&,+1 from R” satisfies the
statements.

For the reader convenience, we recall briefly Dubson’s argument [1]. Let X be
a k-dimensional subanalytic subset of an n dimensional real analytic manifold M
with a riemannian tensor. Let Gi(TM) denote the k-Grassmann bundle of TM
whose fibre of x € M is the Grassmannian of k-dimensional subspaces of T, M. We
denote by T the tautological & bundle on G (TM ). Note that the metric tensor on M
induces a metric tensor on 7. Let X,cg denote the regular (k-dimensional) part of X.
The Nash blowing-up X of X is the closure in G(TM) of

{(x,f) € Gk(TM) | HAS Xreg and 5 = Tereg}'

It is known that X is subanalytic. Let 7 : X — X denote the projection. Then,
clearly, 7*T'X|x,,, coincides with T'|;-1(x,,,) and hence extends on X. As a conse-
quence the pull-back of the curvature form €2 of X, coincides, on W’l(Xreg), with

SEMINAIRES & CONGRES 10



INTEGRABILITY OF SOME FUNCTIONS ON SEMI-ANALYTIC SETS 245

the curvature form Qp of T. Let P be an invariant homogeneous polynomial of de-
gree k. Then P() is integrable on each relatively compact subset Y of X;c,. Indeed,
since 7 is proper Y = 7—1(Y) is relatively compact. Moreover, being subanalytic, ¥
has finite k-volume. On the other hand 7*P(Q) = P(n*Q2) = p(Qr) and the latter is
integrable on Y.

I would like to thank Tadeusz Mostowski for encourangement in preparing this
paper for publication.

The aim of this paper is to prove the following proposition.

Proposition 1 — Let M be a real analytic manifold with a given metric tensor. Let
X C M be a compact k-dimensional semi-analytic set and let Q be the curvature
form on the set X,eg of regular points of X of the induced metric tensor. Then, for
every invariant homogeneous polynomial P of degree k, the k-form P(Q) is integrable
on Xyeg. If Xieg is oriented, then P{(Q) is integrable. (see, for exemple, [4] for the
definition of the Pfaffian Pf).

First we investigate the function of distance to a semi-analytic set. Let X C
R™ = R* ! x R be a compact semi-analytic set. For a given ¢ € R"~! we denote
by m(£) : R™ — R"~! the projection parallel to (¢,1) and by diste (2, X) the distance
from x to X in (&, 1) direction

diste (2, X) 1= dist(z, X N ((€)) " (7 (&)(2))).

Of course diste(x, X) > dist(z, X). It is a well-known fact, see [3], that dist(z, X)
is a subanalytic, but not necessarily semi-analytic, function. Note that for any &,
diste (2, X) is also subanalytic.

Lemma2 — Let X be a compact semi-analytic subset of R™. Then there are a finite
number of vectors &1,...,En € R™, a positive constant C, and a semi-analytic subset
Y C X such that dimY <n —1 and

(1) min{min diste, (z, X ), dist(z, Y)} < Cdist(z, X),
J
for all x € R™.

Proof. — Since X is compact, it is sufficient to prove the lemma locally in a neigh-
bourhood of every xzy € R". If 29 ¢ Fr(X) = X \ Int(X), putting £ = 0 we obtain
(1) with C = 1.

Let x¢ € Fr(X). It suffices to prove the lemma for Fr(X) instead of X, so we can
assume that dim X < n — 1. We complexify R™ and consider a complex hypersurface
X in an open neighbourhood U of zp in C™ such that X N U C X. Take constants
C,e > 0 and vectors &1,...,¢y satisfying the assertion of Corollary 2.4 of [7] for
()?, xo). In particular, for every x close to xo there exists £ € {&1,...,&n} such that
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the intersection of the open cone

Se(z,8) ={z+A(n,1) [ [n—¢&l <e,AeC’}

with X is of the form given in (8) of [7]. We recall for the reader’s convenience that
it means that

Se(@, &) NX =z +X(m)(n,1) | In—¢| <e},

where \;, i = 1,...,r, are real analytic functions defined on |n — | < ¢ and satisfying
Xi(n) # Aj(n) for i # j and all n, and |D)\;| < C|\;|. Furthermore we may assume
that for each j, m(§;)|x is a branched analytic covering and let B(¢;) be its critical
locus. Put YV = J; m(&;) " (B(&))NX. Clearly Y is semi-analytic and dimY < n—1.

Let U be a sufficiently small neighbourhood of zy such that U C UNR". Let
xz € U and we assume that the regular projection corresponding to x is standard
R” — R""L. Let p € X be one of the points nearest to z. Let p’ = w(p), 2’ = 7(x),
and let U’ = n(U). If 2’ = p’ then dist(z, X) = dist¢(x, X). So, we assume z’ # p/
and consider the segment p’z’. Starting from p we lift p’2’ to a smooth curve v on
X until we reach a point s € Y or s of the form (2, A;(0)) for some i =1,...,7. We
denote 7(s) by s’. It remains to prove that

(2) |z —s| < Clz —pl,

for a universal constant C'. This follows from Remark 2.5 of [7]. More precisely, if
p € Se/(x,0), where €' is given by Remark 2.5 of [7], the length of v is estimated by
C'lp’ — §'|. Hence
v —s| <le—pl+lp—s| < |o—pl+ ' = | < |z —p| + C'lp' — 2|
and consequently (2) follows. If s ¢ S./(z,0) then
[z —s| < Cla’ — [ < Cla’ = p'| < Cla = pl.

If s € Ser(x,0) and p ¢ Se/(z,0), then we may find » € v N Fr(Se (2,0)) and by the
above

|z —s|<|z—r|+|r—s| <N’ —r'| <2’ —p'| < Clz —p|. O

Lemma3 — Let X be a semi-analytic subset of R™, dim X < n — 1, and zy € R".
Then there exist a finite number of vectors &1,...,En € R™ and constants C,e > 0
such that for a sufficiently small neighbourhood U of xo and every x € U there is §;
such that X NU C R™ \ S (z,&;). In particular

dist(z, X) < Cmax{dist(r(¢;) (), 7(&) (X N U))}.
J
Proof. — Tt is sufficient to prove the lemma for x¢ € X. Complexify R™ and consider
complex hypersurfaces Xl,Xg in an open neighbourhood U of o in C" such that

XnU c X1 ﬁXg and dlm(c X1 ﬁXg = n—2. Then the lemma follows from Proposition
2.1 of [7] applied to X; U Xo. O
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INTEGRABILITY OF SOME FUNCTIONS ON SEMI-ANALYTIC SETS 247

Now we consider the following situation. Let X be a compact semi-analytic subset
of R™ and dim X = n. Let

X'cX'c-ocX"lcxr=X

be a family of semi-analytic subsets of X such that dim X* < i for each i. For
any N € N, C > 0and j =0,...,n — 1, consider the following subsets of U =
X~ (Fr(X)uXxnh

Un.cj={z€U|d;(z) < Cldj1 ()"},
where d;(z) = dist(z, X7). (If X; = @ then we mean d; = 1).

Lemma4 — Forany NN’ >1,C,C' >0,7>0,s=0,...,n— 1, the function
ds v
Ay - ()
[Tj=o dj(x)
is integrable on Un,c,s Uj>S Unicrj-

Proof. — Induction on n = dim X.

Since X is compact, it suffices to prove the lemma locally, that is in a neighbourhood
of each point of X. Fix o € X. Assume that X is contained in a sufficiently small
neighbourhood V' of xy. We apply Lemma 2 to X" ! and Lemma 3 to X"~ 2 at x.
We can do it simultaneously and obtain a finite number &, ..., &N of vectors and a
semi-analytic subset Y of X, dimY < n — 1, such that for every € V (shrinking V'
if necessary), either for some &;

(3) diste, (z, X" 1) < Cdp—1 ()

(4) and d,(z) < Cdist(m(&;)(x), 7(£5) (X)),
for each r=0,1,...,n—2, or

(5) dist(z,Y) < Cdp—1(2),

for some C' > 0. Indeed, we can find complex hypersurfaces X 1 X, ofa neighbourhood
fj of zg in C™ such that Xnilﬂﬁ C )}:1, Xnigﬂfj C Xlﬂ)?g, dimc()?lﬂ)?g) <n—1.
Then &1, ...,&n given by Corollary 2.4 of [7] applied to (X; U X, x) satisfies the
properties claimed above (see also the proofs of Lemmas 2 and 3).

Apply again Lemma 3 to Y U X"~ 2 at z and add the obtained vectors to the set
&1, ...,&n. In conclusion, for each x € V there is &; so that the inequality (4) holds
forr=0,...,n—2and

(6) dist(z,Y) < Cdist(m(&;)(), 7(§;)(Y))
(1) Se(z,)NY =@.

Furthermore, we may require that for each &;, m(§;))|xn»-1 is finite and =(&;)(Y),
m(&)(X"), 1 =0,...,n, are semi-analytic subsets of R"~! (see [2]).
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Fix £ = ¢, for a moment and assume that 7 = 7(&;) is the standard projection.
Denote T' = (X)) and T = n(X") for r < n — 1. Let W be the subanalytic subset
of Un,c,s \ Ujss Unv,cv,; consisting of such « that (3) and (4) hold with §; = ¢.

Consider first the case s <n — 2. Then

U/ n W(W) C U]I\LC,S AN U U]IV/’C/’J',

j>s
where U',Uj ¢4, --- are constructed in an analogous manner for the family 79 C

T' C --- Cc T" ! (the constants C’,C, N, N’ may be different). Denote dist(2’,T")
by d.(z'). If z € W then

(8) diste (2, X" 1) > dy_1(2) > Clds ()] "9 > Cld, (r(©))N.

Fix 2/ € U’. The set W N7 1(2'), as subanalytic, consists of a finite union of
segments and their number is uniformly bounded. Therefore, by (8),

9) / [diste(z, X" )7t < C max )|1ndist5(x7X”*1)| < C'nd(z")|.
m=1(z") zem—1(x/

Note that, by construction, dim(T'\U’) < n—1, so dim(W ~7~1(U’) < n and hence

W . m=1(U’) is of measure 0 (see, for instance, [2]). Consequently,

/w Alw) < C/Tr(W)ﬂU’ (% /Trl(wf)mw[diStg(%an)]l)

Jj=0 "
cof lErimde)
h oo 122 d(a)

Jj=0 "Jj

and the last integral is finite by the inductive hypothesis. A similar situation occurs
if we consider the subset W of Un,c,s \ U~ Un,c,; where (5)-(7) hold. By (7) the
entire length of 7=!(2’) N W is smaller than C dist(2’,7(Y")). Consequently

/ [diste (z, X" )] 7! < C/ [dist(z, V)] < C,
1 (z")NW 7z )NW

and we prove the integrability of A on W in the same way as above.

Consider now the case s =n — 1. Let W be the subset of Un,¢c,n—1 for which (3),
(4) hold. For 2’ € U’ the set 7~ 1(2') N W consists of a finite number of segments and
their number is uniformly bounded. Consequently

/ diatat<c [ diste (o, X))
1 (z")NW T (x/)NW

<C max (d,_1(2)) <C(d,_5(z" )N,

-2
zeT—1(z’) "
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Hence

framse ] (Taen [, aoer)

, ()}
<o v T2 d (o)

The last integral is finite on |J!_ (UN cs NUjss Un os) since d;, 2( ") < d(z), for
each s =0,...,n—2, and by the inductive hypothesis. On U’ \ |J\_, 0 UN c.s 1t 1s also
finite, since all (d))~! are bounded.

For the subset W C Un, ¢ n—1 consisting of the points where (5)-(7) hold, we have

/ dp 1 ()]~ < C [dist(z, Y)]7~! < (dist(2/, (V)"
(") NW (") NW

So we must add 7(Y’) to 72 and repeat the above procedure. This ends the proof.
O

Now we assume X C R", dim X = k, to be L-regular in the sense of Definition
3.2 of [7]. In particular, X is the graph of a mapping F : U — R"~* where U is an
L-regular subset of R*, U open in R*, and the partial derivatives of the first order of
F' are uniformly bounded on U. The regular part X,.; of X equals the graph of F’
restricted to U. We denote 0F;/0z;, fori=1,...,n—kand j=1,...,k, by F;;. Let

ey,...,e, be the standard basis of R”. Then
e+ DF(x)e; ji=1,...,k
filz. Fla)=1{" .
—grad Fj4, +e; forj>k

is a basis of R™ for each x € X,¢s. The first k vectors are tangent to X,.,. Let
wi; be the connection matrix for this frame. From the structural equation, see [4]
Appendix C,

n
(10) Qoar = — Z Warp AN Wha + Qg
p=k+1

where €, are the curvature matrices for X,z and R™. Given vector v € R", we
define a vector field V(z, F(z)) = (v, DF(x)v) on Xyeg. Then

1) sV < 30D (vl + D]+ 1),
7j=1
for some constant C.
Our next purpose is to estimate D(F;;)(x)v for various vectors v. By Lemma 4.5
of [7], or more generally by [9] Proposition 3.1, there exists a stratification S of U,
such that for any Lipschitz vector field w on U tangent to the strata of S

(12) |DE;j(z)w(z)| < CL|Fy; (),
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where L is a Lipschitz constant of w and C' is a universal constant. Denote d;(x) =
dist(z, S%).

Lemma5 — Let S be a Lipschitz stratification of a semi-analytic set X (in the sense
of [7]). Then for some positive constant C' and any q € S’ there exist Lipschitz
S-compatible vector fields vy, ...,vj—1 on S7 such that

(1) v; has the Lipschitz constant C[d;(q)]™* for alli=1,...,5 — 1,

(2) vo(z),...,vj_1(x) is an orthonormal basis of T,S7.

(here we mean d. = 1 for r < 1, where | satisfies S' # @, S'™' = @.)

Proof. — It is sufficient to show that, for ¢ = 0,1,...,5 — 1, there exists an -
dimensional linear subspace V' of TqSo'j such that for each v € TqSO’j one can find a
Lipschitz S-compatible vector field w on S7 with the Lipschitz constant C[d;(q)] ™! |v]
and w(q) = v. We shall show it by induction on j. For j = [, it is a simple conse-
quence of [7] Proposition 1.5. Assume that the lemma is true for all j smaller than s.
Let ¢’ € S*~1 satisfies

3
lg—dq'| < 3 ds-1(0)-

Let ¢’ € Sk, Then, of course, k < s. Take i such that k¥ < i < s. Then as V' we
may chose any i-dimensional subspace of TqS‘S. Indeed, take any v € Tqé’j . By (i) of
Proposition 1.5 of [7] we may construct a Lipschitz S-compatible vector field w on S*
such that w(q) = v, w|gs—1 =0 and with the Lipschitz constant C[d;(q)]~}|v].

Let i < k. By the inductive hypothesis we can find an i-dimensional vector subspace
Wi of Tq/So”C with the desired properties for ¢’. Fix w € W', |w| = 1. Let w be a
S-compatible Lipschitz vector field on S*, with the Lipschitz constant C[d;(¢')]~|w],
w(¢') = w. By (i) of Proposition 1.5 [7], we may extend w on S° in such a way
that w(q) = P,(w(¢’)) (and, of course, w remains Lipschitz and S-compatible with a
Lipschitz constant L = C[d;(¢')]*|w|). If additionally |g — ¢’| < L', then

[w(q)| > [w(g")| - w(q") —w(q)] > Flw| = 3,
and d;(q) < di(¢') + |¢ — ¢'| < Cd;(¢’). Hence V' = P,W* has the desired properties.
Assume |g — ¢/| > L1 Then

ds—1(q) = Cdi(q'),

for a constant C' > 0 and we may suppose C < % Therefore
ds—1(q) = Cdi(q) — Clg — ',

and consequently

ds—1(q) = Cdi(q),

for some constant C > 0. Hence, as in the case ¢ > k, any i-dimensional subspace of
T,57 has the desired properties. O
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Corollary 6. — Let U, F, and S be as above. Then
k—1 .
(13) |P(Q)(z, F(x))| < C ] (dj(z, F(x))) ",
§=0

for all x € U and some constant C.
Proof. — It follows easily from Lemma 5, (10), and (11). O

Our next step is to use Lemma 4. In order to be able to do it we strengthen the
estimate (13).

Lemma7 — Let U, F be as above. Then there exist an L-stratification S of U satis-
fying (12) for all F;; and Lipschitz S-compatible vector fields w, a positive integer N,
and constants C > 0, 0< 6 <1, 0 <y <1, such that for any r =0,...,n—1 and
q € Un,c,r there are w € R™, lw| =1, and ¢’ € ST which satisfy

(14) lg —q'| < Cdj(q),
(15) | Py w| <6,
(16) |DF;(q)w| < C(dr-1(a))" ™,

fori=1,....n—k;j=1,...,k (for j —1 <l we mean d;_1 =1).

Proof. — To simplify the notation, we assume diam U <
Un,1,r. Note that Uny D Uni for N’ > N.
Let S be an L-stratification of U satisfying Lemma 5 for all F}; and the above

1 and consider only Uy, =

additional conditions of Lemma 7 for all » > s. We construct an L-stratification
8’ of U satisfying the conditions of Lemma 5 for all F;; and the above additional
conditions for all » > s. The first step is to enlarge S°~! in such a way that the
extra conditions hold for Uy s. Note that if S*~1 is bigger, Uy ; is smaller. By [7]
Proposition 3.5, S* is the union of L-regular sets X* defined by g; : V — R*~* (as in
Definition 3.2 of [7]), in some system of coordinates. We add all §X; to S*~!. Fix X;
for a moment. Assume that the associated system of coordinates is standard and
7 : RF — R* is the standard projection. Let U; = 7~*(V;) N U’. Consider on U; x V,
where V = {(0,v) € {0} x R¥=* € R® x RF=% | |u| = 1}, the semi-analytic function

n—k k—s

Bla,0) =D > o For(@)? |z = (m(x), gi(m(x)) >,
i=1 r=1
The graph of 3 is not only a semi-analytic subset of U; x V x R, see [7] Lemma 2.3,

but also it is semi-algebraic in direction V' x R. By Lojasiewicz’s version of Tarski-
Seindenberg Theorem [3], the graph of

a(z) = Invin B(x,v)
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is semi-analytic and semi-algebraic in direction R. Let 7 : R¥ x R — RF denote the
standard projection. We shall prove that the dimension of

W = X; N m(grapha ~ RF x {0})

is smaller than s.
Suppose, by contradiction, that dim W = s. The sets

Xi(e)={z €U |a(z) 2e}nNX;

are semi-analytic and |J, -, X;(1/n) = W, so by Baire’s theorem dim X;(¢) = s for
e > 0 sufficiently small (if dim X;(e) < s then X;(¢) is closed and nowhere dense
in X;). Consider a semi-analytic set Y = {z € U;; a(x) > ¢/2}. Then X;(e) is
contained in the closure of Y. Choose p = (p/,¢:(p')) € Xi(e) such that X;(¢) is
near p a nonsingular s-dimensional analytic manifold. We can assume that the pair
(Y, X;(e)) satisfies Whitney’s conditions near p, see [3]. In particular, p € 7=1(p/)NY
and therefore by the curve selection lemma there exists an R-analytic curve ~(¢) :
[0,6) — 7= 1(p')NY such that v(0) = p and 7(0,e) C Y. Replacing eventually ¢
by t", for some r € N, we can assume that F' oy and all Fj; o v are analytic. Put
w(t) =4(t)/[7(t)]. Then, for f = Fi;,
2
e ST Ot

> [Df(y(@)w(t)* (1) — pl* = CB( (1), w(t)).
Therefore, lim;_.o a(y(t)) = 0 and this contradicts our assumption.

So, we have dimW < s. Add W to S~ ! and extend o to a continuous function
on U; U (X; ~ S*~1) putting a|x, gs—1 = 0. By Lojasiewicz Inequality, [3], there
exists M € N such that a(z)(ds_1(z))™ can be extended to a continuous function on
U; U X, vanishing on X;. We apply the Lojasiewicz Inequality again to find constants
C, a satisfying
(17) o) (ds_1 (x)M < C[dist(z, X;)]*
for all x € U;. Take q € Uy s (for N sufficiently large, N will be specified later). Let
p € S° satisfy

3
la = pl < 5ds()-
If p € X; and N sufficiently large, then, since X; is L-regular, ¢ € U; and the point

/

¢ = (m(q), 9i(7(q))) satisties

(18) lg—¢'| < Cdy(q),

for some constant C' not depending on ¢, ¢, X;. In particular, then
dist(q, X;) < Cds(q).

Therefore, (17) follows

(19) a(@)(de—1 (@)™ < C(ds(a))".
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By the assumption that diam U < %, we can assume C' = 1 in (19). We also require
N > 2M /a. Then, because q € Un 5, (19) gives

a(q) < (d(q))*/?.
This and (18) give (14) and (16), for some w satisfying (15) (If N is large, then
q € S%). To complete the proof we find an L-stratification of S*~! compatible with
the initial stratification. O

Corollary 8. — Let F, U, and S be as in Lemma 7. Then, for some N € N, ~,C > 0,
and each j =0,...,n—1

k—1
|P(Q)(g, F ()] < Cld (@) [T (@),
7=0

forallqe Unc,;.

Proof. — Assume, as above, that diam X < % and consider only the sets Uy ; =
Un,1,j. Fix N satisfying the assertion of Lemma 7. Let ¢ € Uy s and q,w, 6 be given
by Lemma 7. Let vg,...,v,x—1 be the Lipschitz vector fields given by Lemma 5 for S

and ¢. If v is any combination of vy, ...,vs—1 and |v(q)| = 1, then
!
PLw <= |P3(v(q) —v(d <CM.
[Py v(@)l <= 1Py (v(a) —v(@)l < O =5
If N is sufficiently large then
1-946
Phu) < 22

So the angle between W and the space generated by vo(q), .. .,vs—1(q) is grater than
some small but positive constant. This, Lemma 5, (10) and (11) give the desired
result. O

Proof of Proposition 1. — Because X is compact it is, by [7] Propostion 3.5 a union
of L-regular sets. Thus we may assume that X is L-regular and the proposition follows
from Corollary 8 and Lemma 4. O

References

[1] A. DuBsoN — Calcul des invariantes numériques des singularités et applications, Preprint,
Bonn, 1981.

[2] H. HIRONAKA — Introduction to real-analytic sets and real-analytic maps, Quaderni dei
Gruppi di Ricerca Matematica del Consiglio Nazionale delle Ricerche, Istituto Matem-
atico L. Tonelli dell’Universita di Pisa, 1973.

[3] S. LoJAsiEwICZ — Ensembles semi-analytiques, preprint, I.H.E.S.; 1965.

[4] J. MILNOR & J. STASHEFF — Characteristic Classes, Annals of Mathematics Studies,
vol. 6, Princeton University Press, Princeton, NJ, 1974.

[6] T. MOSTOWSKI — Lipschitz equisingularity, Dissertationes Math., vol. 243, PWN, War-
saw, 1985.

SOCIETE MATHEMATIQUE DE FRANCE 2005



254 A. PARUSINSKI

[6] , Lipschitz stratifications and Lipschitz isotopies, in Geometric Singularity Theory
(S. Janeczko & S. Lojasiewicz, eds.), vol. 65, Banach Center Publications, Warszawa,

2004, p. 179-210.

[7] A. PARUSINSKI — Lipschitz properties of semianalytic sets, Ann. Inst. Fourier (Grenoble)
38 (1988), p. 189-213.

8] , Lipschitz stratification, in Global Analysis in Modern Mathematics, Proceedings
of a symposium in Honor of Richard Palais’ Sizties Birthday (K. Uhlenbeck, ed.), Publish
or Perish, Houston, 1993, p. 73-91.

[9] , Lipschitz stratifications of subanalytic sets, Ann. scient. Ec. Norm. Sup. 4° série

27 (1994), p. 661-696.

A. PARUSINSKI, Département de Mathématiques, UMR CNRS 6093, Université d’Angers, 2, bd.
Lavoisier, 49045 Angers cedex 01, France e E-mail : adam.parusinski@univ-angers.fr
Url : http://math.univ-angers.fr/~parus/

SEMINAIRES & CONGRES 10



