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INVARIANT OPERATORS OF THE FIRST ORDER ON
MANIFOLDS WITH A GIVEN PARABOLIC STRUCTURE

by

Jan Slovák & Vladimı́r Souček

Abstract. — The goal of this paper is to describe explicitly all invariant first order
operators on manifolds equipped with parabolic geometries. Both the results and the
methods present an essential generalization of Fegan’s description of the first order
invariant operators on conformal Riemannian manifolds. On the way to the results,
we present a short survey on basic structures and properties of parabolic geometries,
together with links to further literature.

Résumé(Opérateurs invariants d’ordre 1 sur des variétés paraboliques). — Le but de l’ar-
ticle est de décrire explicitement tous les opérateurs différentiels invariants d’ordre
un sur les variétés munies d’une structure de géométrie parabolique (les espaces géné-
ralisés d’Élie Cartan). Les résultats, ainsi que les méthodes, généralisent un résultat
de Fegan sur la classification des opérateurs différentiels d’ordre un sur une variété
munie d’une structure conforme. Au passage, nous donnons un bref resumé des pro-
priétés fondamentales des espaces généralisés d’É. Cartan et du calcul différentiel sur
ces espaces.

1. Setting of the problem

Invariant operators appear in many areas of global analysis, geometry, mathem-
atical physics, etc. Their analytical properties depend very much on the symmetry
groups, which in turn determine the type of the background geometries of the under-
lying manifolds. The most appealing example is the so called conformal invariance of
many distinguished operators like Dirac, twistor, and Yamabe operators in Rieman-
nian geometry which lead to the study of all these operators in the framework of the
natural bundles for conformal Riemannian geometries. Of course, mathematicians
suggested a few schemes to classify all such operators and to discuss their properties
from a universal point of view, usually consisting of a combination of geometric and

2000 Mathematics Subject Classification. — 53C15, 53A40, 53A30, 53A55, 53C05.
Key words and phrases. — Invariant operator, parabolic geometry, Casimir operator.
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252 J. SLOVÁK & V. SOUČEK

algebraic tools. See e.g. [41, 42, 43, 6, 7, 8, 33, 9, 28, 10]. All of them combine, in
different ways, ideas of representation theory of Lie algebras with differential geometry
and global analysis.

In the context of problems in twistor theory and its various generalizations, the
more general framework of representation theory of parabolic subgroups in semisimple
Lie groups was suggested and links to the infinite dimensional representation theory
were exploited, see e.g. the pioneering works [4, 5]. The close relation to the Tanaka’s
theory (cf. [39, 40, 17, 44, 32, 13]) was established and we may witness a fruitful
interaction of all these ideas and the classical representation theory nowadays, see e.g.
[2, 3, 12, 14, 15, 16, 18, 22, 23, 24, 25].

1.1. Parabolic geometries. — The name parabolic geometry was introduced in
[26], following Fefferman’s concept of parabolic invariant theory, cf. [19, 20], and
it seems to be commonly adopted now. The general background for these geometries
goes back to Klein’s definition of geometry as the study of homogeneous spaces, which
play the role of the flat models for geometries in the Cartan’s point of view. Thus,
following Cartan, the (curved) geometry in question on a manifold M is given by a
first order object on a suitable bundle of frames, an absolute parallelism ω : TG → g

for a suitable Lie algebra g defined on a principal fiber bundle G →M with structure
group P whose Lie algebra is contained in g. On the Klein’s homogeneous spaces
themselves, there is the canonical choice — the left–invariant Maurer–Cartan form ω

while on general G, ω has to be equivariant with respect to the adjoint action and to
recover the fundamental vector fields. These objects are called Cartan connections and
they play the role of the Levi–Civita connections in Riemannian geometry in certain
extent. A readable introduction to this background in a modern setting is to be found
in [35]. The parabolic geometries, real or complex, are just those corresponding to
the choices of parabolic subgroups in real or complex Lie groups, respectively.

Each linear representation E of the (parabolic) structure group P gives rise to the
homogeneous vector bundle E(G/P ) over the corresponding homogeneous spaceG/P ,
and similarly there are the natural vector bundles G×P E associated to each parabolic
geometry on a manifold M . Analogously, more general natural bundles G ×P S are
obtained from actions of P on manifolds S.

Morphisms ϕ : (G, ω) → (G′, ω′) are principal fiber bundle morphisms with the
property ϕ∗ω′ = ω. Obviously, the construction of the natural bundles is functorial
and so we obtain the well defined action of morphisms of parabolic geometries on
the sheaves of local sections of natural bundles. In particular, the invariant operators
on manifolds with parabolic geometries are then defined as those operators on such
sections commuting with the above actions.

1.2. First order linear operators. — In this paper, first order linear differential
operators between natural vector bundles E(M), E′(M) are just those differential
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operators which are given by linear morphisms J1E(M) → E′(M). For example, for
conformal Riemannian geometries this means that the (conformal) metrics may enter
in any differential order in their definition.

The mere existence of the absolute parallelism ω among the defining data for a
parabolic geometry on M yields an identification of all first jet prolongations J1EM
of natural bundles with natural bundles G ×P J

1E for suitable representations J1E of
P , see 2.4 below. Moreover, there is the well known general relation between invariant
differential operators on homogeneous vector bundles and the intertwining morphisms
between the corresponding jet modules. Thus, we see immediately that each first order
invariant operator between homogeneous vector bundles overG/P extends canonically
to the whole category of parabolic geometries of type (G,P ). We may say that they
are given explicitly by their symbols (which are visible on the flat model G/P ) and
by the defining Cartan connections ω.

On the other hand, the invariants of the geometries may enter into the expressions
of the invariant operators, i.e. we should consider also all possible contributions from
the curvature of the Cartan connection ω. This leads either to operators which are
not visible at all on the (locally) flat models, or to those which share the symbols
with the above ones and again the difference cannot be seen on the flat models.

In this paper we shall not deal with such curvature contributions. In fact, we
classify all invariant first order operators between the homogeneous bundles over the
flat models, which is a purely algebraic question. In the above mentioned sense, they
all extend canonically to all curved geometries.

At the same time, there are strict analogies to the Weyl connections from conformal
Riemannian geometries available for all parabolic geometries and so we shall also be
able to provide explicit universal formulae for all such operators from the classification
list in terms of these linear connections on the underlying manifolds.

This was exactly the output of Fegan’s approach in the special case of G =
SO(m + 1, 1), P the Poincaré conformal group, which corresponds to the conformal
Riemannian geometries, [21]. Since the conformal Riemannian geometries are uni-
formly one–flat (i.e. the canonical torsion vanishes), this also implies that all first
order operators on (curved) conformal manifolds, which depend on the conformal
metrics up to the first order, are uniquely given by their restrictions to the flat con-
formal spheres. We recover and vastly extend his approach. In particular, we prove the
complete algebraic classification for all parabolic subgroups in semisimple Lie groups
G. Moreover, rephrasing the first order dependence on the structure itself by the as-
sumption on the homogeneity of the operator, we obtain the unique extension of our
operators for all parabolic geometries with vanishing part of torsion of homogeneity
one.

We also show that compared to the complexity of the so called standard operators
of all orders in the Bernstein–Gelfand–Gelfand sequences, constructed first in [16] and
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developed much further in [11], the original Fegan’s approach to first order operators
is surprisingly powerful in the most general context.

Although the algebraic classification of the invariant operators does not rely on the
next section devoted to a survey on general parabolic geometries, we prefer to include
a complete line of arguments leading to full understanding of the curved extensions of
the operators and their explicit formulae in terms of the underlying Weyl connections.

2. Parabolic geometries, Weyl connections, and jet modules

2.1. Regular infinitesimal flag structures. — The homogeneous models for
parabolic geometries are the (real or complex) generalized flag manifolds G/P with
G semisimple, P parabolic. It is well known that on the level of the Lie algebras, the
choice of such a pair (g, p) is equivalent to a choice of the so called |k|–grading of a
semisimple g

g = g−k ⊕ · · · ⊕ g−1 ⊕ g0 ⊕ · · · ⊕ gk

p = g0 ⊕ · · · ⊕ gk

g− = g−k ⊕ · · · ⊕ g−1 � g/p.

Then the Cartan–Killing form provides the identification g∗i = g−i and there is the
Hodge theory on the cohomologyH∗(g−,W) for any g–module W, cf. [40, 44, 13, 16].

Now, the Maurer–Cartan form ω distributes these gradings to all frames u ∈ G

and all P–equivariant data are projected down to the flag manifolds G/P . This con-
struction goes through for each Cartan connection of type (G,P ) and so there is the
filtration

(1) TM = T−kM ⊃ T−k+1M ⊃ · · · ⊃ T−1M

on the tangent bundle TM of each manifold M underlying the principal fiber bundle
G → M with Cartan connection ω ∈ Ω1(G, g), induced by the inverse images of the
P–invariant filtration of g. Moreover, the same absolute parallelism ω induces the
reduction of the structure group of the associated graded tangent bundle

GrTM = (T−kM/T−k+1) ⊕ · · · ⊕ (T−2M/T−1M) ⊕ T−1M

to the reductive part G0 of P . In particular, this reduction introduces an algebraic
bracket on GrTM which is the transfer of the G0–equivariant Lie bracket in g−k ⊕
· · · ⊕ g−1.

Next, let M be any manifold, dimM = dim g−. An infinitesimal flag structure of
type (G,P ) on M is given by a filtration (1) on TM together with the reduction of the
associated graded tangent bundle to the structure group G0 of the form GrTxM �
Gr g−, with the freedom in G0, at each x ∈M .

Let us write { , }g0 for the induced algebraic bracket on GrTM . The infinitesimal
flag structure is called regular if [T iM,T jM ] ⊂ T i+jM for all i, j < 0 and the algebraic
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bracket { , }Lie on GrTM induced by the Lie brackets of vector fields on M coincides
with { , }g0 . It is not difficult to observe that the infinitesimal structures underlying
Cartan connections ω are regular if and only if there are only positive homogeneous
components of the curvature κ of ω, cf. [34, 14].

The remarkable conclusion resulting from the general theory claims that for each
regular infinitesimal flag structure of type (G,P ) on M , under suitable normalization
of the curvature κ (its co–closedness), there is a unique Cartan bundle G →M and a
unique Cartan connection ω on G of type (G,P ) which induces the given infinitesimal
flag structure, up to isomorphisms of parabolic geometries and with a few exceptions,
see [40, 32, 13] or [14], sections 2.7–2.11., for more details.

2.2. Examples. — The simplest and best known situation occurs for |1|–graded
algebras, i.e. g = g−1 ⊕ g0 ⊕ g1. Then the filtration is trivial, TM = T−1M , and
the regular infinitesimal flag structures coincide with standard G0–structures, i.e.
reductions of the structure group of TM to G0. The examples include the conformal,
almost Grassmannian, and almost quaternionic structures. The projective structures
correspond to g = sl(m+ 1,R), g0 = gl(m,R), and this is one of the exceptions where
some more structure has to be chosen in order to construct the canonical Cartan
connection ω. The series of papers [15] is devoted to all these geometries.

Next, the |2|–graded examples include the so called parabolic contact geometries
and, in particular, the hypersurface type non–degenerate CR-structures. See e.g. [44,
14] for more detailed discussions. Further examples of geometries are given by the
Borel subalgebras in semisimple Lie algebras, and they are modeled on the full flag
manifolds G/P .

2.3. The invariant differential. — The Cartan connection ω defines the constant
vector fields ω−1(X) on G, X ∈ g. They are defined by ω(ω−1(X)(u)) = X , for all
u ∈ G. In particular, ω−1(Z) is the fundamental vector field if Z ∈ p. The constant
fields ω−1(X) with X ∈ g− are called horizontal.

Now, let us consider any natural vector bundle EM = G ×P E. Its sections may be
viewed as P–equivariant functions s : G → E and the Lie derivative of functions with
respect to the constant horizontal vector fields defines the invariant derivative (with
respect to ω)

∇ω : C∞(G,E) → C∞(G, g∗− ⊗ E)

∇ωs(u)(X) = Lω−1(X)s(u).

We also write ∇ω
Xs for values with the fixed argument X ∈ g−.

The invariant differentiation is a helpful substitute for the Levi–Civita connections
in Riemannian geometry, but it has an unpleasant drawback: it does not produce P–
equivariant functions even if restricted to equivariant s ∈ C∞(G,E)P . One possibility
how to deal with that is to extend the derivative to all constant fields, i.e. to consider
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∇ : C∞(G,E) → C∞(G, g∗ ⊗ E) which preserves the equivariance. This is a helpful
approach in the so called twistor and tractor calculus, see e.g. [12, 11]. In this paper,
however, we shall stick to horizontal arguments only.

An easy computation reveals the (generalized) Ricci and Bianchi identities and a
quite simple calculus is available, cf. [16, 14, 11].

2.4. Jet modules. — Let us consider a fixed P–module E and write λ for the action
of p on E. The action of g ∈ G on the sections of E(G/P ) is given by s �→ s ◦ �g−1 ,
where � is the left multiplication on G, and this defines also the action of P on the
one–jets j1os at the origin. A simple check reveals the formula for the induced action
of the Lie algebra p on the vector space J1E = E ⊕ (g∗− ⊗ E) of all such jets:

(2) Z · (v, ϕ) =
(
λ(Z)(v), λ(Z) ◦ ϕ− ϕ ◦ ad−(Z) + λ(adp(Z)( ))(v)

)
where the subscripts at the adjoint operator indicate the splitting of the values ac-
cording to the components of g. In particular, the action of the reductive part G0 of
P is given by the obvious tensor product, while the nilpotent part mixes the values
with the derivatives. We call the resulting P–module J1E the first jet prolongation
of the module E. Moreover, each P–module homomorphism α : E → F extends to a
P–module homomorphism J1α : J1E → J1F by composition on values.

Another simple computation shows that the invariant differentiation ∇ω defines
the mapping ι : C∞(G,Eλ)P → C∞(G, J1Eλ)P

ι(s)(u) = (s(u), (X �−→ ∇ωs(u)(X)))

which yields diffeomorphisms J1EM � G ×P J
1E, for all parabolic geometries (G, ω).

Moreover, for each fiber bundle morphism f : EM → FM given by a P–module
homomorphism α : E → F, the first jet prolongation J1f corresponds to the P–
module homomorphism J1α. See e.g. [16, 37] for more detailed exposition.

Iteration of the above consideration leads to the crucial identification of semi–
holonomic prolongations J̄kEM of natural vector bundles with natural vector bundles
associated to semi–holonomic jet modules J̄kE. Thus, P–module homomorphisms
Ψ : J̄kE → F always provide invariant operators by composition with the iterated
invariant derivative ∇ω . Such operators are called strongly invariant, cf. [16]. This
is at the core of the general construction of the invariant operators of all orders in
[15, 16]. In this paper, however, only first order operators are treated and so we skip
more explicit description of the higher order jet modules.

2.5. Weyl connections. — Let (G, ω) be a parabolic geometry on a smooth mani-
fold M , P the structure group of G and G0 its reductive part. Let us write P+ for the
exponential image of p+ = g1⊕· · ·⊕gk and consider the quotient bundle G0 = G/P+.
Thus we have the tower of principal fiber bundles

G π−−−−→ G0
p0−−−−→ M
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with structure groups P+ and G0 and, of course, there is the action of G0 on the total
space of G.

For each smooth parabolic geometry, there exist global G0–equivariant sections σ
of π and the space of all of them is an affine space modeled on Ω1(M), the one forms
on the underlying manifold, see [14]. Each such section σ is called a Weyl structure
for the parabolic geometry on M .

Each Weyl structure σ provides the reduction of the structure group P to its
reductive part G0 and the pullback of the Cartan connection, which splits according
to the values:

σ∗ω = σ∗(ω−) + σ∗(ω0) + σ∗(ω+).

The negative part σ∗ω− yields the identification of TM and GrTM and may be also
viewed as the soldering form of G0. The g0 component is a linear connection on M

and we call it the Weyl connection. Let us also notice that the non–positive parts
provide a Cartan connection of the type (G/P+, P/P+). In particular, the usual Weyl
connections are recovered for the conformal Riemannian geometries.

Now, consider a P–module E and the natural bundle EM . Chosen a Weyl structure
σ, we obtain EM = G0 ×G0 E and we have introduced two differentials on sections:
the invariant differential

(∇ωs) ◦ σ : (u,X) �−→ Lω−1(X)s(σ(u))

and the covariant differential of the Weyl connection

∇σ(s ◦ σ) : (u,X) �−→ L(σ∗(ω−+ω0))−1(X)(s ◦ σ)(u).

If the action of the nilpotent part P+ on E is trivial (in particular if E is irreducible),
then the restriction of the invariant differential to the image of σ clearly coincides
with the covariant differential with respect to the Weyl connection.

Obviously, each first order differential operator C∞(EM) → C∞(FM) may be
written down by means of the invariant differential. If it is invariant, then it comes
from a P–module homomorphism J1E → F, but then it must be given by the same
formula in terms of all Weyl connections. On the other hand, a change of the Weyl
structure σ implies also the change of the Weyl connection. The general formula
for the difference in terms of the one–forms modeling the space of Weyl structures
is given in [14], Proposition 3.9. We shall need a very special case only which will
be easily deduced below. In particular, we shall see that if a formula for first order
operator in terms of the Weyl connections does not depend on the choice, then it is
given by a homomorphism. This shows that the usual definition of the invariance in
conformal Riemannian geometry coincides with our general categorical definition in
the first order case. There are strong indications that this observation is valid even
for non–linear operators of all orders, cf. [36].
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3. Algebraic characterization of first order operators

3.1. Restricted jets. — The distinguished subspaces T−1M in the tangent spaces
of manifolds with parabolic geometries suggest to deal with partially defined derivat-
ives — those in directions in T−1M only.

In computations below, we shall often use actions of p on various modules. To avoid
an awkward notation, the action will be denoted by the symbol ·, it is easy to see
from the context what are the modules considered. We shall also write Eλ for the
p–module corresponding to the representation λ : p → GL(Eλ), and EλM → M will
be the corresponding natural vector bundle over M . (In some context, λ may also be
the highest weight determining an irreducible module.)

First we rewrite slightly the p–action (2) on J1Eλ = Eλ⊕(g∗−⊗Eλ). Recall that the
Killing form provides the dual pairing g∗− � p+ and so we have for all Y ⊗v ∈ p+⊗Eλ,
X ∈ g−, Z ∈ p

(Y ⊗ v)(ad−(Z)(X)) = 〈ad−(Z)(X), Y 〉v =

= 〈[Z,X ], Y 〉v = −〈X, [Z, Y ]〉v = −([Z, Y ] ⊗ v)(X).

For a fixed dual linear basis ξα ∈ g−, ηα ∈ p+ we can also rewrite the term

λ(adp(Z)(X))(v) =
∑
α

ηα ⊗ [Z, ξα]p · v.

Thus the 1–jet action of Z ∈ p on J1Eλ = Eλ ⊕ (p+ ⊗ Eλ) is

J1λ(Z)(v0, Y1 ⊗ v1) =
(
Z · v0, Y1 ⊗ Z · v1 + [Z, Y1] ⊗ v1 +

∑
α η

α ⊗ [Z, ξα]p · v0
)
.

Let p2+ denote the subspace [p+, p+] in p. There is the p–invariant vector subspace
{0} ⊕ (p2+ ⊗ Eλ) ⊂ J1Eλ and we define the p-module

J1REλ = J1Eλ/({0} ⊕ (p2+ ⊗ Eλ)) � Eλ ⊕ ((p+/p2+) ⊗ Eλ) � Eλ ⊕ (g∗−1 ⊗ Eλ).

The induced action of Z ∈ p on J1RE is

J1Rλ(Z)(v0, Y1 ⊗ v1) =
(
Z.v0, Y1 ⊗ Z.v1 + [Z, Y1]g1 ⊗ v1 +

∑
α′ ηα′ ⊗ [Z, ξα′ ]p · v0

)
where ηα′

and ξα′ are dual bases of g±1 and Y ∈ g1; v0, v1 ∈ Eλ. The latter formula
gets much simpler if λ is a G0-representation extended trivially to the whole P . Then
for each W ∈ g0, Z ∈ g1

J1Rλ(W )(v0, Y1 ⊗ v1) = (W · v0, Y1 ⊗W · v1 + [W,Y1] ⊗ v1)

J1Rλ(Z)(v0, Y1 ⊗ v1) =
(
0,
∑

α′ ηα′ ⊗ [Z, ξα′ ] · v0
)

while the action of [p+, p+] is trivial. Exactly as with the functor J1, the action of J1R
on (G0, p)–module homomorphisms is given by the composition.

The associated fiber bundle J1REM : G ×P J1REλ is called the restricted first jet
prolongation of the natural bundle EM . The invariant differential provides a natural
mapping J1EM → J1REM .
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The inductive construction of the semi–holonomic jet prolongations of (G0, p)–
modules can be now repeated with the functor J1R. The resulting p–modules are the
equalizers of the two natural projections J1R(J̄k

REλ) → J̄k
REλ and, as g0-modules, they

are equal to

J̄k
REλ =

k⊕
i=0

(⊗i
g1 ⊗ Eλ).

This construction leads to restricted semi-holonomic prolongations of EλM and Eλ

but we shall need only the first order case here.

3.2. Lemma. — Let E and F be irreducible P–modules. Then a G0 module homo-
morphism Ψ : J1E → F is a P–module homomorphism if and only if Ψ factors
through J1RE and for all Z ∈ g1

(3) Ψ

(∑
α′

ηα′ ⊗ [Z, ξα′ ] · v0

)
= 0,

where ηα′
, ξα′ is a dual basis of g±1.

Proof. — Since both E and F are irreducible, the action of p+ on both is trivial.
Thus, each P–homomorphism Ψ must vanish on the image of the P–action on J1E.
Moreover, either E is isomorphic to F (and then Ψ is given by the projection to values
composed with the identity), or Ψ is supported in the G0–submodule p+⊗E. Further,
recall there is the grading element E in the center of g0 which acts by j on each gj ⊂ g.
The intertwining with the grading element implies that Ψ is in fact supported in gj⊗E

for suitable j > 0.
Now, let us fix dual basis ηα, ξα of p+ and g−. For all Z ∈ gi, i > 0, and (v0, Y ⊗

v1) ∈ J1Eλ, the formula (2) yields the condition

0 = Ψ

(
[Z, Y ] ⊗ v1 +

∑
α

ηα ⊗ [Z, ξα]g0 · v0

)
.

In particular, let us insert v0 = 0 and recall that the whole p+ is spanned by g1. Thus
we obtain Ψ(gj ⊗ E) = 0 for all j > 1 and this means that Ψ factors through the
restricted jets, as required.

Now, looking again at the jet–action (2), we derive the condition (3). On the
other hand, each G0–homomorphism which factors through the derivative part of the
restricted jets and satisfies (3) clearly is a P–module homomorphism.

In the Lemma above, we have considered an endomorphism of Φ from g1 ⊗ Eλ

defined by

(4) Φ(Z ⊗ v) :=
∑
α′

ηα′
⊗ [Z, ξα′ ] · v.

The Lemma is saying that the G0-homomorphism Ψ is a P -module homomorphism
if and only if it annihilates the image of Φ. By the Schur lemma, the map Φ is
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a multiple of identity on any irreducible piece in the tensor product. In the next
section, we shall compute the corresponding values of Φ on irreducible components
using known formulae for Casimir operators.

3.3. The explicit formulae. — The above explicit description of the P–module
homomorphisms Ψ represent at the same time explicit formulae for the invariant
operators in terms of the Weyl connections. Indeed, we have simply to write down
the composition Ψ ◦ ∇ using the frame form of the covariant derivative with respect
to any of the Weyl connections. By the general theory discussed in Section 2, such
formula does not depend on the choice of the Weyl connection ∇ and all invariant
first order operators have this form, up to possible curvature contributions.

4. Casimir computations

In Lemma 3.2, we derived an algebraic condition for first order invariant operators
on sections of natural bundles for a given parabolic geometry. Here we want to trans-
late this algebraic condition into an explicit formula for highest weights of considered
modules using Casimir computations.

4.1. Representations of reductive groups. — Irreducible representations of a
(complex) semisimple Lie algebra g are classified by their highest weights λ ∈ h∗,

where h is a chosen Cartan subalgebra of g.

A reductive algebra g0 = a ⊕ gs
0 is a direct sum of a commutative algebra a and

a semisimple algebra gs
0 (which can be trivial). Irreducible representations of g0 are

tensor products of irreducible representations of both summands, irreducible repres-
entations of a are characterized by an element of a∗.

In the paper, we shall consider the situation where g is a |k|-graded (complex)
semisimple Lie algebra and g0 is its reductive part. The grading element E has eigen-
values j on gj and a Cartan algebra h and the set Σ of simple roots can be chosen
in such a way that E ∈ h ⊂ g0 and all positive root spaces of g are contained in the
parabolic subalgebra p = g0 ⊕ p+. In this situation, irreducible representations of g0

are characterized by an element λ ∈ h∗ with the property that λ restricted to h ∩ gs
0

is a dominant integral weight for gs
0. Such a highest weight λ will be called dominant

weight for p. Moreover, we have at our disposal invariant (nondegenerate) forms (·, ·)
for g, their restrictions to h are nondegenerate as well. It will be convenient (see e.g.
[9, 15]) to normalize the choice of the invariant form by the requirement (E,E) = 1
(so that it is the Killing form scaled by the factor (2 dim g+)−1). The restriction of
this form to g0 is nondegenerate and the spaces gj are dual to g−j, j > 0.

4.2. A formula for the Casimir operator. — Let us suppose that a parabolic
subalgebra p in a (complex) semisimple Lie algebra g is given. We need below a formula
for the value of the quadratic Casimir element c on an irreducible representation of
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the reductive part g0 of p characterized by a weight λ ∈ h∗. Such a formula is well
known for the case of semisimple Lie algebra and can be easily adapted for our case.

Lemma. — Let g0 be the reductive part of a (complex) graded semisimple Lie algebra
g. Let Π0 be the set of all positive roots α ∈ h∗ for g for which gα ⊂ g0 and let us
define ρ0 by ρ0 = 1

2

∑
α∈Π0

α (for the Borel case ρ0 = 0).
Let c be the quadratic Casimir element in the universal enveloping algebra of g0

(with respect to the chosen invariant form (·, ·) on g) and let Eλ, λ ∈ h∗ be an irredu-
cible representation of g0. Then the value of c on Eλ is given by

c = (λ, λ + 2ρ0).

Proof. — Due to the fact that g0 is the reductive part of g and that we use the invari-
ant form (·, ·) for the whole algebra g, the proof follows the same lines of argument
as in the semisimple case (see [27], p.118]).

Let {ha}, resp. {h̃a} will be dual bases for h and let for any positive root with
gα ⊂ g0, elements xα, resp. zα be generators of gα, resp. g−α dual with respect to
(·, ·). Then the Casimir element c for g0 is given by

c =
∑

a

h̃aha +
∑

α∈Π0

(xαzα + zαxα).

Let vλ be a highest weight vector in Eλ. The action of the first summand
∑

a h̃aha

on vλ is multiplication by the element (λ, λ) and the action of xαzα + zαxα is given
by multiplication by (λ, α). The action of c on the whole space is the same as on vλ

by the Schur lemma.

4.3. Casimir computations. — In the algebraic condition for invariant first order
operators (see Section 3), the operator Φ defined by the formula

Φ(Z ⊗ v)(X) = [Z,X ] · v =

(∑
α′

ηα′ ⊗ [Z, ξα′ ]v

)
(X), Z ∈ g1, X ∈ g−1, v ∈ Eλ

was used. We shall now give an explicit description of the action of the operator Φ.

Lemma. — Let Eλ be an irreducible representation of g0 characterized by λ ∈ h∗

and let g1 =
∑

j g
j
1 be a decomposition of g1 into irreducible g0-submodules. Highest

weights of individual components g
j
1 will be denoted by αj . Suppose that g1 ⊗ Eλ =∑

j

∑
µj

Ej
µj
be a decomposition of the product into irreducible g0-modules and πλ,µj

be the corresponding projections. Let ρ0 be the half sum of positive roots for gs
0 as

defined in the previous lemma.
Then for all v ∈ Eλ,

Φ(Z ⊗ v)(X) = [Z,X ] · v =
∑

j

∑
µj

cλµjπλµj (Z ⊗ v)(X),
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where

cλµj =
1
2

[(µj , µj + 2ρ0) − (λ, λ + 2ρ0) − (αj , αj + 2ρ0)].

Proof. — It is sufficient to prove the claim for each individual component g
j
1 separ-

ately, hence we shall consider one of these components and we shall drop the index j
everywhere. Let {ξα}, resp. {ηα} be dual bases of g−1, resp. g1. Similarly, let {Ya},
resp. {Ỹa} be dual bases of g0. The invariance of the scalar product implies

[Z, ξα] =
∑

a

(Ỹa, [Z, ξα])Ya =
∑

a

([Ỹa, Z], ξα)Ya,

and

Φ(Z⊗v) =
∑

i

ηα ⊗ [Z, ξα] ·v =
∑

i

ηα ⊗
(∑

a

([Ỹa, Z], ξα)Ya

)
·v =

∑
a

[Ỹa, Z]⊗Ya ·v.

The same formula holds also in the case when the role of bases {Ya} and {Ỹa} is
exchanged.

Using the definition of the Casimir operator c and the previous Lemma, it is suffi-
cient to note that∑

a

Ỹa Ya · (Z ⊗ s) =
∑

a

(ỸaYa · Z) ⊗ s+
∑

a

Z ⊗ (ỸaYa · s)

+
∑

a

(Ỹa · Z) ⊗ (Ya · s) + (Ya · Z) ⊗ (Ỹa · s)

(as before, the symbol · here means the action on different modules used in the
formula, for example Ya · Z ≡ [Ya, Z]).

4.4. A characterization of invariant first order operators. — Now it is pos-
sible to give the promised characterization of the first order operators (up to curvature
terms in the sense explained in Section 1).

Theorem. — Let g be a (real) graded Lie algebra and gC its graded complexification.
Then gj = g ∩ gC

j .

Let Eλ be a (complex) irreducible representation of g0 with highest weight λ and let
gC
1

∑
j g

j
1 be a decomposition of gC

1 into irreducible g0-submodules and let αj be highest
weights of g

j
1. Suppose that

g1 ⊗R Eλ = g
C

1 ⊗C Eλ =
∑

j

∑
µj

E
j
µj

be a decomposition of the product into irreducible g0-modules and let πλ,µj be the
corresponding projections. Let us denote (as in Lemma 4.2) the half sum of positive
roots for g0 by ρ0 and let us define constants cλ,µj by

cλµj =
1
2

[(µj , µj + 2ρ0) − (λ, λ + 2ρ0) − (αj , αj + 2ρ0)].
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Then the operator Dj,µj : πλ,µj ◦∇ω is an invariant first order differential operator
if and only if cλ,µj = 0. Moreover, all first order invariant operator acting on sections
of Eλ are obtained (modulo a scalar multiple and curvature terms) in such way.

Proof. — The first part of the claim follows from the previous Lemmas and results of
Section 3. If D is any first order invariant differential operator, then its restriction to
the homogeneous model is given by a P–homomorphism from the space of restricted
jets of order one to a P–module. This homomorphism then defines a strongly invariant
first order operator D̃ on any manifold with a given parabolic structure. The operators
D and D̃ can differ only by a scale or possible curvature terms.

4.5. The Borel case. — There are two extreme cases of the parabolic subalgebras
— maximal ones and the Borel subalgebra. We shall first discuss one of these extremal
cases. In this subsection, symbol g will denote the complex graded Lie algebra which
is the complexification of the real graded Lie algebra in question.

Corollary. — Let Π denote the set of simple roots for g. Let λ be the highest weight
of an irreducible g0-module. An invariant first order operator between sections of Eλ

and Eµ exists if and only if the following two conditions are satisfied:
1) There exists a simple root α ∈ Π such that µ = λ+ α.

2) (λ, α) = 0.

Proof. — Note first that the set of all roots α with gα ⊂ g1 is exactly the set of all
simple roots. Hence g1 in the Borel case is a direct sum of irreducible one dimen-
sional subspaces gα with α ∈ Π. The tensor product of Eλ with gα is irreducible
and isomorphic to Eλ+α (because gα is one dimensional), hence no projections are
involved.

In the Borel case, the corresponding element ρ0 is trivial. Hence the condition in
Theorem 4.4 reduces to the condition

0 = (λ+ α, λ + α) − (λ, λ) − (α, α) = 2(λ, α).

4.6. The case of a maximal algebra. — Let us now consider an opposite extreme
case, where the parabolic subalgebra of g is maximal, i.e. it corresponds to a one-
point subset of the set of simple roots for g (there is just one node crossed in the
usual Dynkin notation for parabolic subalgebras). Then g0 = a ⊕ gs

0, h = a ⊕ hs with
hs = h ∩ gs

0 and the commutative subalgebra a is generated by the grading element
E. Moreover, it is easy to see that the decomposition above is orthogonal. Indeed, the
space hs is generated by commutators [xα, zα], where xα, resp. zα are generators of
the root space gα ⊂ g0, resp. g−α ⊂ g0 and we have (E, [xα, zα]) = ([E, xα], zα) = 0.

Let λE be the element of h∗ representing the grading element E under the duality
given by the invariant bilinear form. Note that λE belongs (inside the original real
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graded Lie algebra) to the noncompact part of g, hence representations of g0 with the
highest weight w.λE integrate to representations of P for any w ∈ R.

The orthogonal decomposition h = a⊕ hs induces the dual orthogonal decomposi-
tion h∗ = a∗⊕(hs)∗, where the embedding of both summands is defined by requirement
that a∗, resp. (hs)∗ annihilates hs, resp. a. The one dimensional space a∗ is generated
by λE . Any weight λ ∈ h∗ can be then written as λ = wλE +λ′ with w ∈ C, λ′ ∈ (hs)∗.

In this case, we shall consider (complex) irreducible representations of g0, which
are tensor products of one dimensional representation with highest w.λE , w ∈ R (w is
a generalized conformal weight) with an irreducible representation Vλ′ , where λ′ is a
dominant integral weight for gs

0. Any such representation integrates to a representation
of P (nilpotent part acting trivially) and we shall denote such representation by
Eλ′(w).

In [15], the case of almost Hermitean symmetric structure was considered. This is
just a special case of maximal parabolic subalgebras, which are moreover |1|-graded
Lie algebras (but note that there is a lot of cases of |k|-graded Lie algebras with
k > 1 which are maximal). In the |1|-graded case (see [15], Part III; see also [21] for
the conformal case), it was proved that for any projection to an irreducible piece of
the gs

0-module Eλ ⊗ g1, there is a unique conformal weight w such that the resulting
first order operator is invariant. The value of w was computed using suitable Casimir
expressions. We are going to show that computations and formulae proved there can
be extended without any substantial change to the general case of |k|-graded Lie
algebra.

4.7. The general case. — In the general case, it is possible again to consider the
orthogonal decomposition g0 = 〈E〉C ⊕ g′0, and h∗ = 〈λE〉C ⊕ (h′)∗, where elements of
(h′)∗ annihilate E. Hence again any weight λ ∈ h∗ can be decomposed as λ = wλE +λ′

with w ∈ C, λ′ ∈ (h′)∗ (note that g′0 is again reductive but not necessarily semisimple).
We are now able to prove a generalization of facts proved first by Fegan in conformal
case and then extended to |1|-graded case in [15].

Corollary. — Let p be a parabolic subalgebra of g. Let Eλ be an irreducible repres-
entation of g0 characterized by λ ∈ h∗ and let g1 =

∑
j g

j
1 be a decomposition of g1

into irreducible g0-submodules. Highest weights of individual components g
j
1 will be

denoted by αj . Suppose that g1⊗Eλ =
∑

j

∑
µj

Ej
µj
be a decomposition of the product

into irreducible g0-modules and πλ,µj be the corresponding projections. Let ρ0 be the
half sum of positive roots for gs

0 as defined in Lemma 4.3.
Suppose that weights λ, αj and µj are split as

λ = wλE + λ′, αj = λE + α′
j , µj = (w + 1)λE + µ′

j .
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Then for all v ∈ Eλ(w), Z ∈ g1

Φ(Z ⊗ v)(X) = [Z,X ] · v =
∑
µ′

(w − cλ′µ′)πλ′µ′(Z ⊗ v)(X),

where

cλ′µ′ = −1
2

[(µ′, µ′ + 2ρ0) − (λ′, λ′ + 2ρ0) − (α′, α′ + 2ρ0)].

Hence the operator Dλµ = πλµ ◦ ∇ω is invariant first order operator if and only if
w = cλ′µ′ .

Proof. — For simplicity of notation, we shall drop subscripts j everywhere. We have
(λ′+wλE , λ

′+wλE +2ρ0) = (λ′, λ′+2ρ0)+2w(λE , λ
′)+w2; similar formulae hold for

terms with µ (with weight w+1) and for α (with weight 1). Using (w+1)2−w2−1 =
2w, we get

(µ, µ+2ρ0)−(λ, λ+2ρ0)−(α, α+2ρ0) = 2w+(µ′, µ′+2ρ0)−(λ′, λ′+2ρ0)−(α′, α′+2ρ0)

and the claim follows.

In general case, the reductive algebra g0 is reductive and may be split into its
commutative and semisimple part. Suppose that g0 = a ⊕ g′0 is such an orthogonal
splitting. It induces the splitting h = a ⊕ h′ of the Cartan subalgebra. Every weight
λ ∈ h∗ can be hence again split into a sum λ = λ0 + λ′ with λ0 ∈ (a)∗, λ′ ∈ (h′)∗.
The Corollary above is saying that we can, for a given λ and µ to shift λ, resp. µ
by a multiple of λE to λ̃, resp. µ̃ in such a way that there is an invariant first order
operator from Eλ̃ to Eµ̃.

It is possible to consider more general changes of λ, resp. µ by adding to them
an arbitrary element ν ∈ (a)∗ and to ask whether we can have an invariant operator
between spaces with shifted values of highest weights. It is an easy calculation to
see that the relation cλµj = 0 in Theorem 4.4 yields one linear relation for ν (the
quadratic terms cancel each other). Hence we have a linear subspace of codimension
1 in a∗ of such elements ν.

5. Multiplicity one result

A tensor product of two irreducible representations of the reductive group g0 de-
composes into irreducible components and the projections to these components are
key tools in the construction of invariant first order operators. Important informa-
tion concerning such decompositions is multiplicity of individual components in their
isotopic components. The best situation is when all multiplicities are one, then all ir-
reducible components (as well as the corresponding projections) are defined uniquely,
without any ambiguity. In this section, we are going to prove such multiplicity one
result for the tensor product used in the definition of invariant operators and we are
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going to give full information on highest weights of individual components in such
decompositions for any classical graded Lie algebra.

5.1. Simple factors of g0. — Our starting point for a choice of structure in ques-
tion is a real graded Lie algebra g. For the discussion of (complex) finite dimensional
representations, we can simplify the situation and to work with the complexification
gC. There are two main cases to be considered. Either g is a real form of gC, or it is
a complex graded Lie algebra considered as a real one. In the latter case, there is no
need to go through complexification in subsequent discussions. So we shall concentrate
in this section to the former case.

So let us suppose that g is a real form of a complex graded Lie algebra of classical
type and that (g0)C is just (gC)0. Hence any (complex) irreducible g0–module is at
the same time (gC)0–module and vice versa. Consequently, the discussion of decom-
position of the tensor products of irreducible g0–modules with irreducible components
of (gC)1 � (g1)C can be done completely in the setting of complex graded Lie algeb-
ras. Hence we shall change the notation and we shall denote in this section by g a
complex simple graded Lie algebra given by its Dynkin diagram with corresponding
crosses. There is a simple and very intuitive way how to find simple components of
the semisimple part of g0 from the corresponding Dynkin diagrams. Delete all crossed
nodes and lines emanating from them. The rest will consist of several connected
components which will be again Dynkin diagrams for simple Lie algebras. Then the
corresponding semisimple part of gC

0 is isomorphic to the product of these factors. We
shall give more details (including explanation why this is true) in the discussion of
individual cases below.

We are going to study in more details the tensor products g1 ⊗ Eλ of g0–modules
and their decompositions into irreducible components. In general, only the semisimple
part of g0 is playing a role in the decomposition. Having a better information on the
number and types of simple factors of g0, we shall describe then the number and the
highest weights of irreducible pieces of the g0–module g1. Even if there is a lot of
common features, full details differ substantially in individual cases and we have to
discuss all four of them separately.

Most of the simple factors of g0 will be of type Aj , exceptionally also Bj , Cj and
Dj appear. A general irreducible representation of a product of certain number of
simple Lie algebras is a tensor product of irreducible representations of the individual
factors in g0. Hence to describe a g0–module, it is sufficient to give a list of highest
weights of the individual factors. For components of g1, we shall need only very small
number of quite simple representations. We shall now give the list of them and we
introduce a notation for their highest weights.

For An, we shall need:

– the defining representation Cn+1 with the highest weight denoted by α1;
– its symmetric power �2(Cn+1) with the highest weight 2α1;
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– its exterior power Λ2(Cn+1) with the highest weight denoted by α11.

For Bn, Cn and Dn, we shall need only their defining representations, their highest
weights will be denoted by β1, γ1 and δ1.

It will also help a lot to use the symbol A0 for the trivial Lie algebra {0} of
dimension 0. All its irreducible representations are trivial. Its presence in the product
will be just a notational convenience, (these factors can be dropped out, they have no
significance in the structure of the algebra but they will be substantial for a description
of irreducible pieces of the module g1).

A general method used below to clarify these questions is a very nice and explicit
description of gradings in terms of block matrices, which can be found in the paper
by Yamaguchi ([44]), we refer to this paper for further details. It makes also possible
to give explicitly the form of all irreducible pieces in the module g1.

5.2. A-series. — Suppose that g = An = sl(n + 1,C). This is the simplest case
which is particularly intuitive when described using block matrices. First, it is neces-
sary to understand block forms of maximal graded Lie algebras. In our case, they are
specified by their Dynkin diagram • · · · × · · · • with the cross at the j-the node.
The corresponding grading is indicated by the following diagram (where numbers
−1, 0, 1 indicate the grading of the algebra).

0

0

j

n+ 1 − j

1

−1

The general case with several crosses is then given by a simple superposition of the
diagrams. There is an example with three crosses:

0

0

1

−1

0

0

1

−1

0

0−1

1
=⇒

0
0

0

0

1
1

1

2
2
3

−1
−1

−1

−2

−2−3

Let the set I = {i1, . . . , ij}, 1 ≤ i1 < · · · < ij ≤ n denote the set of crossed nodes in
the Dynkin diagram of type An. Then the corresponding semisimple part gs

0 is equal
to the product

Ai1−1 ×Ai2−i1−1 × · · · ×Aij−ij−1−1 ×An−ij .

There are j + 1 factors in the product (some of them possibly equal to A0, these can
be dropped as far as the structure of g0 is concerned).

Using additional notation i0 = 0, ij+1 = n+ 1, we have gs
0 = Πn+1

k=1Aik−ik−1−1.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000



268 J. SLOVÁK & V. SOUČEK

Irreducible representations of g0 are tensor products of irreducible modules of in-
dividual factors, they are given by their highest weights. There is j irreducible com-
ponents of the g0–module g1, as is immediately seen from the corresponding block
diagram. The (j + 1)–tuples of their highest weights are clearly:

(α1, α1, 0, . . . , 0); (0, α1, α1, 0, . . . , 0); . . . ; (0, . . . , 0, α1, α1).

So each component is just the tensor product of two defining representations of
neighboring factors in g0.

5.3. B-series. — As in the previous case, the key information is contained in the
block diagrams for maximal graded Lie algebra, described in [44]. We shall not re-
produce them but we shall only describe the form of the simple factors and highest
weights of irreducible parts of g1. The method used to get these facts is the same as
in the An case.

Let again the set I = {i1, . . . , ij}, 1 ≤ i1 < · · · < ij ≤ n denote the set of crossed
nodes in the Dynkin diagram of type Bn. We shall consider three different subcases.

1) ∗ · · · ∗ • •〉 ij ≤ n− 2 (here stars indicate nodes with either bullets or crosses).

Then the corresponding semisimple part gs
0 is equal to the product (j + 1 factors)

g
s
0 � Ai1−1 ×Ai2−i1−1 × · · · ×Aij−ij−1−1 ×Bn−ij

and there are j irreducible pieces in g1 with highest weights

(α1, α1, 0, . . . , 0); (0, α1, α1, 0, . . . , 0); . . . ; (0, . . . , 0, α1, β1).

(recall that α1 denotes the highest weight of the defining representation of Ak and β1
denotes the highest weight of the defining representation of Bk).

2) ∗ · · · ∗ × •〉 ij = n− 1

Then gs
0 has j + 1 factors

g
s
0 � Ai1−1 ×Ai2−i1−1 × · · · ×Aij−ij−1−1 ×A1.

The last factor A1 is isomorphic with B1. We shall need the defining representation
of B1, which is just the second symmetric power of the defining representation of A1.
Hence as a representation of A1, it has the highest weight 2α1.

There are j irreducible parts in g1. The list of their highest weights is:

(α1, α1, 0, . . . , 0); (0, α1, α1, 0, . . . , 0); . . . ; (0, . . . , 0, α1, α1, 0); (0, . . . , 0, α1, 2α1).

3) ∗ · · · ∗ ∗ ×〉 ij = n

Then
g

s
0 � Ai1−1 ×Ai2−i1−1 × · · · ×Aij−ij−1−1 ×A0.

There are j irreducible pieces in g1 with highest weights

(α1, α1, 0, . . . , 0); (0, α1, α1, 0, . . . , 0); . . . ; (0, . . . , 0, α1, α1).
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5.4. C-series. — Let indices 1 ≤ i1 < · · · < ij ≤ n again indicate the set of crossed
nodes in the Dynkin diagram of type Cn in the standard ordering of nodes.

1) ∗ · · · ∗ ∗ •〈 ij ≤ n− 1

Then gs
0 has j + 1 factors

g
s
0 � Ai1−1 ×Ai2−i1−1 × · · · ×Aij−ij−1−1 × Cn−ij .

(but note that C1 ≡ A1).
There are j irreducible parts in g1. The list of their highest weights is:

(α1, α1, 0, . . . , 0); (0, α1, α1, 0, . . . , 0); . . . ; (0, . . . , 0, α1, α1, 0); (0, . . . , 0, α1, γ1).

2) ∗ · · · ∗ ×〈 ij = n

This case brings a new feature, let us illustrate it in the case of maximal parabolic
subalgebra with the last node crossed. This is a |1|–graded case with the block grading
as follows:

0

0−1

1 A

−A′C

B

where the symbol A′ indicates the matrix transposed with respect to the antidiagonal
and the matrices B and C satisfy B = B′, C = C′. Hence g1 is the symmetric power
�2(Cn+1) of the defining representation and its highest weight is 2α1.

In the general case, we get in the same way that

g
s
0 � Ai1−1 ×Ai2−i1−1 × · · · ×Aij−1−ij−2−1 × An−ij−1

(note that there are only j factors here).
There are j irreducible pieces in g1 with highest weights

(α1, α1, 0, . . . , 0); (0, α1, α1, 0, . . . , 0); . . . ; (0, . . . , 0, α1, α1)(0, . . . , 0, 2α1).

5.5. D-series. — Let 1 ≤ i1 < · · · < ij ≤ n indicate the set of crossed nodes in the
Dynkin diagram of type Dn in the standard ordering of nodes.

1) ∗ · · · ∗ •
• ij ≤ n− 2

Then
g

s
0 � Ai1−1 ×Ai2−i1−1 × · · · ×Aij−ij−1−1 ×Dn−ij .

Note that if ij−1 = n − 2, then the last factor is D2 ≡ A1 × A1. The list of all j
irreducible pieces of g1 is again the standard list:

(α1, α1, 0, . . . , 0); (0, α1, α1, 0, . . . , 0); . . . ; (0, . . . , 0, α1, δ1).
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The proof of the claim is again visible directly from the block forms of maximal
parabolic subalgebras given in [44].

2) ∗ · · · ∗ ∗ ×
• or ∗ · · · ∗ ∗ •

× ij−1 ≤ n− 2, ij = n− 1 or ij = n

This is similar to the second case in the Cn series. Let us illustrate it again in the
simplest |1|-graded case. The graded algebra g has the following block form:

0

0−1

1 A

−A′C

B

where the symbol A′ indicates again the matrix transposed with respect to the an-
tidiagonal and the matrices B and C satisfy B = −B′, C = −C′. Hence g1 is the
outer power Λ2(Cn+1) of the defining representation of An and its highest weight was
denoted by α11.

In general case

g
s
0 � Ai1−1 ×Ai2−i1−1 × · · · ×Aij−1−ij−2−1 ×An−ij−1−1

(there are j factors only). The list of all j irreducible pieces of g1 is:

(α1, α1, 0, . . . , 0); (0, α1, α1, 0, . . . , 0); . . . ; (0, . . . , 0, α1, α1); (0, . . . , 0, α11).

3) ∗ · · · ∗ ∗ ×
× ij−1 = n− 1, ij = n

This is the most unusual case. Let us illustrate it in the case • · · · • • ×
×

, i.e.
I = (n− 1, n).

The corresponding matrix looks as follows:

n− 1

2

n− 1

0

0

0

1

1

2

−1

−1−2

In the middle, there is the 2 × 2 matrix, which is antisymmetric with respect to
the antidiagonal (D1!). The module g1 is a ((n− 1) × 2)–matrix, which is the tensor
product of the defining representation for An−2 and D1. (Note that there are two
blocks in the 1 part of the block matrix above but they are inverse transpose of each
other.) But D1 is commutative and its corresponding factor in g0 is the trivial algebra
A0. Or even better for our purposes, we can identify D1 with the product A0 × A0.

The algebra g0 is hence the product An−2 ×A0 ×A0.
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Also in this case, the module g1 has j = 2 irreducible pieces, i.e. both columns of
(the left upper part) of g1.Their highest weights are equal to (α1, α1, 0) and (α1, 0, α1).

In general, for arbitrary I,

g
s
0 � Ai1−1 ×Ai2−i1−1 × · · · ×Aij−1−ij−2−1 ×A0 ×A0.

The list of all j irreducible pieces of g1 is as follows:

(α1, α1, 0, . . . , 0); . . . ; (0, . . . , 0, α1, α1, 0, 0); (0, . . . , 0, α1, α1, 0); (0, . . . , 0, α1, 0, α1).

5.6. Decomposition of tensor products. — We have found above the form of
all irreducible pieces of g1. They are quite simple modules, hence there is a chance
to get a better information on their product with arbitrary other modules. Such a
discussion was needed for the study of first order operators in the |1|–graded case (see
[15], part III). We shall summarize now the facts proved there.

Basic tool for understanding tensor products of irreducible modules of a simple Lie
algebra g is the Klimyk algorithm (see [27], Sec.24, Ex.9).

Lemma. — Let h be a Cartan subalgebra of a simple Lie algebra g. For any weight
ξ ∈ h∗, let {ξ} denote the dominant weight lying on the orbit of ξ under the Weyl
group. Let ρ be the half sum of positive roots. If {ξ} belongs to the interior of the
dominant Weyl chamber, there is the unique w ∈ W such that {ξ} = wξ. Let t(ξ) be
equal to the sign of w in this case and zero otherwise.
Suppose moreover that we know the list Π(µ) of all weights of the irreducible rep-

resentation Vµ with the highest weight µ, including their multiplicities mµ(ν), for
ν ∈ Π(µ). Let Eλ denote the irreducible representation of g with the highest weight λ.
Then the formal sum ∑

ν∈Π(µ)
mµ(ν)t(λ + ρ+ ν)V{λ+ρ+ν}−ρ

gives the decomposition of the tensor product Eλ ⊗ Eµ into isotopic components. The
resulting coefficients are always non–negative and give the multiplicity of the corres-
ponding representation in the decomposition. Note that some cancellations happen
often.

5.7. An decompositions. — For representations of An, we need to decompose
products Eλ ⊗ Eα1 , Eλ ⊗ Eα11 and Eλ ⊗ E2α1 .

For the two first cases, we have the following information.

Lemma. — Let α1 be the highest weight of the defining representation of An and let
α11 be the highest weight of its outer product. Let µ = α1, or µ = α11. Let Eλ be an
irreducible An–module with the highest weight λ.
Then the decomposition of the product Eλ ⊗ Eµ is multiplicity free.
Moreover, Vν appears with multiplicity one if and only if ν is dominant integral

and there exists a weight β of Eµ such that ν = λ+ β.
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Proof. — A direct check shows (see e.g. Appendix 2 in [15], part III), that all weights
of Eλ appear with multiplicity one and that for any weight β of Eµ, β + ρ belongs
to the dominant Weyl chamber. Then the same is true for λ + β + ρ and no action
of Weyl group is needed in the Klimyk formula. Moreover, λ + β + ρ belongs to the
interior of the dominant Weyl chamber if and only if λ + β belongs to the dominant
Weyl chamber.

Remark. — Consider a general tensor product of two modules Eλ ⊗ Eµ. There is a
general fact that Eν appears in the decomposition only if ν is of the form λ+β, where
β is a weight of Eµ.

In our case, we know more. The set A of all weights which appear in the decom-
position is exactly given by

(5) A = {ν = λ+ β | β is a weight of Eµ, λ+ β is dominant}.

It is more difficult to decompose the tensor product in the third case which we
need.

Lemma. — Let Eµ be the second symmetric power of the defining representation of
An, i.e µ = 2α1. The list of all its weights is β = ei + ej , 1 ≤ i ≤ j ≤ n, where ei,
i = 1, . . . , n, denotes elements of the canonical basis of Rn. Let Eλ be an irreducible
representation of An with the highest weight λ.
Then

Eλ ⊗ Eµ =
∑

ν∈A\A′

Eν ,

where A is defined in (5) and

A′ = {ν = λ+ ei + ei+1 | λi = λi+1 and either λi−1 > λi or i = 1}.

Proof. — Suppose that one of the following cases is true:
1) β = ei + ej with i < j,

2) β = 2e1,
3) β = 2ei+1, i = 1, . . . , n− 1 and λi > λi+1.

Then we have again the property that β+δ belongs to the dominant Weyl chamber.
Hence again (as in the proof of the previous lemma) we know that λ + β appears in
the decomposition if and only if it is dominant (if and only if it belongs to A).

4) If β = 2ei+1, i = 2, . . . , n− 1 and λi−1 = λi = λi+1, then λ + β + δ belongs to
the boundary of the Weyl chamber and the summand will not appear in the Klimyk
formula.

5) If however either β = 2ei+1, i = 2, . . . , n − 1 and λi−1 > λi = λi+1, or β = 2e2
and λ1 = λ2, then λ+β+δ should be moved to the interior of the dominant chamber by
one reflection with respect to a simple root (permutation of neighboring components)
and {λ+ρ+ν}−ρ = λ+ei +ei+1. This shows that these elements should be removed
from the set A.
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5.8. Bn decompositions. — For representations of Bn, we need to decompose
products Eλ ⊗ Eβ1 . It is well known (see e.g. [21]) that the following is true.

Lemma. — Let µ = β1 be the highest weight of the defining representation of Bn. Let
Eλ be an irreducible Bn–module with the highest weight λ.
Then the decomposition of the product Eλ ⊗ Eµ is multiplicity free and

Eλ ⊗ Eµ =
∑

µ∈A\A′

Eν ,

where A is defined in (5) and A′ = {ν = λ|λn = 0}.

5.9. Cn and Dn decompositions. — For representations of Cn, resp. Dn, we need
to decompose products Eλ ⊗ Eµ, where µ = γ1, resp. µ = δ1.

Lemma. — Let µ = β1 be the highest weight of the defining representation of Bn. Let
Eλ be an irreducible Bn–module with the highest weight λ.
Then the decomposition of the product Eλ ⊗ Eµ is multiplicity free and

Eλ ⊗ Eµ =
∑
µ∈A

Eν ,

where A is defined in (5).

Proof. — It is easy to check directly that again β+δ is in the dominant Weyl chamber
of all weights of Eµ. Hence the same proof as above applies.

5.10. Theorem. — Let g be a classical semisimple graded Lie algebra (i.e. g belongs to
one of series A – D) and let g0 be its reductive part. Suppose further that Eλ be an
irreducible g0–module with highest weight λ.
Then all components in the tensor product g1 ⊗ Eλ have multiplicity one.

Proof. — Let us consider first an irreducible piece E1 of g1. The detailed discussion of
the form of irreducible components of the g0–module g1 presented above together with
the explicit information presented above) shows that for every factor in the product
describing the semisimple part of the algebra g0, the corresponding tensor product
has a decomposition containing only pieces with multiplicity one. The same is hence
true for their product.

If E1, resp. E′
1 are different irreducible pieces of g1, we know from their explicit

description above, that they are tensor products of irreducible modules of different
couples of factors in the decomposition of g0 into simple parts. Hence the pieces in the
decomposition of E1 ⊗ Eλ, resp. E′

1 ⊗ Eλ, have different highest weights and cannot
be isomorphic.

Explicit description of individual components of g1 and of their tensor products
described above gives hence the complete information on irreducible components and
their highest weights.
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