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Abstract. — In this paper, we give a brief survey on the fundamental group of the

complement of a plane curve and its Alexander polynomial. We also introduce the

notion of θ-Alexander polynomials and discuss their basic properties.

Résumé(Un état des lieux sur les polynômes d’Alexander des courbesplanes)
Dans cet article, nous donnons un bref état des lieux sur le groupe fondamental du

complémentaire d’une courbe plane et son polynôme d’Alexander. Nous introduisons

de plus la notion de polynôme d’Alexander de type θ et discutons leurs propriétés

élémentaires.

1. Introduction

For a given hypersurface V ⊂ Pn, the fundamental group π1(P
n−V ) plays a crucial

role when we study geometrical objects over Pn which are branched over V . By the

hyperplane section theorem of Zariski [51], Hamm-Lê [16], the fundamental group

π1(P
n − V ) can be isomorphically reduced to the fundamental group π1(P

2 − C)

where P2 is a generic projective subspace of dimension 2 andC = V ∩P2. A systematic

study of the fundamental group was started by Zariski [50] and further developments

have been made by many authors. See for example Zariski [50], Oka [31–33], Libgober

[22]. For a given plane curve, the fundamental group π1(P
2−C) is a strong invariant

but it is not easy to compute. Another invariant which is weaker but easier to compute

is the Alexander polynomial ∆C(t). This is related to a certain infinite cyclic covering

space branched over C. Important contributions are done by Libgober, Randell, Artal,

Loeser-Vaquié, and so on. See for example [1, 2, 7, 9, 10, 13, 14, 20, 24, 26, 29, 41,

43,44,46,47]
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The main purpose of this paper is to give a survey for the study of the fundamental

group and the Alexander polynomial (§§2,3). However we also give a new result on

θ-Alexander polynomials in section 4.

In section two, we give a survey on the fundamental group of the complement of

plane curves. In section three, we give a survey for the Alexander polynomial. It turns

out that the Alexander polynomial does not tell much about certain non-irreducible

curves. A possibility of a replacement is the characteristic variety of the multiple

cyclic covering. This theory is introduced by Libgober [23].

Another possibility is the Alexander polynomial set (§4). For this, we consider the

infinite cyclic coverings branched over C which correspond to the kernel of arbitrary

surjective homomorphism θ : π1(C
2 − C) → Z and we consider the θ-Alexander

polynomial. Basic properties are explained in the section 4.

2. Fundamental groups

The description of this section is essentially due to the author’s lecture at School

of Singularity Theory at ICTP, 1991.

2.1. van Kampen Theorem.— Let C ⊂ P2 be a projective curve which is defined

by C = {[X,Y, Z] ∈ P2 | F (X,Y, Z) = 0} where F (X,Y, Z) is a reduced homogeneous

polynomial F (X,Y, Z) of degree d. The first systematic studies of the fundamental

group π1(P
2 − C) were done by Zariski [49–51] and van Kampen [18]. They used

so called pencil section method to compute the fundamental group. This is still one

of the most effective method to compute the fundamental group π1(P
2 −C) when C

has many singularities.

Let `(X,Y, Z), `′(X,Y, Z) be two independent linear forms. For any τ = (S, T ) ∈

P1, let Lτ = {[X,Y, Z] ∈ P2 | T `(X,Y, Z) − S`′(X,Y, Z) = 0}. The family of lines

L = {Lτ | τ ∈ P1} is called the pencil generated by L = {` = 0} and L′ = {`′ = 0}.

Let {B0} = L ∩ L′. Then B0 ∈ Lτ for any τ and it is called the base point of the

pencil. We assume that B0 /∈ C. Lτ is called a generic line (resp. non-generic line)

of the pencil for C if Lτ and C meet transversally (resp. non-transversally). If Lτ

is not generic, either Lτ passes through a singular point of C or Lτ is tangent to C

at some smooth point. We fix two generic lines Lτ0
and Lτ∞

. Hereafter we assume

that τ∞ is the point at infinity ∞ of P1 (so τ∞ = ∞) and we identify P2 − L∞ with

the affine space C2. We denote the affine line Lτ − {B0} by La
τ . Note that La

τ
∼= C.

The complement Lτ0
− Lτ0

∩ C (resp. La
τ0

− La
τ0

∩ C) is topologically S2 minus d

points (resp. (d + 1) points). We usually take b0 = B0 as the base point in the case

of π1(P
2 −C). In the affine case π1(C

2 −C), we take the base point b0 on Lτ0
which

is sufficiently near to B0 but b0 6= B0. Let us consider two free groups

F1 = π1(Lτ0
− Lτ0

∩C, b0) and F2 = π1(L
a
τ0

− La
τ0

∩ C, b0).

SÉMINAIRES & CONGRÈS 10
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of rank d− 1 and d respectively. We consider the set

Σ := {τ ∈ P1 | Lτ is a non-generic line} ∪ {∞}.

We put ∞ in Σ so that we can treat the affine fundamental group simultaneously.

We recall the definition of the action of the fundamental group π1(P
1 − Σ, τ0) on F1

and F2. We consider the blowing up P̃2 of P2 at B0. P̃2 is canonically identified with

the subvariety

W = {((X,Y, Z), (S, T )) ∈ P2 × P1 | T `(X,Y, Z)− S`′(X,Y, Z) = 0}

through the first projection p : W → P2. Let q : W → P1 be the second projection.

The fiber q−1(s) is canonically isomorphic to the line Ls. Let E = {B0} × P1 ⊂

W . Note that E is the exceptional divisor of the blowing-up p : W → P2 and

q|E : E → P1 is an isomorphism. We take a tubular neighbourhood NE of E which

can be identified with the normal bundle of E. As the projection q|NE → P1 gives a

trivial fibration over P1 −{∞}, we fix an embedding φ : ∆× (P1 −{∞}) → NE such

that φ(0, η) = (B0, η), φ(1, τ0) = (b0, τ0) and q(φ(t, η)) = η for any η ∈ P1 − {∞}.

Here ∆ = {t ∈ C; |t| 6 1}. In particular, this gives a section of q over C = P1 −{∞}

by η 7→ b0,η := φ(1, η) ∈ La
η. We take b0,η as the base point of the fiber La

η. Let

C̃ = p−1(C). The restrictions of q to C̃ and C̃ ∪ E are locally trivial fibrations by

Ehresman’s fibration theorem [48]. Thus the restrictions q1 := q|(W− eC) and q2 :=

q|(W− eC∪E) are also locally trivial fibrations over P1 − Σ. The generic fibers of q1, q2
are homeomorphic to Lτ0

− C and La
τ0

− C respectively. Thus there exists canonical

action of π1(P
1 − Σ, τ0) on F1 and F2. We call this action the monodromy action of

π1(P
1 − Σ, τ0). For σ ∈ π1(P

1 − Σ, τ0) and g ∈ F1 or F2, we denote the action of σ

on g by gσ. The relations in the group Fν

(R1) 〈g−1gσ = e | g ∈ Fν , σ ∈ π1(P
1 − Σ, τ0)〉, ν = 1, 2

are called the monodromy relations. The normal subgroup of Fν , ν = 1, 2 which

are normally generated by the elements {g−1gσ, | g ∈ Fν} are called the groups of

the monodromy relations and we denote them by Nν for ν = 1, 2 respectively. The

original van Kampen Theorem can be stated as follows. See also [5,6].

Theorem 1([18]). — The following canonical sequences are exact.

1 → N1 → π1(Lτ0
− Lτ0

∩ C, b0) → π1(P
2 − C, b0) → 1

1 → N2 → π1(L
a
τ0

− La
τ0

∩ C, b0) → π1(C
2 − C, b0) → 1

Here 1 is the trivial group. Thus the fundamental groups π1(P
2 − C, b0) and

π1(C
2 − C, b0) are isomorphic to the quotient groups F1/N1 and F2/N2 respectively.

For a group G, we denote the commutator subgroup of G by D(G). The relation

of the fundamental groups π1(P
2 − C, b0) and π1(C

2 − C, b0) are described by the

following. Let ι : C2 − C → P2 − C be the inclusion map.
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Lemma 2([30]). — Assume that L∞ is generic.

(1) We have the following central extension.

1 −→ Z
γ

−−→ π1(C
2 − C, b0)

ι#
−−−→ π1(P

2 − C, b0) −→ 1

A generator of the kernel Ker ι# of ι# is given by a lasso ω for L∞.

(2) Furthermore, their commutator subgroups coincide i.e., D(π1(C
2 − C)) =

D(π1(P
2 − C)).

Proof. — A loop ω is called a lasso for an irreducible curve D if ω is homotopic to

a path written as ` ◦ τ ◦ `−1 where τ is the boundary circle of a normal small disk

of D at a smooth point and ` is a path connecting the base point and τ [35]. For

the assertion (1), see [30]. We only prove the second assertion. Assume that C has

r irreducible components of degree d1, . . . , dr. The restriction of the homomorphism

ι# gives a surjective morphism ι# : D(π1(C
2 − C)) → D(π1(P

2 − C)). If there is

a σ ∈ Ker ι# ∩ D(π1(C
2 − C)), σ can be written as γ(ω)a for some a ∈ Z. As

ω corresponds to (d1, . . . , dr) in the homology H1(C
2 − C) ∼= Zr, σ corresponds to

(ad1, . . . , adr). As σ is assumed to be in the commutator group, this must be trivial.

That is, a = 0.

2.2. Examples of monodromy relations. — We recall several basic examples of

the monodromy relations. Let C be a reduced plane curve of degree d.

We consider a model curve Cp,q which is defined by yp − xq = 0 and we study

π1(C
2 − Cp,q). For this purpose, we consider the pencil lines x = t, t ∈ C. We

consider the local monodromy relations for σ, which is represented by the loop x =

ε(2πit), 0 6 t 6 1. We take local generators ξ0, ξ1, . . . , ξp−1 of π1(Lε, b0)) as in

Figure 1. Every loops are counter-clockwise oriented. It is easy to see that each point

of Cp,q ∩ Lε are rotated by the angle 2π × q/p. Let q = mp + q′, 0 6 q′ < p. Then

the monodromy relations are:

ξj(= ξσ
j ) =

{
ωmξj+q′ω−m, 0 6 j < p− q′

ωm+1ξj+q′−pω
−(m+1), p− q′ 6 j 6 p− 1

(R1)

ω = ξp−1 · · · ξ0.(R2)

The last relation in (R1) can be omitted as it follows from the other relations.

ξp−1 = ω(ξp−2 · · · ξ0)
−1

= ωωmξ−1
q′ ω

−m . . . ωmξ−1
p−1ω

−mωm+1ξ−1
0 ω−m−1 · · ·ωm+1ξ−1

q′−2ω
−m−1

= ωm+1ξq′−1ω
−m−1.

For the convenience, we introduce two groups G(p, q) and G(p, q, r).

G(p, q) := 〈ξ1, . . . , ξp, ω | R1, R2〉, G(p, q, r) := 〈ξ1, . . . , ξp, ω | R1, R2, R3〉
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ξ0

ξ1

ξ2

Figure 1. Generators

where R3 is the vanishing relation of the big circle ∂DR = {|y| = R}:

(R3) ωr = e.

Now the above computation gives the following.

Lemma 3. — We have π1(C
2 −Cp,q, b0) ∼= G(p, q) and π1(P

2 −Cp,q, b0) ∼= G(p, q, 1).

The groups of G(p, q) and G(p, q, r) are studied in [12,32]. For instance, we have

Theorem 4([32])

(i) Let s = gcd(p, q), p1 = p/s, q1 = q/s. Then ωq1 is the center of G(p, q).

(ii) Put a = gcd(q1, r). Then ωa is in the center of G(p, q, r) and has order r/a

and the quotient group G(p, q, r)/ < ωa > is isomorphic to Zp/s ∗ Za ∗ F (s− 1).

Corollary 5 ([32]). — Assume that r = q. Then G(p, q, q) = Zp1
∗ Zq1

∗ F (s − 1). In

particular, if gcd(p, q) = 1, G(p, q, q) ∼= Zp ∗ Zq.

Let us recall some useful relations which follow from the above model.

(I) Tangent relation. — Assume that C and L0 intersect at a simple point P with

intersection multiplicity p. Such a point is called a flex point of order p − 2 if p > 3

([50]). This corresponds to the case q = 1. Then the monodromy relation gives

ξ0 = ξ1 = · · · = ξp−1 and thus G(p, 1) ∼= Z. As a corollary, Zariski proves that

the fundamental group π1(P
2 − C) is abelian if C has a flex of order > d − 3. In

fact, if C has a flex of order at least d − 3, the monodromy relation is given by

ξ0 = · · · = ξd−2. On the other hand, we have one more relation ξd−1 . . . ξ0 = e. In

particular, considering the smooth curve defined by C0 = {Xd − Y d = Zd}, we get

that π1(P
2 − C) is abelian for a smooth plane curve C, as C can be joined to C0 by

a path in the space of smooth curves of degree d.

(II) Nodal relation. — Assume that C has an ordinary double point (i.e., a node) at

the origin and assume that C is defined by x2−y2 = 0 near the origin. This is the case

when p = q = 2. Then as the monodromy relation, we get the commuting relation:

ξ1ξ2 = ξ2ξ1. Assume that C has only nodes as singularities. The commutativity of
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π1(P
2−C) was first asserted by Zariski [50] and is proved by Fulton-Deligne [11,15].

See also [28,40,41].

(III) Cuspidal relation. — Assume that C has a cusp at the origin which is locally

defined by y2 − x3 = 0 (p = 2, q = 3). Then monodromy relation is: ξ1ξ2ξ1 = ξ2ξ1ξ2.

This relation is known as the generating relation of the braid group B3 (Artin [3]).

Similarly in the case p = 3, q = 2, we get the relation ξ1 = ξ3, ξ1ξ2ξ1 = ξ2ξ1ξ2.

2.3. First Homology. — Let X be a path-connected topological space. By the

theorem of Hurewicz, H1(X,Z) is isomorphic to the the quotient group of π1(X) by

the commutator subgroup (see [45]). Now assume that C is a projective curve with

r irreducible components C1, . . . , Cr of degree d1, . . . , dr respectively. By Lefschetz

duality, we have the following.

Proposition 6. — H1(P
2 − C,Z) is isomorphic to Zr−1 × (Z/d0Z) where d0 =

gcd(d1, . . . , dr). In particular, if C is irreducible (r = 1), the fundamental group is a

cyclic group of order d1.

2.4. Relation with Milnor Fibration. — Let F (X,Y, Z) be a reduced homoge-

neous polynomial of degree d which defines C ⊂ P2. We consider the Milnor fibration

of F [25] F : C3 − F−1(0) → C∗ and let M = F−1(1) be the Milnor fiber. By the

theorem of Kato-Matsumoto [19], M is path-connected. We consider the following

diagram where the vertical map is the restriction of the Hopf fibration.

C∗

i
��

j

((P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

M
�

� ι //

p
''P

P

P

P

P

P

P

P

P

P

P

P

P

C3 − F−1(0)
F //

q
��

C∗

P2 − C

Proposition 7([30])

(I) The following conditions are equivalent.

(i) π1(P
2 − C) is abelian.

(ii) π1(C
3 − F−1(0)) is abelian.

(iii) π1(M) is abelian and the first monodromy of the Milnor fibration

h∗ : H1(M) → H1(M) is trivial.

(II) Assume that C is irreducible. Then π1(M) is isomorphic to the commutator

subgroup of π1(P
2 − C). In particular, π1(P

2 − C) is abelian if and only if M is

simply connected.

SÉMINAIRES & CONGRÈS 10
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2.5. Degenerations and fundamental groups. — Let C be a reduced plane

curve. The total Milnor number µ(C) is defined by the sum of the local Milnor

numbers µ(C,P ) at singular points P ∈ C. We consider an analytic family of reduced

projective curves Ct = {Ft(X,Y, Z) = 0}, t ∈ U where U is a connected open set

with 0 ∈ C and Ft(X,Y, Z) is a homogeneous polynomial of degree d for any t. We

assume that Ct, t 6= 0 have the same configuration of singularities so that they are

topologically equivalent but C0 obtain more singularities, i.e., µ(Ct) < µ(C0). We

call such a family a degeneration of Ct at t = 0 and we denote this, for brevity, as

Ct → C0. Then we have the following property about the fundamental groups.

Theorem 8. — There is a canonical surjective homomorphism for t 6= 0:

ϕ : π1(P
2 − C0) −→ π1(P

2 − Ct).

In particular, if π1(P
2 − C0) is abelian, so is π1(P

2 − Ct).

Proof. — Take a generic line L which cuts C0 transversely. Let N be a neighborhood

of C0 so that ι : P2 −N ↪→ P2 − C0 is a homotopy equivalence. For instance, N can

be a regular neighborhood of C0 with respect to a triangulation of (P2, C0). Take

sufficiently small t 6= 0 so that Ct ⊂ N . Then taking a common base point at the

base point of the pencil, we define ϕ as the composition:

π1(P
2 − C0, b0)

ι−1
#

−−−−→ π1(P
2 −N, b0) −→ π1(P

2 − Ct, b0)

We can assume that Ct and L intersect transversely for any t 6 ε and L− L ∩N ↪→

L−L∩Ct is a homotopy equivalence for 0 6 t 6 ε. Then the surjectivity of ϕ follows

from the following commutative diagram

π1(L− L ∩ C0, b0)

a
��

π1(L− L ∩N, b0)
α′

oo

b
��

β′

// π1(L − L ∩Ct, b0)

c
��

π1(P
2 − C0, b0) π1(P

2 −N, b0)
α

oo
β

// π1(P
2 − Ct, b0)

where the vertical homomorphisms a, c are surjective by Theorem 1 and α, α′, β′ are

canonically bijective. Thus β is also surjective. Thus define ϕ : π1(P
2 − C0, b0) →

π1(P
2 − Ct, b0) by the composition α−1 ◦ β. The second assertion is immediate from

the first assertion. This completes the proof.

Applying Theorem 8 to the degeneration Ct ∪ L→ C0 ∪ L, we get

Corollary 9. — There is a a surjective homomorphism: π1(C
2 −C0) → π1(C

2 −Ct).

Corollary 10. — Let Ct, t ∈ C be a degeneration family. Assume that we have a

presentation

π1(P
2 − C0) ∼= 〈g1, . . . , gd | R1, . . . , Rs〉

Then π1(P
2−Ct), t 6= 0 can be presented by adding a finite number of other relations.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005



216 M. OKA

Corollary 11(Sandwich isomorphism). — Assume that we have two degeneration fam-

ilies Ct → C0 and Ds → D0 such that D1 = C0. Assume that the composition

π1(P
2 −D0) −→ π1(P

2 −Ds) = π1(P
2 − C0) −→ π1(P

2 − Ct)

is an isomorphism. Then we have isomorphisms

π1(P
2 −D0) ∼= π1(P

2 −Dt) and π1(P
2 − C0) ∼= π1(P

2 − Ct).

Example 12. — Assume that C is a sextic of tame torus type whose configuration of

singularity is not [C3,9 + 3A2]. For the definition of the singularity C3,9, we refer to

[38,42]. First we can degenerate a generic sextic of torus type Cgen into C. Secondly

we can degenerate C into a tame sextic Cmax of torus type with maximal configuration

(or with C3,8+3A2). In [38], it is shown that π1(P
2−Cgen) ∼= π1(P

2−Cmax) ∼= Z2∗Z3.

Thus we have π1(P
2 − C) = Z2 ∗ Z3.

Example 13. — Assume that C is a reduced curve of degree d with n nodes as sin-

gularities with n <
(
d
2

)
. By a result of J.Harris [17], there is a degeneration Ct of

C = C1 so that C0 obtains more nodes and C0 has no other singularities. (This was

asserted by Severi but his proof had a gap.) Repeating this type of degenerations,

one can deform a given nodal curve C to a reduced curve C0 with
(
d
2

)
nodes, which

is a union of d generic lines. On the other hand, π1(P
2 −C0) is abelian by Corollary

16 below. Thus we have

Theorem 14([11,17,28,41,50]). — Let C be a nodal curve. Then π1(P
2 − C) is

abelian.

2.6. Product formula. — Assume that C1 and C2 are reduced curves of degree

d1 and d2 respectively which intersect transversely and let C := C1 ∪ C2. We take

a generic line L∞ for C and we consider the the corresponding affine space C2 =

P2 − L∞.

Theorem 15(Oka-Sakamoto[39]). — Let ϕk : C2 − C → C2 − Ci, k = 1, 2 be the

inclusion maps. Then the homomorphism

ϕ1# × ϕ2# : π1(C
2 − C) −→ π1(C

2 − C1) × π1(C
2 − C2)

is isomorphic.

Corollary 16. — Assume that C1, . . . , Cr are the irreducible components of C and

π1(P
2−Cj) is abelian for each j and they intersect transversely so that Ci∩Cj∩Ck = ∅

for any distinct three i, j, k. Then π1(P
2 − C) is abelian.
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2.7. Covering transformation. — Assume that C is a reduced curve defined by

f(x, y) = 0 in the affine space C2 := P2 −L∞. The line at infinity L∞ is assumed to

be generic so that we can write

f(x, y) =

d∏

i=1

(y − αix) + (lower terms), α1, . . . , αd ∈ C∗, αj 6= αk, j 6= k.

Take positive integers n > m > 1. We assume that the origin O is not on C and

the coordinate axes x = 0 and y = 0 intersect C transversely and C ∩ {x = 0} and

C ∩ {y = 0} has no point on L∞. Consider the doubly branched cyclic covering

Φm,n : C2 −→ C2, (x, y) 7−→ (xm, yn).

Put fm,n(x, y) := f(xm, yn) and put Cm,n = {fm,n(x, y) = 0} = Φ−1
m,n(C). The

topology of the complement of Cm,n(C) depends only on C and m,n. We will call

Cm,n(C) as a generic (m,n)-fold covering transform of C.

If n > m, Cm,n(C) has one singularity at ρ∞ = [1; 0; 0] and the local equation at

ρ∞ takes the following form:

d∏

i=1

(ζn − αiξ
n−m) + (higher terms), ζ = Y/X, ξ = Z/X

In the case m = n, we have no singularity at infinity. We denote the canonical

homomorphism (Φm,n)# : π1(C
2 − Cm,n(C)) → π1(C

2 − C) by φm,n for simplicity.

Theorem 17([34]). — Assume that n > m > 1 and let Cm,n(C) be as above. Then the

canonical homomorphism

φm,n : π1(C
2 − Cm,n(C)) −→ π1(C

2 − C)

is an isomorphism and it induces a central extension of groups

1 −→ Z/nZ
ι

−−→ π1(P
2 − Cm,n(C))

φ̃m,n
−−−−−→ π1(P

2 − C) −→ 1

The kernel of φ̃m,n is generated by an element ω′ in the center and φ̃m,n(ω′) is ho-

motopic to a lasso ω for L∞ in the target space. The restriction of φ̃m,n gives an

isomorphism of the respective commutator groups φ̃m,n# : D(π1(P
2 − Cm,n(C))) →

D(π1(P
2 − C)). We have also the exact sequence for the first homology groups:

1 −→ Z/nZ −→ H1(P
2 − Cm,n(C))

Φm,n
−−−−−→ H1(P

2 − C) −→ 1

Corollary 18

(1) π1(P
2 − Cm,n(C)) is abelian if and only if π1(P

2 − C) is abelian.

(2) Assume that C is irreducible. Put

F (x, y, z) = zd f(x/z, y/z), Fm,n(x, y, z) = zdn fm,n(x/z, y/z)
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Let Mm,n and M be the Minor fibers of Fm,n and F respectively. Then we have an

isomorphism of the respective fundamental groups: π1(Mm,n) ∼= π1(M).

For a group G, we consider the following condition : Z(G) ∩ D(G) = {e} where

Z(G) is the center of G. This is equivalent to the injectivity of the composition:

Z(G) → G → H1(G). When this condition is satisfied, we say that G satisfies

homological injectivity condition of the center (or (H.I.C)-condition in short). A pair

of reduced plane curves of a same degree {C,C′} is called a Zariski pair if there

is an bijection α : Σ(C) → Σ(C′) of their singular points so that the two germs

(C,P ), (C′, α(P )) are topologically equivalent for each P ∈ Σ(C) and the fundamental

group of the complement π1(P
2 − C) and π1(P

2 − C′) are not isomorphic. (This

definition is slightly stronger than that in [34].)

Corollary 19([34]). — Let {C,C′} be a Zariski pair and assume that π1(P
2 − C′)

satisfies (H.I.C)-condition. Then for any n > m > 1, {Cm,n(C), Cm,n(C′)} is a

Zariski pair.

See also Shimada [44].

3. Alexander polynomial

Let X be a topological space which has a homotopy type of a finite CW-complex

and assume that we have a surjective homomorphism: φ : π1(X) → Z. Let t be a gen-

erator of Z and put Λ = C[t, t−1]. Note that Λ is a principal ideal domain. Consider

an infinite cyclic covering p : X̃ → X such that p#(π1(X̃)) = Ker φ. Then H1(X̃,C)

has a structure of Λ-module where t acts as the canonical covering transformation.

Thus we have an identification:

H1(X̃,C) ∼= Λ/λ1 ⊕ · · · ⊕ Λ/λn

as Λ-modules. We normalize the denominators so that λi is a polynomial in t with

λi(0) 6= 0 for each i = 1, . . . , n. The Alexander polynomial ∆(t) is defined by the

product
∏n

i=1 λi(t).

The classical one is the case X = S3 −K where K is a knot. As H1(S
3 −K) = Z,

we have a canonical surjective homomorphism φ : π1(S
3 − K) → H1(S

3 − K,Z)

induced by the Hurewicz homomorphism. The corresponding Alexander polynomial

is called the Alexander polynomial of the knot K.

In our situation, we consider a plane curve C defined by a homogeneous polynomial

F (X,Y, Z) of degree d. Unless otherwise stated, we always assume that the line at

infinity L∞ is generic for C and we identify the complement P2 − L∞ with C2. Let

φ : π1(C
2 − C) → Z be the canonical homomorphism induced by the composition

π1(C
2 − C)

ξ
−−→ H1(C

2 − C,Z) ∼= Zr s
−−→ Z
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where ξ is the Hurewicz homomorphism and s is defined by s(a1, . . . , ar) =
∑r

i=1 ai

and r is the number of irreducible components of C. We call s the summation homo-

morphism.

Let X̃ → C2 − C be the infinite cyclic covering corresponding to Ker φ. The

corresponding Alexander polynomial is called the generic Alexander polynomial of

C and we denote it by ∆C(t) or simply ∆(t) if no ambiguity is likely. It does not

depend on the choice of the generic line at infinity L∞. Let M = F−1(1) ⊂ C3 be the

Milnor fiber of F . The monodromy map h : M → M is defined by the coordinatewise

multiplication of exp(2πi/d). Randell showed in [43] the following important theorem.

Theorem 20. — The Alexander polynomial ∆(t) is equal to the characteristic polyno-

mial of the monodromy h∗ : H1(M) → H1(M). Thus the degree of ∆(t) is equal to

the first Betti number b1(M).

Lemma 21. — Assume that C has r irreducible components. Then the multiplicity of

the factor (t− 1) in ∆(t) is r − 1.

Proof. — As hd = idM , the monodromy map h∗ : H1(M) → H1(M) has a period d.

This implies that h∗ can be diagonalized. Assume that ρ is the multiplicity of (t− 1)

in ∆(t). Consider the Wang sequence:

H1(M)
h∗ − id

−−−−−−−→ H1(M) −→ H1(E) −→ H0(M) −→ 0

where E := S5 − V ∩ S5 and V = F−1(0). Then we get b1(E) = ρ+ 1. On the other

hand, by Alexander duality, we have H1(E) ∼= H3(S5, V ∩ S5) and b1(E) = r. Thus

we conclude that ρ = r − 1.

The following Lemma describes the relation between the generic Alexander poly-

nomial and local singularities.

Lemma 22(Libgober [20]). — Let P1, . . . , Pk be the singular points of C and let ∆i(t)

be the characteristic polynomial of the Milnor fibration of the germ (C,Pi). Then the

generic Alexander polynomial ∆(t) divides the product
∏k

i=1 ∆i(t)

Lemma 23(Libgober [20]). — Let d be the degree of C. Then the Alexander poly-

nomial ∆(t) divides the Alexander polynomial at infinity ∆∞(t) which is given by

(td − 1)d−2(t − 1). In particular, the roots of Alexander polynomial are d-th roots of

unity.

The last assertion also follows from Theorem 20 and the periodicity of the mon-

odromy.
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3.1. Fox calculus. — Suppose that φ : π1(X) → Z is a given surjective homomor-

phism. Assume that π1(X) has a finite presentation as

π1(X) ∼= 〈x1, . . . , xn | R1, . . . , Rm〉

where Ri is a word of x1, . . . , xn. Thus we have a surjective homomorphism ψ :

F (n) → π1(X) where F (n) is a free group of rank n, generated by x1, . . . , xn. Consider

the group ring of F (n) with C-coefficients C[F (n)]. The Fox differential

∂

∂xj
: C[F (n)] −→ C[F (n)]

is C-linear map which is characterized by the property

∂

∂xj
xi = δi,j ,

∂

∂xj
(uv) =

∂u

∂xj
+ u

∂v

∂xj
, u, v ∈ C[F (n)]

The composition φ ◦ ψ : F (n) → Z gives a ring homomorphism γ : C[F (n)] →

C[t, t−1]. The Alexander matrix A is m× n matrix with coefficients in C[t, t−1] and

its (i, j)-component is given by γ(∂Ri/∂xj). Then it is known that the Alexander

polynomial ∆(t) is given by the greatest common divisor of (n− 1)-minors of A ([8]).

The following formula will be useful.

∂

∂xj
ωk = (1 + ω + · · · + ωk−1)

∂

∂xj
ω,

∂

∂xj
ω−k = −ω−k ∂

∂xj
ωk

Example 24. — We gives several examples.

(1) Consider the trivial case π1(X) = Z and φ is the canonical isomorphism. Then

π1(X) ∼= 〈x1〉 (no relation) and ∆(t) = 1. More generally assume that π1(X) = Zr

with φ(n1, . . . , nr) = n1 + · · · + nr. Then

π1(X) = 〈x1, . . . , xr | Ri,j = xixjxi
−1xj

−1, 1 6 i < j 6 r〉

As we have

γ

(
∂

∂x`
Ri,j

)
=





1 − t ` = i

t− 1 ` = j

0 ` 6= i, j

,

we have ∆(t) = (t− 1)r−1.

Definition 25. — We say that Alexander polynomial of a curve C is trivial if ∆(t) =

(t− 1)r−1 where r is the number of the irreducible components of C.

(2) Let C = {y2 − x3 = 0} and X = C2 − C. Then

π1(X) = 〈x1, x2 | x1x2x1 = x2x1x2〉.

is known as the braid group B(3) of three strings and the Alexander polynomial is

given by ∆(t) = t2 − t+ 1.
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(3) Let us consider the curve C := {y2 − x5 = 0} ⊂ C2 and put X = C2 − C.

Then by §2.2,

π1(X) ∼= G(2, 5) = 〈x0, x1 | x0(x1x0)
2x−1

1 (x1x0)
−2〉

In this case, we get

∆(t) = t4 − t3 + t2 − t+ 1 =
(t10 − 1)(t− 1)

(t2 − 1)(t5 − 1)
.

3.2. Degeneration and Alexander polynomial. — We consider a degeneration

Ct → C0. By Corollary 10 and Fox calculus, we have

Theorem 26. — Assume that we have a degeneration family of reduced curves

{Cs | s ∈ U} at s = 0. Let ∆s(t) be the Alexander polynomial of Cs. Then

∆s(t)|∆0(t) for s 6= 0.

Corollary 27(Sandwich principle). — Suppose that we have two families of degener-

ation Cs → C0 and Dτ → D0 such that D1 = C0 and assume that ∆D0
(t) and

∆Cs
(t), s 6= 0 coincide. Then we have also ∆Cs

(t) = ∆C0
(t), s 6= 0.

3.3. Explicit computation of Alexander polynomials. — Let C be a given

plane curve of degree d defined by f(x, y) = 0 and let Σ(C) be the singular locus

of C and let P ∈ Σ(C) be a singular point. Consider an embedded resolution of C,

π : Ũ → U where U is an open neighbourhood of P in P2 and let E1, . . . , Es be the

exceptional divisors. Let us choose (u, v) be a local coordinate system centered at P

and let ki and mi be the order of zero of the canonical two form π∗(du ∧ dv) and

π∗f respectively along the divisor Ei. We consider an ideal of OP generated by the

function germ φ such that the pull-back π∗φ vanishes of order at least −ki + [kmi/d]

along Ei and we denote this ideal by JP,k,d. Namely

JP,k,d = {φ ∈ OP , (π
∗φ) >

∑
i(−ki + [kmi/d])Ei}

Let us consider the canonical homomorphisms induced by the restrictions:

σk,P : OP −→ OP /JP,k,d, σk : H0(P2,O(k − 3)) −→
⊕

P∈Σ(C)

OP /JP,k,d

where the right side of σk is the sum over singular points of C. We define two

invariants:

ρ(P, k) = dimC OP /JP,k,d, ρ(k) =
∑

P∈Σ(C)

ρ(P, k)

Let `k be the dimension of the cokernel σk. Then the formula of Libgober [21] and

Loeser-Vaquié [24], combined with a result of Esnault and Artal [1,14], can be stated

as follows.
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Lemma 28. — The polynomial ∆(t) is written as the product

∆̃(t) =
d−1∏

k=1

∆k(t)`k , k = 1, . . . , d− 1

where

∆k =
(
t− exp(2kπi/d)

)(
t− exp(−2kπi/d)

)
.

Note that for the case of sextics d = 6, the above polynomials take the form:

∆5(t) = ∆1(t) = t2 − t+ 1, ∆4(t) = ∆2(t) = t2 + t+ 1, ∆3(t) = (t+ 1)2.

3.4. Triviality of the Alexander Polynomials. — We have seen that the

Alexander polynomial is trivial if C is irreducible and π1(P
2−C) is abelian. However

this is not a necessary condition, as we will see in the following. Let F (X,Y, Z) be

the defining homogeneous polynomial of C and let M = F−1(1) ⊂ C3 the Milnor

fiber of F .

Theorem 29. — Assume that C is an irreducible curve. The Alexander polynomial

∆(t) of C is trivial if and only if the first homology group of the Milnor fiber H1(M)

is at most a finite group.

Proof. — By Theorem 20, the first Betti number of M is equal to the degree of

∆(t).

Corollary 30. — Assume that π1(P
2 −C) is a finite group. Then the Alexander poly-

nomial is trivial.

Proof. — This is immediate from Theorem 7 as D(π1(P
2 − C)) = π1(M) and it is a

finite group under the assumption.

3.5. Examples

(1) (Zariski’s three cuspidal quartic, [50]) Let Z4 be a quartic curve with three A2-

singularities. The corresponding moduli space is irreducible. Then the fundamental

groups are given by [33,50] as

π1(C
2 − Z4) ∼= 〈ρ, ξ | ρ ξ ρ = ξ ρ ξ, ρ2 = ξ2〉

π1(P
2 − Z4) ∼= 〈ρ, ξ | ρ ξ ρ = ξ ρ ξ, ρ2ξ2 = e〉

Then by an easy calculation, ∆(t) = 1. This also follows from Theorem 29 as π1(P
2−

Z4) is a finite group of order 12 by Zariski [50]. By Theorem 17, the generic covering

transform Cn,n(Z4) has also a trivial Alexander polynomial for any n.

(2) (Libgober’s criterion) Assume that for any singularity P of C, the characteristic

polynomial of (C,P ) does not have any root which is a d-th root of unity. Then

by Lemma 22 and Lemma 23, the Alexander polynomial is trivial. For example,

an irreducible curve C with only A2 or A1 as singularity has a trivial Alexander

polynomial if the degree d is not divisible by 6.
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A SURVEY ON ALEXANDER POLYNOMIALS OF PLANE CURVES 223

(3) (Curves of torus type) A curve C of degree d is called of (p, q)-torus type if its

defining polynomial F (X,Y, Z) is written as

F (X,Y, Z) = F1(X,Y, Z)p + F2(X,Y, Z)q

where Fi is a homogeneous polynomial of degree di, i = 1, 2 so that d = pd1 = qd2.

Assume that (1) two curves F1 = 0 and F2 = 0 intersect transversely at d1d2 distinct

points, and (2) the singularities of C are only on the intersection F1 = F2 = 0. We say

C is a generic curve of (p, q)-torus type if the above conditions are satisfied. Let M

be the space {(F1, F2) | degree F1 = d1, degreeF2 = d2} and let M′ be the subspace

for which the conditions (1) and (2) are satisfied. Then by an easy argument, M is

an affine space of dimension
(
d1+2

2

)
+

(
d2+2

2

)
and M′ is a Zariski open subset of M.

Thus the topology of the complement of C does not depend on a generic choice of

C ∈ M′.

Fundamental groups π1(P
2 −C) and π1(C

2 −C) for a generic curve of (p, q)-torus

type are computed as follows. Put s = gcd(p, q), p1 = p/s, q1 = q/s. As d1p = d2q,

we can write d1 = q1m and d2 = p1m.

Theorem 31
(a) ([31,32]) Then we have π1(C

2 − C) ∼= G(p, q) and π1(P
2 − C) ∼= G(p, q,mq1)

(b) The Alexander polynomial is the same as the characteristic polynomial of the

Pham-Brieskorn singularity Bp,q which is given by

(1) ∆(t) =
(tp1q1s − 1)s (t− 1)

(tp − 1) (tq − 1)

Proof. — The assertion for the fundamental group is proved in [31, 32]. For the

assertion about the Alexander polynomial, we can use Fox calculus for small p and q.

For example, assume that p = 2, q = 3 and d1 = 3, d2 = 2. Thus C is a sextic with

six (2,3)-cusps. As

π1(C
2 − C) = 〈x0, x1 | x0x1x0 = x1x0x1〉,

the assertion follows from 2 of Example 22.

Assume that p = 4, q = 6 and d1 = 3, d2 = 2. Then C has two irreducible

component of degree 6:

C : f3(x, y)
4 − f2(x, y)

6 = (f3(x, y)
2 − f2(x, y)

3) (f3(x, y)
2 + f2(x, y)

3)

where deg fk(x, y) = k. By Lemma 3, we have

π1(C
2 − C) = 〈ξ0, . . . , ξ3 | Rj , j = 0, 1, 2〉

where using ω := ξ3 . . . ξ0 the relations are given as

R1 : ξ0ωξ
−1
2 ω−1, R2 : ξ1ωξ3ω

−1, R3 : ξ2ω
2ξ0ω

−2
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Thus by an easy calculation, the Alexander matrix is given as



1 + t4 − t3 (t− 1) t2 −
(
−t+ t3 + 1

)
t t− 1

(t− 1) t3 1 + t3 − t2 (t− 1) t t− t4 − 1

−
(
−t+ t4 + 1

)
t3

(
t+ t5 − t4 − 1

)
t2 1 + t2 + t6 − t5 − t t+ t5 − t4 − 1




and the Alexander polynomial is given by

∆(t) = (t− 1) (t2 + 1) (t2 + t+ 1) (t2 − t+ 1) (t4 − t2 + 1)2 =
(t12 − 1)2(t− 1)

(t4 − 1)(t6 − 1)

To prove the assertion for general p, q, we use the following result of Nemethi [27].

Lemma 32. — Let u := (h, g) : (Cn+1, O) → (C2, O) and P : (C2, O) → (C, O) be

germs of analytic mappings and assume that u defines an isolated complete inter-

section variety at O. Let D be the discriminant locus of u and V (P ) := {P = 0}.

Consider the composition f = P ◦ u : (Cn+1, O) → (C, O). Let Mf and MP be the

respective Minor fibers of f and P . Assume that D ∩ V (P ) = {O} in a neighbour-

hood of O. Then the characteristic polynomial of the Minor fibration of f on H1(Mf)

is equal to the characteristic polynomial of the Milnor fibration of P on H1(MP ),

provided n > 2.

Proof of the equality (1). — Let F1, F2 be homogeneous polynomials of degree

q1m, p1m respectively and let F = F p
1 + F q

2 . We assume that F1, F2 are generic

so that the singularities of F = 0 are only the intersection F1 = F2 = 0 which are

p1q1m
2 distinct points. Then by Lemma 32, the characteristic polynomial of the

monodromy h∗ : H1(MF ) → H1(MF ) of the Milnor fibration of F is equal to that of

P (x, y) := yp + xq. Thus the assertion follows from [4,25] and Theorem 20.

3.6. Sextics of torus type. — Let us consider a sextic of torus type

C : f2(x, y)
3 + f3(x, y)

2 = 0, degree fj = j, j = 2, 3,

as an example. Assume that C is reduced and irreducible. A sextic of torus type is

called tame if the singularities are on the intersection of the conic f2(x, y) = 0 and the

cubic f3(x, y) = 0. A generic sextic of torus type is tame but the converse is not true.

Then the possibility of Alexander polynomials for sextics of torus type is determined

as follows.

Theorem 33([36,37]). — Assume that Cis an irreducible sextic of torus type. The

Alexander polynomial of C is one of the following.

(t2 − t+ 1), (t2 − t+ 1)2, (t2 − t+ 1)3

Moreover for tame sextics of torus type, the Alexander polynomial is given by t2−t+1

and the fundamental group of the complement in P2 is isomorphic to Z2 ∗ Z3 except

the case when the configuration is [C3,9, 3A2]. In the exceptional case, the Alexander

polynomial is given by (t2 − t+ 1)2.
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3.7. Weakness of Alexander polynomial. — Let C1 and C2 be curves which

intersect transversely. We take a generic line at infinity for C1 ∪C2. Theorem 15 says

that

π1(C
2 − C1 ∪ C2) ∼= π1(C

2 − C1) × π1(C
2 − C2)

which tell us that the fundamental group of the union of two curves keeps informations

about each curves C1, C2. On the other hand, the Alexander polynomial of C1 ∪ C2

keeps little information about each curves C1, C2. In fact, we have

Theorem 34. — Assume that C1 and C2 intersect transversely and let C = C1 ∪ C2.

Then the generic Alexander polynomial ∆(t) of C is given by given by (t−1)r−1 where

r is the number of irreducible components of C.

Proof. — Assume that π1(C
2 − Cj), j = 1, 2 is presented as

π1(C
2 − C1) = 〈g1, . . . , gs1

| R1, . . . , Rp1
〉, π1(C

2 − C2) = 〈h1, . . . , hs2
| S1, . . . , Sp2

〉

Then by Theorem 15, we have

π1(C
2 − C) =

〈
g1, . . . , gs1

, h1, . . . , hs2
| R1, . . . , Rp1

, S1, . . . , Sp2
, Ti,j ,

1 6 i 6 s1, 1 6 j 6 s2
〉

where Ti,j is the commutativity relation gi hjg
−1
i h−1

j . Let

γ : C[g1, . . . , gs1
, h1, . . . , hs2

] −→ C[t, t−1]

be the ring homomorphism defined before (§3.1). Put gs1+j = hj for brevity. Then

the submatrix of the Alexander matrix corresponding to

(
γ(
∂Ti,j

∂gk
)

)
,

{i = 1, . . . , s1, j = s2} or {i = s1, j = 1, . . . , s2 − 1},

and 1 6 k 6 s1 + s2 − 1

is given by (1 − t) ×A where

A =

(
Es1

0

K −Es2−1

)

and E` is the ` × `-identity matrix and K is a (s2 − 1) × s1 matrix with only the

last column is non-zero. Thus the determinant of this matrix gives ±(t − 1)s1+s2−1

and the Alexander polynomial must be a factor of (t− 1)s1+s2−1. As the monodromy

of the Milnor fibration of the defining homogeneous polynomial F (X,Y, Z) of C is

periodic, this implies that h∗ : H1(M) → H1(M) is the identity map. Thus ∆(t) =

(t − 1)b1 where b1 is the first Betti number of M . On the other hand, b1 = r − 1 by

Lemma 21.
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4. Possible generalization: θ-Alexander polynomial

To cover the weakness of Alexander polynomials for reducible curves, there are

two possible modifications. One is to consider the multiple cyclic coverings and their

characteristic varieties (Libgober [23]). For the detail of this theory, we refer to the

above paper of Libgober.

Another possibility which we propose now is the following. Consider a plane curve

with r irreducible components C1, . . . , Cr with degree d1, . . . , dr respectively. We as-

sume that the line at infinity is generic for C. For the generic Alexander polynomial,

we have used the summation homomorphism s. This is not enough for reducible

curves. We consider every possible surjective homomorphism θ : π1(C
2 − C) → Z

and the corresponding infinite cyclic covering πθ : Xθ → C2 − C. The correspond-

ing Alexander polynomial will be denoted by ∆C,θ(t) (or ∆θ(t) if no ambiguity is

likely) and we call it the generic θ-Alexander polynomial of C. Note that a surjec-

tive homomorphism θ factors through the Hurewicz homomorphism, and a surjective

homomorphism θ′ : H1(C
2 − C) ∼= Zr → Z. On the other hand, θ′ corresponds to

a multi-integer m = (m1, . . . ,mr) with gcd(m1, . . . ,mr) = 1. So we denote θ as θm

hereafter. We denote the set of all Alexander polynomials by A(C)

A(C) := {∆θ(t) | θ : π1(C
2 − C) → Z is surjective}

and we call A(C) the Alexander polynomial set of C. We say A(C) is trivial if

A(C) = {(t − 1)r−1}. It is easy to see that A(C) is a topological invariant of the

complement P2 − C.

Theorem 35(Main Theorem). — The Alexander polynomial set is not trivial if there

exists a component Ci0 for which the Alexander polynomial ∆Ci0
(t) is not trivial.

For the proof, we prepare several lemmas. First we define the radical
√
q(t) of a

polynomial q(t) to be the generator of the radical
√

(q(t)) of the ideal (q(t)) in C[t].

Lemma 36. — Assume that π1(P
2 − C) is abelian. Then A(C) is trivial.

Proof. — Take the obvious presentation.

π1(C
2 − C) = 〈g1, . . . , gr | Tij = gigjg

−1
i g−1

j , 1 6 i < j 6 r〉.

Take a surjective homomorphism θm : π1(C
2 − C) → Z, m := (m1, . . . ,mr). Then

the Alexander matrix is given by r(r − 1)/2 raw vectors Vij where Vij has two non-

zero coefficients. The i-th and j-th coefficients are given by (1 − tmj ) and (tmi − 1)

respectively. Thus taking for example the minor corresponding to γθ(∂T1j/∂gk),

2 6 j, k 6 r, we get (tm1 − 1)r−1. Similarly we get (tmi − 1)r−1 for any i. This

implies that ∆θ(t) = (t− 1)r−1 as gcd(m1, . . . ,mr) = 1.
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Lemma 37. — Assume that C is a reduced curve of degree d with a non-trivial Alexan-

der polynomial ∆C(t). Assume that C′ is irreducible, π1(C
2−C′) ∼= Z and the canon-

ical homomorphism π1(C
2 −C ∪C′) → π1(C

2 −C)×π1(C
2 −C′) is isomorphic. Put

D = C ∪ C′. Then the Alexander polynomial set of D contains a polynomial q(t)

which is divisible by
√

∆C(t).

Proof. — First we may assume that

π1(C
2 − C) = 〈g1, . . . , gk | R1, . . . , R`〉

π1(C
2 −D) = 〈g1, . . . , gk, h | R1, . . . , R`, Tj, 1 6 j 6 k〉

where Tj is the commuting relation: hgjh
−1g−1

j . Consider the homomorphism

θ : H1(C
2 −D) −→ Z, [gj ] 7−→ t, [h] 7−→ td.

Then the image of the differential of the relation Tj by the ring homomorphism

γθ : C(F (k + 1)) −→ C(π1(C
2 −D)) −→ C[t, t−1]

gives the raw vector vj whose j-th component is (td − 1), (k + 1)-th component is

1 − t. Thus the θ-Alexander matrix of D is given by

A′ :=

(
A O

(td − 1)Ek (1 − t)~w

)
, O = t(0, . . . , 0), ~w = t(1, . . . , 1)

where A is the Alexander matrix for C with respect to the summation homomorphism.

Take k× k minor B of A′. If B contains at least a (k− 1)× (k− 1) minor of A, det B

is a linear combination of the (k − 1)-minors of A and therefore divisible by ∆C(t).

Assume that B does not contain such a minor. Then any k×k minor of B is divisible

by td − 1. As
√

∆C(t) divides td − 1 by Proposition 20, we conclude that
√

∆C(t)

divides ∆D,θ(t).

Corollary 38. — Assume that C is as in Lemma 37 with r irreducible components

and let C′ be a curve with π1(C
2 − C′) = Zs with s is the number of irreducible

components of C′. Suppose that the canonical homomorphism π1(C
2 − C ∪ C′) →

π1(C
2 −C)×π1(C

2−C′) is isomorphic. Then ∆C∪C′,θ(t) is divisible by
√

∆C(t) for

θ = θm where m = (u,v) ∈ Zr × Zs, u = (1, . . . , 1) and v = (d, . . . , d).

Proof. — Suppose that we have the following presentation.

π1(C
2 − C) = 〈g1, . . . , gk | R1, . . . , R`〉

Then the presentation of π1(C
2 − C ∪ C′) is given by

π1(C
2 − C ∪ C′) = 〈g1, . . . , gk, h1, . . . , hs | R1, . . . , R`, Tj,`, 1 6 j 6 k, 1 6 ` 6 s〉

where Tj,` is the commuting relation: h`gjh
−1
` g−1

j . Consider the homomorphism

θm : H1(C
2 − C ∪ C′) ∼= Zr × Zs −→ Z, (a, b) 7−→

r∑

i=1

ai + d

s∑

j=1

bj
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Assume that C′ = C′

1 ∪ · · · ∪ C′

s be the irreducible decomposition. Put Dj = C′

1 ∪

· · · ∪ C′

j . We have a family of surjective homomorphisms θj : H1(C
2 − C ∪Dj) → Z

which give the commutative diagram:

H1(C
2 − C ∪C′) //

θm

��

H1(C
2 − C ∪Dj)

θj
��

Z Z

Then the assertion follows from Lemma 37, by showing that C ∪Dj has a non-trivial

θj-Alexander polynomial which is divisible by
√

∆C(t), by the inductive argument on

j = 1, . . . , s.

The following assertion is immediate from Corollary 10.

Lemma 39. — Assume that we have a degeneration family Ct → C0. Take an arbi-

trary surjective homomorphism θ : π1(C
2 − Ct) → Z. Let θ′ be the composition

θ′ : π1(C
2 − C0) −→ π1(C

2 − Ct)
θ

−−→ Z

Then we have the divisibility: ∆Ct,θ | ∆C0,θ′ .

Now we are ready to prove the Main theorem.

Proof of Theorem 35. — Assume that C has irreducible components C1, . . . , Cr and

assume that an irreducible component Ci0 has a non-trivial Alexander polynomial

∆Ci0
(t). For simplicity, we assume i0 = 1. Put d1 = degreeC1. Consider a degen-

eration family Ct, t ∈ C such that C0 = C and Ct has r irreducible components

Ct,1, . . . , Ct,r and Ct,1 ≡ C1 and Ct,j , j > 1 is smooth for t 6= 0 and the intersection

of Ct,1, . . . , Ct,r is transverse so that Ct has only A1-singularities besides those of C1

and π1(C
2 − Ct) ∼= π1(C

2 − C1) × Zr−1. Consider the surjective homomorphism

θ : H1(C
2 − Ct) → Z which is defined by θ(a1, . . . , ar) = a1 + d1(a2 + · · · + ar). By

Corollary 38, ∆Ct,θ is divisible by
√

∆C1
(t) and thus ∆C0,θ is divisible by

√
∆C1

(t).

Example 40. — Let us consider a generic sextic of torus type C : f2(x, y)
3−f3(x, y)

2 =0

with six A2’s. Assume f2(x, y) and f3(x, y) be generic polynomials of degree 2 and 3

respectively so that the conic f2(x, y) = 0 and the cubic f3(x, y) = 0 intersect

transversely at 6 points. Assume that C′ is a smooth curve degree d1 which is

transverse to C. Put D = C ∪ C′. Then their fundamental groups are presented as

π1(C
2 − C) = 〈ξ, ρ | R1〉, R1 = ξρξρ−1ξ−1ρ−1

π1(C
2 −D) = 〈ξ, ρ, α | R1, T1, T2〉, T1 = αξα−1ξ−1, T2 = αρα−1ρ−1

We consider the homomorphism:

θ : π1(C
2 −D) −→ Z, ξ, ρ 7−→ t, α 7−→ t6
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The corresponding Alexander matrix is given by


t2 − t+ 1 −(t2 − t+ 1) 0

t6 − 1 0 1 − t

0 t6 − 1 1 − t




Then ∆C(t) = t2 − t+ 1 and ∆D,θ(t) = (t− 1) (t2 − t+ 1).

Consider mutually coprime integers m, n and consider the homomorphism θm,n :

π1(C
2 −D) → Z defined by θm,n(ξ) = θm,n(ρ) = tn and θm,n(α) = tm. The corre-

sponding Alexander matrix is given by


t2n − tn + 1 −(t2n − tn + 1) 0

tm − 1 0 1 − tn

0 tm − 1 1 − tn




Thus the corresponding Alexander polynomial is given by
{

(t− 1) m 6≡ 0 modulo 6

(t− 1) (t2 − t+ 1) m ≡ 0 modulo 6

This proves that A(D) = {(t− 1), (t− 1)(t2 − t+ 1)}.

Example 41. — Next we consider a generic curve C of (4, 6)-torus type of degree 12.

Let f2(x, y) and f3(x, y) be as in previous Example. Then C can be defined by

f2(x, y)
6 − f3(x, y)

4 = 0. It has two components C1 : f2(x, y)
3 − f3(x, y)

2 = 0 and

C2 : f2(x, y)
3 + f3(x, y)

2 = 0. However two sextics intersect at 6 cusps with the same

tangent cones so that their local intersection number is 6. Then the fundamental

group is presented as

π1(C
2 − C) = 〈x0, x1, x2, x3 | R1, R2, R3〉

R1 = x0ωx
−1
2 ω−1, R2 = x1ωx

−1
3 ω−1, R3 = x2ω

2x−1
0 ω−2, ω = x3 · · ·x0

The generic Alexander polynomial with respect to θn : π1(C
2 − C) → Z, which is

defined by

θn : x0, x2 7−→ tn, x1, x3 7−→ t

are given by

(t− 1)
(
t2 + 1

) (
t2 − t+ 1

) (
t2 + t+ 1

) (
t4 − t2 + 1

)2
, n = 1

(t− 1) (t+ 1)
(
t2 − t+ 1

) (
t6 + t3 + 1

) (
t6 − t3 + 1

)2
, n = 2

(t− 1)
(
t4 + 1

) (
t2 + t+ 1

) (
t2 − t+ 1

) (
t4 − t2 + 1

) (
t8 − t4 + 1

)2
, n = 3

and so on. It seems that the Alexander set contains infinite number of polynomials.

Remark 42. — Let C1, . . . Cr be irreducible components of C and let di be the degree

of Ci. Consider irreducible homogeneous polynomials Fj(X,Y, Z), j = 1, . . . r which
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define Cj and put F = F1 · · ·Fr. Let K = S5 ∩ F−1(0). In the proof of Theorem 20,

Randell proved that there is a canonical isomorphism

ψ : π1(P
2 − C ∪ L∞) −→ π1(S

5 −K)

Consider the surjective homomorphism θ = θm : π1(C
2 − C) → Z where m =

(m1, . . . ,mr). We assume for simplicity that m1, . . . ,mr are positive integers such

that gcd(m1, . . . ,mr) = 1. Then the isomorphism can be taken so that θ = g# ◦ ψ

where g = Fθ/|Fθ| : S5 −K → S1 is the projection map of the Milnor fibration of the

function Fθ = Fm1

1 · · ·Fmr
r .

π1(C
2 − C)

θ
//

ψ
��

Z

id
��

π1(S
5 −K)

g#
// Z

Thus we can generalize Theorem 20.

Theorem 43(Restated). — The Alexander polynomial ∆θ(t) is equal to the charac-

teristic polynomial of the monodromy h∗ : H1(M) → H1(M) for the polynomial

Fθ = Fm1

1 · · ·Fmr
r .
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