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THE FULTON-JOHNSON CLASS, I
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Abstract. — For a singular hypersurface X in a complex manifold we prove, under
certain conditions, an explicit formula for the Fulton-Johnson classes in terms of
obstruction theory. In this setting, our formula is similar to the expression for the
Schwartz-MacPherson classes provided by Brasselet and Schwartz. We use, on the
one hand, a generalization of the virtual (or GSV) index of a vector field to the
case when the ambient space has non-isolated singularities, and on the other hand
a Proportionality Theorem for this index, similar to the one due to Brasselet and
Schwartz.

Résumé(Une description explicite de la classe de Fulton Johnson, I). — Pour une hyper-

surface singulière X d’une variété complexe, et dans certaines conditions, nous mon-
trons une formule explicite pour les classes de Fulton-Johnson en termes de théorie
d’obstruction. Dans ce contexte notre formule est similaire à l’expression des classes
de Schwartz-MacPherson donnée par Brasselet et Schwartz. Nous utilisons, d’une
part, une généralisation de l’indice virtuel (ou GSV-indice) d’un champs de vecteurs
au cas où l’espace ambiant a des singularités non-isolées et, d’autre part, un Théorème
de Proportionnalité pour cet indice, similaire à celui dû à Brasselet et Schwartz.

1. Introduction

There are several different ways to generalize the Chern classes of complex man-

ifolds to the case of singular varieties. Among them are the Schwartz-MacPherson

classes [5, 16, 20] and the Fulton-Johnson classes [8, 9]. Each one of them is defined

in a relevant context and has its own interest and advantages. The construction in

[5, 20] provides a geometric interpretation of the Schwartz-MacPherson classes via
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obstruction theory. This approach is very useful for understanding what these classes

measure.

The motivation for this work is to give such a geometric interpretation of the Fulton-

Johnson classes, in the spirit of [5, 20]. Here we prove that if X ⊂ M is a singular

complex analytic hypersurface of dimension n, defined by a holomorphic function

on a manifold M , then the Fulton-Johnson classes can be regarded as “weighted”

Schwartz-MacPherson classes.

In order to explain our result more precisely, let us consider a complex analytic

manifold M of dimension m, and a compact singular analytic subvariety X ⊂ M .

Let us endow M with a Whitney stratification adapted to X [24], and consider a

triangulation (K) of M compatible with the stratification. We denote by (D) a

cellular decomposition of M dual to (K). Let us notice that if the 2q-cell dα of (D)

meets X , it is dual of a 2(m− q)-simplex σα of (K) in X .

We recall that in her definition of Chern classes, M.H. Schwartz considers particular

stratified r-frames vr tangent to M , called radial frames. They have no singularity

on the (2q − 1)-skeleton of (D), with q = m− r + 1, and isolated singularities on the

2q-cells dα, at their barycenter {σ̂α} = dα ∩ σα. Let us denote by I(vr, σ̂α) the index

of the r-frame vr at σ̂α.

The result of [5] tells us that the Schwartz-MacPherson class cr−1(X) of X of

degree (r − 1) is represented in H2(r−1)(X) by the cycle
∑

σα⊂X,
dim σα=2(r−1)

I(vr, σ̂α) · σα

In this article we prove:

Theorem 1.1. — Let us assume that X ⊂M is a hypersurface, defined by X = f−1(0),

where f : M → D is a holomorphic function into an open disc around 0 in C. For each

point a ∈ X let Fa denote a local Milnor fiber, and let χ(Fa) be its Euler-Poincaré

characteristic. Then the Fulton-Johnson class cFJ
r−1(X) of X of degree (r − 1) is

represented in H2(r−1)(X) by the cycle

(1.1)
∑

σα⊂X,
dim σα=2(r−1)

χ(Fbσα
)I(vr , σ̂α) · σα

On the other hand, the question of understanding the difference between the

Schwartz-MacPherson and the Fulton-Johnson classes has been addressed by sev-

eral authors, and this led to the concept of Milnor classes, defined by µ∗(X) =

(−1)n+1
(
c∗(X) − cFJ

∗
(X)

)
, n = dimX , see for instance [1, 3, 19, 25]. Let us define

the local Milnor number of X at the point a ∈ X by µ(X, a) = (−1)n+1(1 − χ(Fa));

it coincides with the usual Milnor number of [17] when a is an isolated singularity

of X . It is non zero only on the singular set Σ of X . We have the following immediate

consequence of Theorem 1.1:
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Corollary 1.2. — Under the assumptions of Theorem 1.1, the Milnor class µr−1(X)

in H2(r−1)(X) is represented by the cycle

(1.2)
∑

σα⊂Σ
dim σα=2(r−1)

µ(X, σ̂α) I(vr , σ̂α) · σα

One of the key ingredients we use for proving the Theorem 1.1 is a Proportionality

Theorem for the index of vector fields and frames on singular varieties, similar to the

one given in [5]. In order to establish it we were led to defining the local virtual index

at an isolated zero of a smooth vector field on a complex hypersurface with (possibly)

non-isolated singularities. This is a generalization of the indices defined previously in

[4, 12, 15]. We call it “local” virtual index to distinguish it from the “global” virtual

index at a whole component of the singular set, as studied in [4]

We notice that for hypersurfaces with isolated singularities one also has the homo-

logical index of [11], which coincides with the index in [12]. It would be interesting to

know whether our generalized virtual (or GSV) index coincides with the generalized

homological index in [10] when the ambient space has non-isolated singularities.

Our formulae can also be obtained in another way, using the MacPherson mor-

phism c∗ (see [16]) together with the Verdier specialization map of constructible

functions [23], since one knows (see for instance [19]) that the Fulton-Johnson and

the Milnor classes are image by the morphism c∗ of certain constructible functions.

The advantage of our construction here is to provide a geometric and explicit point

of view, which can be used to study the general case. This is being done in [6].

2. The local virtual index of a vector field

Let (X, 0) be a hypersurface germ in an open set U ⊂ C
n+1, defined by a holomor-

phic function f : (U , 0) → (C, 0). Let us endow U with a Whitney stratification {Vi}

compatible with X and let us consider the subspace E of the tangent bundle TU of U

consisting of the union of the tangent bundles of all the strata.:

(2.3) E =
⋃

Vi

TVi

A section of TU whose image is in E is called a stratified vector field on U .

Let v be a stratified vector field on (X, 0) with an isolated singularity (zero) at

0 ∈ X . We want to define an index of v at 0 ∈ X which coincides with the GSV -

index of [12] (or the virtual index in [4]) when 0 is also an isolated singularity of X .

For this, let us consider a (sufficiently small) ball Bε around 0 ∈ U and denote by T

the Milnor tube f−1(Dδ) ∩ Bε, where Dδ is a (sufficiently small) disc around 0 ∈ C.

We let ∂T be the “boundary” f−1(Cδ) ∩Bε of T , Cδ = ∂Dδ.

Let r be the radial vector field in C whose solutions are straight lines converging

to 0. It can be lifted to a vector field r̃ in T , whose solutions are arcs that start in
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∂T and finish in X ; since the corresponding trajectories in C are transversal to all

the circles (Cη) around 0 ∈ C of radius η ∈]0, δ[, it follows that the solutions of r̃ are

transversal to all the tubes f−1(Cη). This vector field r̃ defines a C∞ retraction ξ

of T into X , with X as fixed point set. The restriction of ξ to any fixed Milnor fibre

F = f−1(t0)∩Bε, t0 ∈ Cδ, provides a continuous map π : F → X , which is surjective

and it is C∞ over the regular part of X . We call such map ξ, or also π, a degenerating

map for X (this was called a “collapsing map” in [14]). Since the singular set Σ of X

is a Zariski closed subset of X , we notice that we can choose the lifting r̃ so that

π−1(Xreg) is an open dense subset of F , where Xreg is the regular part Xreg = XrΣ.

We want to use π to lift the stratified vector field v on X to a vector field on F .

Firstly, let us consider the case where X has an isolated singularity at 0. The map π

is a diffeomorphism restricted to a neighbourhood N ⊂ F of F ∩ ∂Bε. Then v can

be lifted to a non-singular vector field on N and extended to the interior of F with

finitely many singularities, by elementary obstruction theory. By definition [12], the

total Poincaré-Hopf index of this vector field on F is the GSV-index of v on X .

We want to generalize this construction to the case when the singularity of X at 0

is not necessarily isolated. Let us consider (X, 0) as above, a possibly non-isolated

germ. We fix a Milnor fibre F = f−1(to) ∩ Bε for some to ∈ Cδ. Given a point

x ∈ F , we let γx be the solution of r̃ that starts at x. The end-point of γx is the

point π(x) ∈ X . We parametrize this arc γx by the interval [0, 1], with γx(0) = x

and γx(1) = π(x). We assume that this interval [0, 1] is the straight arc in C going

from to to 0, so that for each t ∈ [0, 1[, the point γx(t) is in a unique Milnor fibre

Ft = f−1(t) ∩ Bε. The family of tangent spaces to Ft at the points γx(t) defines a

1-parameter family of n-dimensional subspaces of Cn+1, {TFt}γx(t). By [18] we may

assume that the Whitney stratification {Vi} satisfies the strict Thom wf -condition.

This implies that for each trajectory γx(t) the corresponding family {TFt}γx(t) has a

well defined limit space Λπ(x), i.e. it converges to an n-plane Λπ(x) ⊂ Tπ(x)(U) when

t → 1. Hence one has an identification TxF ∼= Λπ(x) which defines an isomorphism

of vector spaces. Moreover, since wf implies the Thom af -condition one has that the

limit space Λπ(x) contains the space Tπ(x)Vi tangent to the stratum that contains π(x).

Therefore the vector v(π(x)) can be lifted to a vector ṽ(x) ∈ TxF . This vector field ṽ

is non-singular over the inverse image of Xreg, which is open and dense in F . Also ṽ

is non-zero on a neighbourhood of F ∩ ∂Bε, since v is assumed to have an isolated

singularity at 0. Furthermore, by the wf -condition the vector field ṽ is continuous, so

it has a well defined Poincaré-Hopf index in F . The wf -condition also implies that

the angle between v(π(x)) and ṽ(x) is small. That is, given any α > 0 small, we can

choose δ sufficiently small with respect to α so that the angle between v(π(x)) and

ṽ(x) is less than α. This implies that if we replace ṽ by some other lifting of v, the

induced vector fields on F are homotopic. Since f induces a locally trivial fibration
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over the punctured disc Dδ r 0, then the homotopy class of ṽ does not depend on the

choice of the Milnor fibre. So we obtain:

Proposition 2.1. — The Poincaré-Hopf index of ṽ in F depends only on X ⊂ U and

the vector field v. It is independent of the choices of the Milnor fibre F as well as

the liftings involved in its definition. We call this integer the local virtual index of v

on X at 0, and we denote it by Iv(v, 0, X).

In other words, the index Iv(v, 0, X) is the obstruction Obs(ṽ, T ∗F, π−1(Bε)) to

the extension of the lifting ṽ as a section of TF without singularity on π−1(Bε(0)).

Let us consider now the case where w is a stratified vector field transversal to the

boundary Sε = ∂(Bε) of every small ball Bε, pointing outwards; it has a unique sin-

gular point (inside Bε) at 0. The Poincaré-Hopf index of w at the point 0, denoted

by I(w, 0), is equal to 1, computed either in M or in the stratum Vi(0) of X contain-

ing 0 (if the dimension of Vi(0) is more than 0). The lifting w̃ is a section of TF on

π−1(Sε) = F ∩ Sε, pointing outwards π−1(Bε) = F ∩Bε.

Let us denote by T ∗F the fiber bundle over F which is TF minus the zero section.

The obstruction to the extension of w̃ as a section of T ∗F inside π−1(Bε) is equal to

the Euler-Poincaré characteristic of the Milnor fiber, i.e.

(2.4) Obs(w̃, T ∗F, π−1(Bε)) = χ(F ).

We obtain:

Proposition 2.2. — If w is a stratified vector field pointing outwards the ball Bε along

its boundary Sε = ∂(Bε), then its local virtual index equals the Euler-Poincaré char-

acteristic of the Milnor fiber:

Iv(w, 0, X) = χ(F ) = 1 + (−1)nµ(X, 0).

In the sequel, for any vector bundle ξ over a space B, we will denote by ξ∗ the

bundle over B which is ξ minus its zero section.

3. Proportionality Theorems

Let us consider again a stratified vector field v defined on the ball Bε ⊂ U , with

a unique singularity at 0. We assume further that v is constructed by the radial

extension process of M. H. Schwartz [20]. This means, essentially, that if Vj is any

stratum containing Vi(0) in its closure, then the vector field v is transversal to the

boundary of every tubular neighbourhood of Vi(0) in X , pointing outwards. The

Poincaré-Hopf index of v, computed in Vi(0) and denoted I(v, 0), can be any integer,

and the fact that v is constructed by radial extension implies that I(v, 0) equals the

Poincaré-Hopf index of v computed in U . We shall call v a vector field constructed

by radial extension, or simply a radial vector field if this does not lead to confusion,

as in Theorem 3.1 below. If the stratum Vi(0) has dimension 0, this implies that v is
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actually radial and its local virtual index equals χ(F ), by the proposition above. In

the next section we will show that, more generally, we have:

Theorem 3.1(Proportionality Theorem for vector fields). — Let v be a radial vector

field. Then the local virtual index of v in X, Iv(v, 0, X), is proportional to the

Poincaré-Hopf index I(v, 0) of v in the ambient space Bε:

Iv(v, 0, X) = χ(F ) · I(v, 0).

Let us recall some basic facts about the notion of radial frames, as defined by

M.H. Schwartz [21], in order to generalize the notion of radial vector fields. A radial

r-frame is a set vr = (v1, v2, . . . , vr) of r stratified vector fields constructed by the

M.H. Schwartz method of radial extension.

Let us consider a Whitney stratification of U compatible withX and a triangulation

(K) of U compatible with the stratification. Let us consider a cell decomposition (D)

of U dual of (K). Each cell of (D) meets the strata transversally. The union of cells

which meet X is a tubular neighbourhood of X in U . A k-cell dα meeting X is dual

of a (2(n+ 1) − k)-dimensional K-simplex σα in X . Let us denote by T rU the fiber

bundle associated to TU whose fiber at x ∈ U is the set of (complex) r-frames in TxU .

A section of T rU on a subset A of U is an r-frame tangent to U over A.

The general obstruction theory (see [22]) tells us that the obstruction dimension

to the construction of an r-frame tangent to U is equal to 2q = 2((n+ 1)− r+ 1). In

the same way, on Xreg, the obstruction dimension is 2p = 2(n−r+1) and on V 2s
i it is

equal to 2e = 2(s− r + 1). This implies that we can construct a stratified r-frame vr

with isolated singularities on the 2q-cells d2q
α of a cellular decomposition (D) of U ,

with index I(vr, T rU , d2q
α ) in the barycenter {σ̂α} = d2q

α ∩ σα.

Since the r-frame is stratified, we can also consider the index I(vr|Vi
, T rVi, d

2q
α ∩Vi)

of its restriction to the stratum Vi containing σ̂α. The main property of the radial

frames [21] is that these two indices are equal:

I(vr, T rU , d2q
α ) = I(vr|Vi

, T rVi, d
2q
α ∩ Vi).

We denote this common index by I(vr , σ̂α). The method above for lifting a vector

field from X to a local Milnor fiber works for frames and we have:

Theorem 3.2(Proportionality Theorem for frames) . — Let vr be a radial r-frame with

isolated singularities on the 2q-cells d2q
α with index I(vr, σ̂α) in the barycenter {σ̂α} =

d2q
α ∩ σα. Then the obstruction to the extension of ṽr as a section of T rF on β̃2p =

π−1(d2q
α ∩X) is

Obs(ṽr , T rF, β̃2p) = χ(Fbσα
) · I(vr , σ̂α).
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4. Proof of the Proportionality Theorems

The proofs of Theorems 3.1 and 3.2 are analogous to the proof of Théorème 11.1

in [5]. We first give some topological properties of the Milnor fiber. Then we prove

independence and proportionality properties for the obstructions in question. We will

prove Theorem 3.1 in section 4.4 and Theorem 3.2 in section 4.5.

4.1. Topological properties of the Milnor fiber. — We will denote by {Vi} the

strata of a stratification of X ∩Bε, restriction of a Whitney stratification of U to X ,

and we denote by {Wj} a Whitney stratification of F such that:

(i) π : F → X ∩Bε is a stratified map,

(ii) for every j, the restriction of π to Wj is a map of constant rank from Wj to a

stratum Vi of X .

Such stratifications exist by [13]. We notice that each π−1(Vi) is union of strata

{Wj}.

In the case of isolated singularities, the construction of “polyèdres d’effondrement”

by Lê [14] allows us to prove that there are triangulations of U and F compatible with

the previous stratifications, and such that π is a simplicial map. For non necessarily

isolated singularities, let us consider a triangulation (K) of X compatible with the

stratification {Vi}; as the restriction of π to each stratum {Wj} of F has constant

rank, the intersection of the inverse image of a simplex of (K) with the strata Wj can

be decomposed into cells σ̃β satisfying the following proposition:

Proposition 4.1. — There is a simplicial triangulation (K) of U compatible with the

stratification {Vi} and a cellular decomposition (K̃) of F compatible with the strati-

fication {Wj}, such that for each cell σ̃β of (K̃), there is a simplex σα of (K) such

that π(σ̃β) = σα and the restriction of π to each open cell σ̃β has constant rank.

Let us denote by (∆) a barycentric subdivision of (K) and by (D) the cell decom-

position dual of (K) defined by (∆). The intersection of a (D)-cell d`
α with X is a

(∆)-subcomplex of dimension ` − 2, denoted by δ`−2
α . Using [5] one can construct a

cell decomposition (D̃) of F dual of (K̃) satisfying the following property:

Proposition 4.2([5], Proposition 3). — Let us consider a (K)-simplex σα, its dual cell

d`
α and δ`−2

α = d`
α ∩ X. Let us denote by {σ̃β}β∈Bα

the set of (K̃)-cells such that

π(σ̃β) = σα and dimπ(σ̃β) = dim(σα). Let us denote by d̃β the dual cell of σ̃β in (D̃).

One has:

Closure of π−1(δ`−2
α ) = Closure of

⋃

β∈Bα

d̃β

We can suppose that the barycenter σ̂α of the cell d2n+2
α in the cellular decompo-

sition (D) corresponds to the point 0 in U , open subset in Cn+1. Let us denote by 2s

the dimension of Vi, by b2s a small euclidean ball centered at 0 in Vi and by D2n+2−2s
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a small disc, transverse to b2s. The tube b2n+2 = b2s ×D2n+2−2s is homeomorphic to

a (2n+ 2)-ball, neighbourhood of 0 in the dual cell d2n+2
α . The intersection

β2n = b2n+2 ∩X

is not always homeomorphic to a ball, but it is contractible to 0. One defines

∂β2n = ∂b2n+2 ∩X.

Let us denote

β̃2n = π−1(β2n) and ∂β̃2n = π−1(∂β2n)

in the Milnor fiber F .

Proposition 4.3. — Let x ∈ V 2s
i . Then dimπ−1(x) 6 2(n − s − 1) for all x ∈ b2s.

More precisely:

dimπ−1(x) =

{
0 if s = n

2d 6 2(n− s− 1) if s 6 n− 1.

Proof. — Using the stratifications of F and X ∩ Bε, we see that π−1(Vi) is a union

of strata of F such that on each of them the restriction of π has constant rank. The

strata of π−1(Vi) of maximal dimension have dimension dim(Vi) + 2d. Moreover, as

π−1(Vi) is an analytic subspace of F contained in the closure of π−1(Xreg), one has

dimπ−1(Vi) = dim(Vi) + 2d < dim π−1(Xreg) = 2n

and the result follows.

One obtains that dimπ−1(b2s) 6 2(n− s− 1) + 2s = 2(n− 1). On the other hand,

Proposition 4.1 implies that dim β̃2n 6 2n. As β2n ∩ Xreg is not empty, one gets

dim β̃2n = 2n.

4.2. The obstruction depends only on the index. — In this section, we show

that Obs(ṽ, T ∗F, π−1(Bε)) depends only on the Poincaré-Hopf index I(v, 0) of v at 0

as a section of TVi and not on the vector field v itself. Moreover, if I(v, 0) = 0, then

Obs(ṽ, T ∗F, π−1(Bε)) = 0.

A non-zero section v of Tb2s over ∂b2s determines a cycle γ of T ∗b2s whose index

I(γ) is, by definition, the class of γ in H2s−1(T
∗b2s) ∼= Z. One can extend v as a

section of Tb2s inside b2s with an isolated zero at 0, by a homothety centered at 0,

along the rays of b2s. This section can now be extended by the radial extension process

[20] as a section of E (see (2.3)) over b2n+2. One obtains a section of E, still denoted

by v, without zero over b2n+2 r {0}, in particular over ∂b2n+2. Let us consider the

restriction of v on ∂β2n = ∂b2n+2 ∩ X , one denotes by ṽ the section of T ∗F over

∂β̃2n = π−1(∂β2n) defined by a lifting of v.

Since working in the ball Bε is equivalent to working in the tube b2n+2, one has

Obs(ṽ, T ∗F, π−1(Bε)) = Obs(ṽ, T ∗F, β̃2n).
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Proposition 4.4. — Let v0 and v1 be two sections of T ∗b2s over ∂b2s. They define two

cycles γ0 and γ1 of T ∗b2s. Let ṽ0 and ṽ1 be liftings of v0 and v1 respectively, over

∂β̃2n.

(a) If I(γ0) = I(γ1), then Obs(ṽ0, T
∗F, β̃2n) = Obs(ṽ1, T

∗F, β̃2n),

(b) If I(γ0) = 0, then, Obs(ṽ0, T
∗F, β̃2n) = 0.

Proof

a) If I(γ0) = I(γ1), then v0 and v1 are homotopic over ∂b2s. The same holds for

their extensions over b2s and b2n+2. The liftings ṽ0 and ṽ1 over ∂β̃2n are homotopic

as sections of TF , so the obstructions Obs(ṽ0, T
∗F, β̃2n) and Obs(ṽ1, T

∗F, β̃2n) are

equal.

b) If I(γ0) = 0, then by a) one can take for v0 the restriction to ∂b2s of a vector

field v1 without singularities in b2s. The lifting of v1 in F is a section of TF without

singularities over β̃2n. One has Obs(ṽ1, T
∗F, β̃2n) = 0 and the result follows by a).

4.3. The obstruction is proportional to I(γ).— In this section, we prove

the proportionality itself, i.e. we show that there is a constant C such that

Obs(ṽ, T ∗F, π−1(Bε)) = C · I(v, 0).

Proposition 4.5. — Let v be the radial vector field previously defined, γ the cycle in

T ∗b2s defined by the restriction of v to ∂b2s and ṽ a lifting of v over ∂β̃2n. Then there

is a constant C such that

Obs(ṽ, T ∗F, β̃2n) = C · I(γ).

Proof. — Proposition 4.4 shows that Obs(ṽ, T ∗F, β̃2n) does not depend on the cycle γ

defined by a section v of T ∗b2s over ∂b2s and whose index is I(γ). Let us consider

two cycles in T ∗b2s defined in the following way:

i) The cycle γ is defined by a smooth map

ψ1 : ∂b2s −→ T ∗b2s,

such that ψ1(ξ) = v(ξ) for the unitary vector field v tangent to b2s along the boundary

∂b2s, defining a smooth section of T∂b2s, i.e. γ = ψ1(∂b
2s).

ii) The cycle γ0 is defined by the smooth map

(4.5) ψ0 : ∂b2s −→ T ∗b2s

such that ψ0(ξ) is the unitary vector in T0b
2s parallel to v(ξ) and with origin 0. Then,

γ0 = ψ0(∂b
2s) is a cycle in the fiber T0b

2s and ψ0 is a map with rank 2s − 1 nearly

everywhere and it preserves the orientations.

In the case of the radial vector field w pointing outwards b2s along the boundary

∂b2s, the cycle γ0 is a cycle of index 1 in H2s−1(T
∗

0 b
2s). We denote it by [c0].
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4.3.1. Homotopy between ψ0 and ψ1 over ∂b2s. — Let us construct a homotopy ψ

between ψ0 and ψ1 in T ∗b2s. In order to do that, one extends on b2s the vector

field v previously defined on ∂b2s, by a homothety of center 0. One denotes by v′ the

extension; it has an isolated singularity at the point 0. One defines a map

J : ]0, 1]× b2s −→ Tb2s

such that J(ρ, ξ) is the unitary vector parallel to v′(ξ) at the point ρξ; we will denote

it by vρ(ρξ).

The map ψ is the restriction of J to ∂b2s, it is a diffeomorphism over its image. Let

us define ψρ by ψρ(ξ) = ψ(ρ, ξ). If ρ goes to 0, then the limit of ψρ coincides with the

map ψ0 defined in (4.5). Let us denote by S the unit sphere of the fiber T0b
2s. As ψ0

and ψ1 are homotopic, ψ0 is a (C2-differentiable) map ψ0 : ∂b2s ∼= S2s−1 → S ∼= S2s−1

with topological degree I(γ).

One has, at the level of chains and cycles in H2s−1(T
∗b2s):

(4.6) ∂ Imψ = Imψ1 − I(γ) · [c0].

The proof of Proposition 4.5 consists of showing that one has still a formula of type

(4.6) at the level of the radial extension of v, still denoted by v, over ∂β2n (formula

(iii) of Lemma 4.6) and at the level of the lifting of v in F , over ∂β̃2n (formula (4.7)).

We will conclude the proof of Proposition 4.5 using the Transgression Lemma (Lemma

4.7).

4.3.2. Construction of the homotopy Ψ over ∂β2n. — Let us denote by β2n−2s =

D2n+2−2s ∩X , the intersection of X with the transversal disc to b2s in U , and by θ

the piecewise differentiable homeomorphism

θ : b2s × β2n−2s −→ β2n

such that θ(ξ, ζ) is the point of β2n whose barycentric coordinates, relative to the

vertices of (∆) ∩ (∂b2n+2 r Vi), are equal to those of ζ and the others, corresponding

to the vertices of ∂b2s, are proportional to those of ξ. On the one hand, for ξ fixed,

θ(ξ, ζ) is on a ray of D2n+2−2s
ξ , on the other hand, ζ and θ(ξ, ζ) are in the same

stratum.

The boundary ∂β2n is

∂β2n = θ
(
(∂b2s × β2n−2s) ∪ (b2s × ∂β2n−2s)

)
.

Let us define a map

Ψ : ]0, 1] × ∂β2n −→ E∗

such that Ψ(ρ, y) = Ψ(ρ, θ(ξ, ζ)) is the vector at the point yρ = θ(ρξ, ζ) obtained by

radial extension, at this point, of vρ(ρξ).

Let us denote, for ρ ∈]0, 1], Ψρ(y) = Ψ(ρ, y). Then Ψ1(y) is the original vector

field v defined on ∂β2n. One defines Ψ0 as the limit of Ψρ for ρ going to zero.

SÉMINAIRES & CONGRÈS 10
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We define the cycle Γ in E∗ in the following way: one considers the radial extension,

along β2n−2s, of the radial vector field w constructed on b2s. It defines a chain

of E(β2n), canonically oriented by b2s and β2n−2s and whose oriented boundary is Γ.

One has Γ ∩ E∗

0 = Γ ∩ T ∗

0 Vi
∼= S ∼= ∂b2s. In fact Γ can be written Γ′ ∪ Γ′′ where Γ′

is the union of radial extensions, along β2n−2s of vectors of S and Γ′′ is the union of

radial extensions, in ∂β2n−2s of vectors of b2s.

Lemma 4.6
i) For ρ > 0, Ψρ is a piecewise differentiable homeomorphism from ∂β2n onto its

image,

ii) Ψ0 : ∂β2n → Γ is a piecewise differentiable homeomorphism, with topological

degree I(γ),

iii) ∂ ImΨ = ImΨ1 − I(γ) · Γ.

Proof. — The only point to be proved is (ii). We show that the topological degrees

of Ψ0 and ψ0 are the same. Let ζ ∈ Γ ∩ E∗

0 such that ψ−1
0 (ζ) consists of I(γ) points

ξj ∈ ∂b2s, and at each of them ψ0 is differentiable of rank 2s− 1. From the definition

of the local radial extension (see [5] Proposition 7.4) one obtains that Ψ0 is still an

homeomorphism in the neighbourhood of each point ξj , considered as in ∂β2n, and

that Ψ0 respects the orientations of ∂β2n and Γ. One has Ψ−1
0 (ζ) = ψ−1

0 (ζ), proving

the Lemma.

4.3.3. Lifting of the homotopy over ∂β̃2n. — Let us define the map

Ψ̃ : ]0, 1] × ∂β̃2n −→ TF |eβ2n

such that Ψ̃(ρ, ỹ) is the lifting at ỹ of Ψ(ρ, π(ỹ)), for π(ỹ) ∈ ∂β2n. We define Ψ̃ρ(ỹ) =

Ψ̃(ρ, ỹ).

If ρ = 1, then Ψ̃1 is the lifting of the radial extension of v, along ∂β2n, i.e. ṽ.

If ρ = 0, then the image of the map Ψ̃0 is the lifting of Γ, denoted by Γ̃. It

can be oriented with the orientation induced by the one of Γ|Xreg
, and we claim

that it is a (2n − 1)-cycle. In fact, the dimension of Γ̃|π−1(Xreg) is the same as the

dimension of Γ|Xreg
, i.e. 2n − 1. If V 2h

j is a stratum whose dimension 2h is bigger

than or equal to 2s, then Γ̃|π−1(Vj) = π−1(Γ|Vj
). Now, for transversality reasons, the

dimension of Γ|Vj
= ψ0(∂β

2n ∩ V 2h
j ) is 2h− 1. By Lemma 4.3, one has, for x ∈ V 2h

j ,

dimπ−1(x) 6 2(n−h−1). One obtains dim Γ̃|π−1(Vj) 6 2n−3, that proves the claim.

One has

(4.7) ∂ Im Ψ̃ = Im Ψ̃1 − I(γ) · Γ̃ and Im Ψ̃1 = ṽ(∂β̃2n).

4.3.4. End of the Proof of Proposition 4.5. — Let us recall the Transgression Lemma

([7], see also [5] and [21]):

Lemma 4.7. — Let p : TF → F be the projection of the tangent bundle to F . There

are differential forms Ω2n and Π2n−1 on TF , and Ω2n
0 on F , such that:
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(i) Π2n−1 induces on each fiber TeyF the fundamental form of H2n−1(TeyF ),

(ii) Ω2n = p∗(Ω2n
0 ) = −dΠ2n−1.

Proof. — The differential forms are the transgression differential forms, induced from

the classical Chern transgression differential forms [7] on the universal bundle over

the Grassmanian, as classifying space. The induced transgression forms verify (i)

and (ii).

Let us denote by ỹi the singularities of ṽ inside β̃2n with Poincaré-Hopf index

I(ṽ, ỹi). Let us denote by γ̃i the cycle defined in T ∗

eyi
F in the same way as in (4.5).

By Lemma 4.7(i), one has ∫

eγi

Π2n−1 = I(ṽ, ỹi).

Let us apply the Stokes formula in TF to the differential forms −Π2n−1 and Ω2n and

to the variety defined by ṽ(β̃2n). One has
∫

ev(eβ2n)

Ω2n = −

∫

ev(eβ2n)

dΠ2n−1 = −

∫

∂ev(eβ2n)

Π2n−1

Observing that

∂ṽ(β̃2n) = ṽ(∂β̃2n) ∪i γ̃i

one obtains:

(4.8) Obs(ṽ, T ∗F, β̃2n) =

∫

ev(∂ eβ2n)

Π2n−1 +

∫

eβ2n

Ω2n
0 .

By integration of the form Π2n−1 on ∂ Im Ψ̃ and using (4.7), one has
∫

Im eΨ1

Π2n−1 − I(γ) ·

∫

eΓ

Π2n−1 =

∫

∂ Im eΨ

Π2n−1 =

∫

Im eΨ

dΠ2n−1

= −

∫

p(Im eΨ)

Ω2n
0 = −

∫

eβ2n

Ω2n
0 .

Then, using (4.8), one has

Obs(ṽ, T ∗F, β̃2n) =

∫

Im eΨ1

Π2n−1 +

∫

eβ2n

Ω2n
0 = I(γ).

∫

eΓ

Π2n−1

and Proposition 4.5 follows with C =
∫

eΓ
Π2n−1.

One the other hand, if I(γ) = 0, the result is obvious.

4.4. Proof of Theorem 3.1. — The proof of Theorem 3.1 now goes as follows:

firstly, we showed in 4.2 that the obstruction Obs(ṽ, T ∗F, π−1(Bε)) depends only

on the index I(v, 0) of v at 0 as a section of TVi and not on the vector field v itself.

Moreover, if I(v, 0) = 0, then Obs(ṽ, T ∗F, π−1(Bε)) = 0. Then we proved Proposition

4.5, which is the proportionality itself, i.e. we showed that there is a constant C such

that Obs(ṽ, T ∗F, π−1(Bε)) = C · I(v, 0). Using 2.4 one obtains that if w is a radial

vector field of index +1, then C = χ(F ). This proves the theorem.
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4.5. Proof of Theorem 3.2. — The previous argument is also valid in the case

of r-frames. Since an important part of the proof is similar to the case of vector fields,

we give only the main indications for the proof.

Let us consider a complex manifold M of (complex) dimension (n + 1), and

0 6 r 6 n+ 1. We recall that 2q = 2((n + 1) − r + 1) is the obstruction dimension

to the construction of an r-frame tangent to M . This implies that we can construct

a radial r-frame vr with isolated singularities on the 2q-cells d2q
α of a cellular de-

composition (D) of M , with index I(vr, σ̂α) in the barycenter {σ̂α} = d2q
α ∩ σα.

One can write the r-frame as vr = (vr−1, ur), the (r − 1)-frame vr−1 being without

singularities on the (2q)-skeleton of (D). The singularities of vr are zeroes of the last

vector ur.

In the neighbourhood of 0, the (r − 1)-frame vr−1 generates a sub-bundle P r−1

of TM , of (complex) rank (r− 1). Let us denote by Q the sub-bundle of TM orthog-

onal to P r−1 relatively to an Riemannian metric induced by the one of Cn+1. The

projection of the vector field ur on Q parallel to P r−1, defines a section of Q over d2q
α

with an isolated singularity at 0. The index I(vr, σ̂α) is equal to

(4.9) I(vr, σ̂α) = I(vr, T rM,d2q
α ) = I(ur, Q

∗, d2q
α ).

Since the map π has constant rank on the strata, the lifting ṽr−1 defines an (r−1)-

frame tangent to F over β̃2p = π−1(d2q
α ∩ X). In the same way, whenever it is

defined, the lifting ũr is linearly independent of ṽr−1 and they define an r-frame

ṽr = (ṽr−1, ũr).

At any point y of β̃2p, the (r− 1)-frame ṽr−1 generates a (r− 1)-subspace P̃ r−1(y)

of TyF . One obtains a trivial fiber sub-bundle of TF of rank (r − 1) with basis β̃2p.

Let us denote by Q̃(y) the vector subspace orthogonal to P̃ r−1(y) in TyF , with the

Riemannian metric induced by the one of Cn+1. One obtains a fiber sub-bundle Q̃

of TF of rank p, with basis β̃2p. Let us denote by Q̃∗ the associated bundle whose

fiber is the previous one without the zero section.

One has

(4.10) Obs(ṽr , T rF, β̃2p) = Obs(ũr, Q̃
∗, β̃2p)

Now, working with ur as a section of Q ⊂ E over d2q
α and with ũr as a section of Q̃

over β̃2p, one can use the proof of Theorem 3.1 with the following modifications:

b2s −→ b2e = d2q
α ∩ V 2s

i

b2n+2 = b2s ×D2n+2−2s −→ b2q = b2e ×D2n+2−2s

β2n = b2n+2 ∩X ∼= b2s × β2n−2s −→ β2p = b2q ∩X ∼= b2e × β2n−2s

β̃2n = π−1(β2n) ; ∂β̃2n = π−1(∂β2n) −→ β̃2p = π−1(β2p) ; ∂β̃2p = π−1(∂β2p)

Π2n−1 ; Ω2n−1 −→ Π2p−1 ; Ω2p−1
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Let us denote by Vi the stratum containing σα. The cell d2q
α , dual of σα, is transverse

to X , i.e. to all strata of X , in particular to Vi. Recalling that we use Whitney

stratifications, the intersection Y := d2q
α ∩X is homeomorphic to the cone c(Lbσα

) over

the link of σ̂α and a distinguished neighbourhood Ubσα
of σ̂α in X is homeomorphic

to Bi × c(Lbσα
) where Bi is an open ball in Vi whose dimension is the one of Vi. One

can consider two (local) Milnor fibres of σ̂α. The first one Fbσα
= FX,bσα

is the Milnor

fibre of σ̂α considered as a singularity of X , in M , the second one FY,bσα
is the Milnor

fibre of σ̂α considered as a singularity of Y = d2q
α ∩X , in d2q

α .

Lemma 4.8. — The Milnor fibres FX,bσα
and FY,bσα

satisfy the following relation:

FX,bσα
∼= Bi × FY,bσα

and one has

(4.11) χ(FX,bσα
) = χ(FY,bσα

).

Let us return to the proof of Theorem 3.2. Theorem 3.1 implies

(4.12) Obs(ũr, Q̃
∗, β̃2p) = χ(FY,bσα

) · I(ur, Q
∗, σ̂α).

Combining the equalities (4.9) to (4.12), one obtains the result.

5. The Fulton-Johnson classes

Let us consider now a compact complex manifold M of dimension m = n+ 1 and

a holomorphic function f : M → D, where D is an open disc around 0 in C and f has

a critical value at 0 ∈ C. We set X = f−1(0) and denote by Σ the singular set of X ,

which consists of the points in X where the differential df vanishes. We denote by

Xreg = X r Σ the regular part of X . One has an exact sequence of vector bundles:

0 −→ TXreg −→ TM |Xreg
−→ L|Xreg

−→ 0,

where L is a trivial line bundle, pull back by f of the tangent bundle of C, TXreg is

the tangent bundle of Xreg, which is a sub-bundle of the tangent bundle of M , TM .

Thus, L|Xreg
is isomorphic to the normal bundle of Xreg in M and, in particular, if X

is smooth then its tangent bundle TX is equivalent to TM |X − L|X in the K-theory

group KU(X). In general, when X is singular, we set

τ(X) = TM |X − L|X ,

and call it the virtual tangent bundle of X . This is not an actual bundle generally

speaking, but it represents an element in KU(X), that we still denote by τ(X). Thus

its total Chern class:

c(τ(X)) = c(TM |X) · c(L|X)−1

is well defined. The image of c(τ(X)) in H∗(X) under the Poincaré homomorphism

coincides with the Fulton-Johnson class of X , defined in [8, 9]. We denote it by
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cFJ
∗

(X) ∈ H2∗(X) and we refer to [4] for background on these classes. If X is smooth,

these are the Poincaré duals of the Chern classes of the tangent bundle TX .

Our aim now is to prove Theorem 1.1 stated in the introduction. For this, let us

denote by Xt the fibers f−1(t), t 6= 0. This is a 1-parameter family of n-dimensional

complex submanifolds of M that degenerate to X when t = 0.

Since for t 6= 0 each Xt is a smooth complex manifold, its Chern classes ci(Xt) ∈

H2i(Xt) are well defined, and since it is compact, by Poincaré duality one can think of

these as homology classes in H2n−2i(Xt), denoted by cn−i(Xt). The class in degree 0,

corresponding to cn(Xt), is the Euler-Poincaré characteristic of Xt.

We notice that, by the compactness of X , given a regular neighbourhood N of X

inM , we can find t sufficiently small so thatXt ⊂ N . Thus, one has a homomorphism,

i∗ : H∗(Xt) −→ H∗(N ),

induced by the inclusion. One also has:

r∗ : H∗(N ) −→ H∗(X),

induced by a retraction r from N into X . The composition:

σ∗ = r∗ ◦ i∗ : H∗(Xt) −→ H∗(X)

is the Verdier specialization map. Notice that by construction, for each x ∈ X ,

σ∗ is induced by the degenerating map π of section 2 above, which is now globally

defined on all of Xt. In other words, the Verdier specialization map is in this case

the homomorphism in homology induced by the map π : Xt → X defined (locally) in

section 2 above.

For each Xt, t 6= 0, one has that [TXt] = [TM |Xt
− L|Xt

] in K-theory. Thus the

Chern classes of Xt are those of the virtual bundle [TM |Xt
− L|Xt

]. By [23], the

homology specialization map σ∗ carries the Chern classes of TM |Xt
and L|Xt

into the

Chern classes of TM |X and L|X , respectively. Thus, as noticed in [19], one has:

(5.13) cFJ
∗

(X) = σ∗c∗(Xt).

Let ṽr be, as before, a lifting to Xt via the degenerating map π, of a frame vr on

the 2p-skeleton of X with isolated singularities. With the notations of 4.5, the Chern

class cp(Xt) is represented by the obstruction cocycle γ̃ satisfying

〈γ̃, β̃2p〉 = Obs(ṽr, T rXt, β̃
2p) =

∑
I(ṽr, yλ)

where the points yλ are singular points of ṽr within β̃2p = π−1(d2q
α ∩X).

For each point a ∈ X , the restriction of f to a small neighbourhood of a can be

regarded as a holomorphic function from an open set in Cn+1 into C. Hence there

exists a (local) Milnor fiber Fa of X at a. This can be identified with Xt ∩Bε(a) for

t 6= 0 sufficiently near the origin in C and Bε(a) a small ball in M around a. We

denote by χ(Fa) the Euler-Poincaré characteristic of Fa.
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By Theorem 3.2 one has: 〈γ̃, β̃2p〉 = χ(Fbσα
) · I(vr , σ̂α). The following lemma will

prove Theorem 1.1:

Lemma 5.1. — Let γ̃ be a (D̃)-cocycle representing the Chern class cp(Xt) and let us

denote kα = 〈γ̃, β̃2p〉. Then the cycle
∑

σ
2r−2
α ⊂X

kασ
2r−2
α

represents the Fulton-Johnson class cFJ
r−1(X).

Proof. — Let us write the cycle γ̃ representing cp(Xt) as

γ̃ =
∑

µβ(d̃2p
β )∗

where (d̃2p
β )∗ is the elementary (D̃)-cochain whose value is 1 on the cell d̃2p

β and 0 on

all others. In other words, µβ = 〈γ̃, d̃2p
β 〉.

Since Xt is smooth, the Chern class cr−1(Xt) is the Poincaré dual of cp(Xt). This

means that if [Xt] denotes the fundamental class of Xt and if σ̃2r−2
β denotes the dual

cell of d̃2p
β , then one has (see [2]):

γ̃ ∩ [Xt] =
∑

eσ
2r−2
β

⊂Xt

µβσ̃
2r−2
β .

By (5.13), the Fulton-Johnson class is represented by the cycle π∗(γ̃ ∩ [Xt]). In

the image of γ̃ ∩ [Xt] by π∗, the only cells σ̃2r−2
β with non-zero contribution are the

cells such that π(σ̃β) = σα and dimπ(σ̃β) = dim(σα). The images of other cells have

dimension strictly less than 2r − 2. Thus the cycle π∗(γ̃ ∩ [Xt]) is homologous to

π∗

( ∑

eσ
2r−2
β

⊂Xt

µβσ̃
2r−2
β

)
=

∑

σ
2r−2
α ⊂X

kασ
2r−2
α ,

where kα =
∑
µβ =

∑
〈γ̃, d̃2p

β 〉, the sum being extended to all the indices β such that

π(σ̃β) = σα and dimπ(σ̃β) = dim(σα). By Proposition 4.2 one has kα = 〈γ̃, β̃2p〉,

hence the lemma.
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