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GENERAL ELEMENTS OF AN m-PRIMARY IDEAL ON

A NORMAL SURFACE SINGULARITY

by

Romain Bondil

Abstract. — In this paper, we show how to apply a theorem by Lê D.T. and the author
about linear families of curves on normal surface singularities to get new results in
this area. The main concept used is a precise definition of general elements of an
ideal in the local ring of the surface. We make explicit the connection between this
notion and the more elementary notion of general element of a linear pencil, through
the use of integral closure of ideals. This allows us to prove the invariance of the
generic Milnor number (resp. of the multiplicity of the discriminant), between two
pencils generating two ideals with the same integral closure (resp. the projections
associated). We also show that our theorem, applied in two special cases, on the one
hand completes, removing an unnecessary hypothesis, a theorem by J. Snoussi on the
limits of tangent hyperplanes, and on the other hand gives an algebraic µ-constant
theorem in linear families of planes curves.

Résumé(Éléments généraux d’un idéalm-primaire sur une singularité de surface normale)
Dans ce travail, on expose des applications d’un théorème obtenu avec Lê D.T. sur

les familles linéaires de courbes sur une singularité de surface normale. Le principal
concept utilisé est une définition précise d’élements généraux dans un idéal m-primaire
de l’anneau local de la surface. On explicite le lien qui existe entre cette notion et
celle, plus élémentaire, d’élément général d’un pinceau linéaire grâce à la notion de

clôture intégrale des ideaux.
Ceci permet de prouver l’invariance de la valeur du nombre de Milnor générique (resp.
de la multiplicité du discriminant) si l’on considère différents pinceaux engendrant
des idéaux de même clôture intégrale (resp. les projections associées).
Nous montrons aussi comment ce résultat complète, en enlevant une hypothèse inutile,
un théorème de J. Snoussi sur les limites d’hyperplans tangents, et d’autre part donne
aussi un théorème de type µ-constant algébrique pour les familles linéaires de courbes
planes.
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Introduction

Let (S, 0) be a germ of normal complex-analytic surface, with local ring OS,0 cor-

responding to the germs of holomorphic functions on (S, 0), and maximal ideal m,

formed by the germs taking the value 0 at 0.

To any couple (f, g) of elements of m, one may associate three related objects: the

linear pencil of the curves Cα,β : αf + βg = 0 with (α, β) ∈ C2, the ideal J = (f, g)

in OS,0, and the projection:

p : (S, 0) −→ (C2, 0),

x 7−→ (f(x), g(x)).

We will always assume that the curves f = 0 and g = 0 share no common component

(in other words: the corresponding linear system has no fixed component, the ideal J

is m-primary, and the projection p is finite).

Denoting by (∆p, 0) ⊂ (C2, 0) the discriminant of the projection p (see §4), one

may define a general element of the pencil (Cα,β) as the inverse-image by p of any

line αx + βy = 0 in C2 which does not lie in the tangent cone of (∆p, 0).

One may in turn define an element h = af + bg ∈ J with a, b ∈ OS,0 to be general

if, and only if, a(0)f + b(0)g defines a general element of the pencil (Cα,β).

In fact, we define here, for any m-primary ideal I in OS,0, a notion of general

element which has the following property: take any pair (f, g) of elements of I such

that the ideal J = (f, g) is a reduction of I (see §1), then the general elements of J (in

the “pencil” sense) will be general elements of I, and conversely any general element

of I will be obtained as an element of such a reduction.

However, this will not be our first definition of the general elements of I since

we rather define them purely by their behaviour on the normalized blow-up of I

(cf. def. 2.1).

In a previous paper, we proved that these elements are characterised by their Milnor

number (theorem 2.3). Here, we focus on the applications of this result:

In §3, we show how it covers both the study of limit of hyperplanes tangent to

a normal surface, and the study of linear systems of plane curves, proving on one

side a complement to a theorem by J. Snoussi, and on the other side an algebraic

µ-constant theorem for linear systems of plane curves (also obtained by other means

by E. Casas).

In §4, we prove the relation between our definition of general elements of I and

the one for pencils as claimed above. As a corollary, for two pencils (f, g) and (f ′, g′)

defining a reduction of I, the general elements of both pencils have the same Mil-

nor number, and the discriminants of the corresponding projections have the same

multiplicity.
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1. Geometry of a theorem by Samuel

In this section only, we consider a germ (X, 0) of complex analytic space with

arbitrary dimension d. We let O := OX,0 be the corresponding local analytic ring.

In fact, the content of this section can be extended to any local noetherian ring with

infinite residue field (see e.g. [Li] or [Bo] Chap. 2.3).

We recall that an element f ∈ O is said to be integrally dependant on an ideal I

of O if it satisfies an equation:

fn + a1f
n−1 + · · · + an = 0,

with the condition ai ∈ Ii for all i = 1, . . . , n.

The theory of integral dependance on ideals was initiated by O. Zariski (see [S-Z]

Appendix 4) and under the influence of H. Hironaka was developed in the seminar

[LJ-Te] where several characterisations are given. In the hands of B.Teissier, it

became a cornerstone in the theory of equisingularity (see e.g. [Te-2] Chap. 1). More

recently, the theory was extended to modules under the impulse of T. Gaffney (see

the survey [Ga-Ma]).

Let us just mention that the set I of the elements of O integrally dependant on I

is an ideal, called the integral closure of I in O, and that the definition of integral

closure finds a natural expression on the blow-up XI of the germ (X, 0) along I (see

[Te-2]).

For the sake of simplicity, we restrict here to the case of a reduced germ (X, 0)

(cf. [Bo] loc. cit. for the general case). Then one may take the normalization XI of

the blow-up XI , and following [Te-2] (Chap. 1, (1.3.6) et seq.), one proves that the

equality I = J of integral closures of ideals in O is equivalent to the equality:

(1) I · OXI
= J · OXI

,

for the corresponding sheaves on the normalized blow-up XI .

We now take I to be an m-primary ideal of O i.e. containing a power ms of the

maximal ideal of O.

Denoting by bI : XI → (X, 0) the normalized blow-up, we write D1, . . . , Ds for the

irreducible components of the reduced exceptional divisor D = |(bI)
−1(0)|, and vDi

for the valuation along Di.

Then we define (cf. [B-L-1] déf-prop. 1) an element f ∈ I to be v-superficial if,

and only if,

(2) vDi
(f) = vDi

(I) := inf{vDi
(g), g ∈ I} for all i = 1, . . . , s.

Denoting by Df :=
∑s

i=1 vDi
(f)Di, the total transform (f)∗ := (f ◦ bI) on XI may

be written as a sum of divisors:

(f)∗ = (f)′ + Df ,

with (f)′ the strict transform of f on XI .
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The first part of the following proposition is an avatar of a theorem by P.Samuel.

The second part is the geometric version announced in the title:

Proposition 1.1
i) Let O be a local noetherian ring of dimension d with infinite residue field O/m.

Let I be an m-primary ideal of O. There exists a d-tuple (f1, . . . , fd) of elements of I

such that the ideal (f1, . . . , fd) is a reduction of I, i.e. has the same integral closure

as I.

ii) In our setting, let O be the local ring of a reduced analytic germ (X, 0). The d-

tuples in i) are characterized by the two conditions that first, all the fi are v-superficial

in I and secondly, the intersection of their strict transforms (fi)
′ with the exceptional

divisor D on the normal blow up of I verifies:

(f1)
′ ∩ (f2)

′ ∩ · · · ∩ (fd)
′ ∩ D = ∅.

We call such a d-tuple a good d-tuple of v-superficial elements in I.

We will not give the proof here, but the reader should understand that ii) also

easily gives the proof of i) thanks to the characterisation on (1) above. In fact, the

same “geometric proof” works under the general hypotheses of i) but one has to work

on the non normalized blow-up (see [Bo] Chap. 2).

The original theorem by Samuel was formulated in terms of multiplicities (cf. [S-Z]

Chap.VIII thm.22) so that it seems relevant to mention the following:

Proposition 1.2. — Let O be analytic local integral domain, and I an m-primary ideal

of O. The multiplicity e(I/(f),O/(f)) = e(I,O) if, and only if, f is v-superficial.

This result can be deduced from a general formula for e(I/(f),O/(f)) due to

Flenner and Vogel in [Fl-Vo] (for any noetherian local ring).

2. General elements of an ideal

From now on, we restrict ourselves to a two-dimensional normal germ (S, 0).(1)

Definition 2.1. — Let O be the local ring of a germ of normal surface (S, 0) and let

I be an m-primary ideal of O. Adapting the notation from section 1, SI denotes the

normalized blow-up of I on (S, 0). We define an element f ∈ I to be general if, and

only if,

(i) f is v-superficial in I (cf. §1 (2)),

(ii) the strict transform (f)′ is a smooth curve transversal to the exceptional divi-

sor D in SI , which means that (f)′ does not go through singular points either of SI

or of D and that the intersection is transverse.

(1)For the elementary properties of normal surfaces we use here, see [Sn] § 2.6, and [B-L-2].
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Consider any resolution r : X → SI of the singularities of SI , good in the sense

that, denoting by π = bI ◦ r : X → (S, 0), the exceptional divisor Z = π−1(0) has

only normal-crossing singularities.

Denote by (f ◦π) = (f)′+Zf the decomposition of the total transform of (f) on X

into an exceptional (compact) part Zf and its strict transform denoted again (f)′.

Denoting ZI the divisor defined by I · OX on X , we easily get the following:

Proposition 2.2. — With the notation as above, f ∈ I is general if, and only if, its

total transform on X is such that:

α) its exceptional part is the generic one for the elements of I i.e. Zf = ZI ,

β) its strict transform is a (multi-germ of) smooth curves transversal to Z.

As a corollary to this proposition, it is possible (either by a computation of Euler-

Poincaré characteristic of covering spaces as indicated in [B-L-1] §4, which followed

[GS], or by an algebraic derivation from a Riemann-Roch formula as in [Mo] 2.1.4)

to compute the Milnor number (in the sense of [Bu-Gr]) of the complex curve defined

by any general element f ∈ I. We then get:

(3) µ(f) = µI := 1 − (ZI .(ZI − |ZI | − K)),

on any good resolution as defined before the proposition, where |ZI | (resp. K) denote

the reduced divisor associated to ZI (resp. the numerically canonical cycle) and ( · )

denotes the intersection product (see [B-L-1] or [Bo] chap. 3 for more details).

The main theorem in [B-L-1] is the converse implication:

Theorem 2.3. — Let (S, 0) a germ of normal surface singularity, and I an m-primary

ideal of OS,0. An element f ∈ I is general in the sense of 2.1 if, and only if, the

Milnor number µ(f) has the value µI prescribed by formula (3), which is also the

minimum Milnor number for the elements of I.

Remark 2.4. — Thanks to the algebraic computation of the Milnor number for general

elements which follows from [Mo] (see before formula (3)), theorem 2.3 is proved

without any topological argument, so that the proof fits to the setting of algebraic

geometry over any algebraically closed field of characteristic zero.

3. Two special cases

3.1. The case when (S, 0) is arbitrary but I = m. — For a germ (S, 0) of

normal surface, given an embedding (S, 0) ⊂ (CN , 0) defined by N generators of

the maximal ideal m of OS,0, we may consider the elements f ∈ m as hypersurface

sections of S. From this point of view, J. Snoussi studies in [Sn] what he calls the

general hyperplanes with respect to (S, 0). An hyperplane H 3 0 in CN is said to be

general for (S, 0) if, and only if, it is not the limit of hyperplanes tangent to the non
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singular locus of a small representative of (S, 0) in CN (loc. cit. déf. 2.2). He then

proves (loc. cit. thm.4.2.):

Theorem 3.1(Snoussi). — If (S, 0) is a normal surface singularity embedded in

(CN , 0), and if H is a hyperplane which does not contain an irreducible component of

the tangent cone CS,0 of (S, 0), then H is general if, and only if, the Milnor number

µ(H ∩ S, 0) is minimum among the Milnor numbers of hyperplane sections of (S, 0).

From the definition of v-superficial elements given in §1 (2), it is clear that the

equation of a hyperplane H defines a v-superficial element of the maximal ideal of

OS,0 if, and only if, H does not contain an irreducible component of CS,0. Hence, our

theorem 2.3 improves theorem 3.1 as follows (see (ii)):

Corollary 3.2(of our theorem 2.3)
(i) The equation of a general hyperplane in the sense of Snoussi defines a general

element of m in the sense of definition 2.1. Conversely, if one takes a general element

f ∈ m and any embedding of (S, 0) ⊂ (CN , 0) such that f is induced by a coordinate

function, f = 0 defines a general hyperplane.

(ii) In theorem 3.1, one may remove the hypothesis “H does not contain an irre-

ducible component of the tangent cone CS,0 of (S, 0)” since theorem 2.3 proved that

elements with µ minimum necessarily have this property.(2)

3.2. The case when (S, 0) = (C2, 0) and I is arbitrary. — Since the definition

of general element of an ideal given in def 2.1 was the same for an ideal I and its

integral closure I we consider only integrally closed ideals in the following discussion

i.e. ideals such that I = I.

These ideals were first studied by O. Zariski (see [S-Z] App. 5, where they are

rather called complete) as the algebrization of Enriques’theory of clusters of points.

For all this, we refer to the nice survey [LJ], and the book [Ca]:

A cluster K = (0i, νi)i is a set of points 0i infinitely near 0 i.e. lying above 0 in

a sequence of point blow-ups starting from (C2, 0), with ascribed multiplicities νi.

There is a one-to-one correspondence between the integrally closed ideals of (C2, 0)

and the clusters (Oi, νi) satisfying the so-called proximity relations of Enriques (see

[LJ] 5.1), also called consistent clusters in [Ca] (p. 124).

For such a cluster K = (0i, νi)i, the corresponding ideal IK is defined as the set of

f such that virtual multiplicity of the curve defined by f at the point 0i is at least νi

(cf. loc. cit.).(3)

(2)Note that this is exactly the tricky part of the argument in [B-L-1].
(3)In [Bo] Chap. 1, we explain how, once IK is known, the virtual multiplicities of the elements of I

coincide with the multiplicities of their weak transforms (cf. loc. cit. 1.1.6).

SÉMINAIRES & CONGRÈS 10
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Now f ∈ IK is said to go sharply through K if, and only if, f goes through

the 0i with effective multiplicity equal to the νi and has no singular points outside K

(cf. [Ca] p. 127).

Remark 3.3. — It is easy to see that two germs going sharply through K are equisin-

gular (cf. [Ca] p. 127), in the sense of the well-known equisingularity theory of germs

of plane curves.

The careful study in [LJ], compared to our proposition 2.2, yields:

Lemma 3.4. — For an integrally closed m-primary ideal I of OC2,0, corresponding to

a (consistent) cluster K, an element f ∈ I is general in the sense of our def. 2.1 if,

and only if, f goes sharply through K in the sense above.

Proof. — The proof of (ii)⇔(ii’) in [LJ] p. 360-361, gives exactly the equivalence

between the fact that f goes through the Oi with effective multiplicity νi and the fact

that Zf = ZI on the minimal resolution of the blow-up of (C2, 0) along I (notation

of prop. 2.2).

Now the fact that f has no singular points outside K gives that the strict transform

of f on S is transversal to the exceptional divisor by the argument of [LJ], proof of 6.1.

(applied to each branch of f corresponding to a simple ideal in the decomposition of I).

The converse is clear.

With this, we get from our theorem 2.3 and rem.3.3 the following:

Corollary 3.5. — For an integrally closed m-primary ideal I of OC2,0, all the elements

f ∈ I such that µ(f) has the generic value µI are equisingular.

Note that this µ-constant result for linear systems of plane curves is obtained

without using topology (cf. rem. 2.4). Another algebro-geometric proof of the same

result is derived from the theory of clusters in [Ca] §7.3. No such algebraic proof is

known for the much more general theorem of Lê (in [Le-1]) on arbitrary (non-linear)

families of germs of plane curves (cf. the remark on p. 361 in [Te-2]).

4. General elements and discriminants

We go back to our general setting i.e. (S, 0) is any germ of normal surface singu-

larity, I any m-primary ideal of OS,0 and we take (f, g) a good couple of v-superficial

elements in I (cf. prop. 1.1) so that J = (f, g) is a reduction of I.

Let p : (S, 0) → (C2, 0) be the projection corresponding to f, g as in the introduc-

tion, whose degree deg(p) is by definition the multiplicity e(f, g) = e(I).

Following Teissier (cf. [Te-1]), one defines the critical space (Cp, 0) of p by the

ideal ICp
= F0(Ωp) in OS,0, where Ωp denotes the module of relative differentials, and
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F0 the zeroth Fitting ideal. Then, denoting OCp,0 = OS,0/ICp
, one constructs the

discriminant space (∆p, 0) as the image of (Cp, 0) by p, defined in (C2, 0) by the ideal:

I∆p
:= F0(p∗OCp,0).

Now the space (∆p, 0) may be both non-reduced at a generic point of one of its

components, and have an embedded component at 0. We denote ∆div the divisorial

part of (∆p, 0) i.e. we do not consider the possible embedded component at 0 (the

reader will find more detail on all this in [B-L-2] §3).

The following lemma was called Lê-Greuel formula in [B-L-2] 3.9:

Lemma 4.1. — With the notation as above, for any line L : αx + βy = 0 in C2,

denoting by ( · )0 the intersection number at 0, we have the following equality:

(4) (∆div · L)0 = µ(p−1(L), 0) + deg(p) − 1,

where µ is the Milnor number in the sense of [Bu-Gr].

Remark 4.2. — From the definition 2.1 of general elements applied to J = (f, g), and

Bertini’s theorem, it is easy to see that for generic values of the numbers (α, β) ∈ C2

the element αf + βg of the linear pencil defined by f, g is a general element of the

ideal J (cf. also [B-L-1]).

Now with the formula (4) above, one deduces the following:

Corollary 4.3(of theorem 2.3). — Let J = (f, g) be an m-primary ideal of OS,0. The

elements αf + βg with (α, β) ∈ C2 which are general elements of the ideal J (in the

sense of def. 2.1) are exactly the inverse-images p−1(L) of the lines L : αx + βy = 0

transversal to the discriminant in lemma 4.1.

Proof. — The formula (4) gives the equivalence between minimal Milnor number in

the pencil and minimal intersection number (∆div · L)0; by remark 4.2 we already

know that the minimum Milnor number in J is obtained by elements of the pencil,

and we conclude by theorem 2.3.

Now, we may also compare two projections p = (f, g) and p′ = (f ′, g′) such that the

corresponding ideals (f, g) and (f ′, g′) have the same integral closure I. We then know

that deg(p) = deg(p′) = e(I) and from the foregoing, the generic Milnor numbers in

the two pencils defined by (f, g) and (f ′, g′) are both equal to the same number µI

as defined in formula (3). Then formula (4) yields:

Corollary 4.4. — Let (f, g) and (f ′, g′) be two m-primary ideals on OS,0 having the

same integral closure I, the multiplicity of the discriminant of the projections p defined

by f, g and p′ defined by f ′, g′ onto C2 are the same, equal to:

(5) e(∆p, 0) = µI + e(I) − 1.
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In the special case of any projection p = (f, g) with deg(p) equal to the multiplicity

e(S, 0) of the germ (S, 0) (which is by definition the multiplicity e(m)), by a theorem

of Rees (cf. [Te-2] p. 340), (f, g) is a reduction of m. Hence, for any such projection

we have the following formula:

(6) e(∆p, 0) = µ2 + µ1,

where µ2 is the generic Milnor number µm in m, and µ1 = e(S, 0) − 1. The notation

µi follows Teissier (cf. [Te-2] ex. 2.2 p. 423) where the µi(X, 0) denote in general the

Milnor number of the intersection of a hypersurface (X, 0) with a “general enough”

linear subspace of dimension i. Here our (S, 0) is no longer a hypersurface so that the

Milnor number is in the sense of [Bu-Gr].
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