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ANALYTIC CONTINUATION IN REPRESENTATION
THEORY AND HARMONIC ANALYSIS

by

Gestur Ólafsson

Abstract. — In this paper we discuss topics in harmonic analysis and representation
theory related to two different real forms G/H and Gc/H of a complex semisimple
symmetric space GC/HC. We connect representations of G and Gc using the theory
of involutive representations of semi-groups and reflection symmetry. We discuss
how to generalize the Segal-Bargmann transform to real forms of bounded symmetric
domains. This transform maps L2(H/H ∩ K) into the representation space of a
highest weight representation of G. We show how this transform is related to reflection
symmetry, which shows that it is a natural transform related to representation theory.
Finally we discuss the connection of the H-spherical characters of the representations
and relate them to spherical functions.

Résumé (Prolongement analytique en théorie des représentations et analyse harmonique)
Dans cet article, nous considérons des questions en analyse harmonique et en théo-

rie des représentations concernant deux formes réelles différentes G/H et Gc/H d’un
espace symétrique semi-simple complexe GC/HC. Nous établissons un lien entre les
représentations de G et de Gc à l’aide de la théorie des représentations involutives des
semi-groupes et la symétrie de réflexion. On examine la question de la généralisation
de la transformée de Segal-Bargmann aux formes réelles des domaines symétriques
bornés. Cette transformée envoie l’espace Lc(H/H ∩K) dans l’espace de représenta-
tions d’une représentation du poids maximum de G. Nous montrons comment cette
transformée est liée à la symétrie de réflexion, ce qui montre que c’est une transformée
naturelle liée à la théorie des représentations. Finalement, on étudie la relation entre
les caractères H−sphériques des représentations et les fonctions sphériques.

1. Introduction

Let G be a connected semisimple Lie group with Lie algebra g. Let GC be the
simply connected complex Lie group with Lie algebra gC. We will for simplicity
assume that G ⊂ GC even if most of what we say holds also for the universal covering
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202 G. ÓLAFSSON

group G̃ and other connected groups locally isomorphic to G. Let θ : G → G a
Cartan involution on G and denote by K = Gθ the corresponding maximal compact
subgroup of G. We will be interested in a special class of symmetric spaces, that are
closely related to real forms of bounded symmetric domains. We will therefore assume
that D = G/K is a bounded symmetric domain. Let τ : D → D by a conjugation,
i.e., an anti-holomorphic involution, fixing the point {K} ∈ D. Those involutions
were classified by A. Jaffee in [25, 26]. We will give the list later. We lift τ to an
involution on G, GC, g, and gC. We will also denote those involutions by τ . Then τ
commutes with θ. Let H = Gτ ⊂ HC := Gτ

C
. Then Dτ = H/H ∩K.

On the Lie algebra level we have

g = h⊕ q

= k⊕ p

= (k ∩ h)⊕ (k ∩ q)⊕ (p ∩ h)⊕ (p ∩ q) ,

k = {X ∈ g | θX = X}, p = {X ∈ g | θX = −X}, h = {X ∈ g | τX = X}, and q =
{X ∈ g | τX = −X}. Define a new real form of gC by

g
c := h⊕ iq

and let Gc be the corresponding real analytic subgroup of GC. Denote also by τ the
restriction of τ to Gc. Let Hc := Gcτ . Then H = Hc = G ∩Gc.
We have the following diagrams

MC :=
Complex

GC/HC

↗ ↖
M := G/H Real forms M c := Gc/H

and

Dτ = H/H ∩K ↪→
Real form

D = G/K .

The ideas that we discuss here are how to analyze representations of G, Gc, and H
via analytic continuation to open domains in MC or by restriction to a real form. The
main tools are involutive representations and positive definite kernels. This can be
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ANALYTIC CONTINUATION 203

expressed by the following simple diagram:

Unitary

highest weight

representations

of G

←→

Generalized

principal series

representations

of Gc

�

Reflection positivity

H-spherical characters

and spherical

functions

�

Restriction of

holomorphic functions

The Segal-Barmann

transform

The subspace of

functions with support

in the open

orbit HAN

↘ ↙
Representations of

H , Canonical

representations

Most of the ideas discussed here have been explained before in [30, 31, 49, 51].
We would in particular like to point to [31] for discussion on reflection positivity and
highest weight representations. Several other people have been working on similar
projects. We would like to point out here the following papers and preprints [1, 2,
7, 8, 19, 41, 43, 56, 64, 68].
This paper is based on lectures at the conferences Analyse harmonique et analyse

sur les variétés, 05/31–06/05, 1999 at Luminy, at the The 1999 Twente Conference on
Lie Groups, Dec. 20–22, 1999, and a series of lectures at the University in Bochum,
June 2000. We would like to thank the University of Nancy, the organizers of those
conferences and the Forschungsschwerpunkt “Globale Methoden in der komplexen
Geometrie” in Bochum for their support. We would also like to thank LEQSF and
NSF for travel support and the Division of Mathematics at the Research Institute of
Iceland for financial support during November/December 1999 as part of the work on
this paper was done. We would like to thank M. Davidson, R. Fabec, P. Jorgensen
and B. Ørsted for helpful discussion the last few years on several topics, results and
ideas discussed in this paper. Finally we would like to thank A. Pasquale for reading
over the paper and for her valuable comments.

2. Unitary highest weight representations

We use the same notation and assumptions as in the introduction. In particular
we assume that G ⊂ GC is a Hermitian group, and GC is simply connected. Thus
D = G/K is a bounded symmetric domain. The complex structure on D corresponds
to an element Z0 ∈ z(k) such that ad(Z0) has eigenvalues 0, i,−i. The eigenspace
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204 G. ÓLAFSSON

corresponding to 0 is kC, and we denote by p+, respectively p− the eigenspace cor-
responding to i respectively −i. Then both p+ and p− are abelian subalgebras of gC

and
gC = p

+ ⊕ kC ⊕ p
− .

Let KC := exp(kC), and P± := exp(p±). The restriction of the exponential map is an
isomorphism of p± onto P±. The set P+KCP

− is open and dense in GC. Furthermore
multiplication induces a diffeomorphism

P+ ×KC × P− 
 (p, k, q) �→ pkq ∈ P+KCP
− ⊂ GC .

We denote the inverse map by x �→ (p(x), k(x), q(x)). The Harish-Chandra bounded
realization of D is given by

(2.1) G/K 
 gK �→ log(p(g)) ∈ ΩC ⊂ p
+

and ΩC is a bounded symmetric domain in p+. Let (π,H) be a representation of G in
a Hausdorff, locally convex complete topological vector space H, and let L be a closed
subgroup of G. A vector v ∈ H is called L-finite if π(L)v spans a finite dimensional
subspace of H. We call v smooth or analytic if for all X ∈ g the map

R 
 t �→ π(exp(tX))v ∈ H

is smooth, or analytic respectively. We denote by HL, H∞, Hω the space of L-finite,
smooth, respectively analytic vectors in H. Define a representation of g on H∞ by

dπ(X)u := lim
t→0

π(exp tX)u− u
t

, u ∈ H∞ .

We extend dπ by linearity to a representation of gC and then of U(g), the universal
enveloping algebra of g. The representations of G that we are mainly interested in
are the unitary highest weight representations of G (see [5, 6, 9, 10, 15, 16, 22, 27,
42, 61, 65, 67] for further information.) Let (π,H) be an admissible representation
of G in a Banach space, and assume that the center of U(g) acts by scalars. Then
HK ⊂ Hω and HK is an (U(g),K)-module in the sense that it is both an U(g) and
a K-module such that

X · (k · u) = (Ad(k)X) · u, ∀k ∈ K,X ∈ g,u ∈ HK .

We say that an (U(g),K)-module (π,H) is admissible if the multiplicity of each
irreducible representation of K in H is finite. Let t ⊂ k be a Cartan subalgebra of g

containing Z0. Then t ⊂ zg(Z0) ⊂ k so t is a Cartan subalgebra of k.

Definition 2.1. — Let H be an (U(g),K)-module. Then π is called a highest weight
representation if there exists a Borel subalgebra p = tC ⊕ u ⊂ gC, λ ∈ t∗

C
, and v ∈ H

such that the following holds:

1. X · v = λ(X)v for all X ∈ t;
2. π(u)v = 0;
3. U(g)v = H.
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ANALYTIC CONTINUATION 205

The element v is called primitive element of weight λ.

All the irreducible unitary highest weight representations of G can be constructed
in a space of holomorphic functions on D for an appropriate choice of Z0 or, which
is the same, complex structure on D. For that let π be an irreducible representation
of K. Let ∆ denote the set of roots of tC in gC. A root α is called compact if
gCα ⊂ kC. Otherwise α is called non-compact. Let ∆c respectively ∆n be the set
of compact respectively non-compact roots. We choose the set ∆+ of positive roots
such that ∆+

c := ∆+ ∩∆c is a system of positive roots for ∆c and ∆+
n := ∆+ ∩∆n =

{α ∈ ∆ | gCα ⊂ p+}. Choose Hα ∈ it, such that Hα ∈ [gα, g−α] and α(Hα) = 2.
Let WK = W (∆c) ⊂ W = W (∆) be the Weyl group generated by the reflections
sα(X) = X − α(X)Hα for α ∈ ∆c respectively α ∈ ∆. We denote the corresponding
reflection on it∗ by the same letter, i.e, sα(β) = β − 2(β,α)

(α,α) α. Then ∆
+
n is invariant

under WK . Let σ : GC → GC be the conjugation with respect to G. We sometimes
write W or ḡ for σ(W ), respectively σ(g). We will usually use capital letters for the
elements of the Lie algebra g or gC except where we are viewing them as complex
variables or elements in ΩC.
Let (π,V) be an irreducible representation ofK with highest weight µ = µ(π) ∈ it∗.

For z, v, w ∈ p+ and g ∈ GC such that g exp(z), exp(−w) exp(v) ∈ P+KCP
−, let

g · z := log(p(g exp z))(2.2)

J(g, z) := k(g exp z) , and(2.3)

κ(v, w) := k(exp(−w) exp(v)).(2.4)

Then the isomorphism in (2.1) intertwines the natural G-action on D with the action
(g, z) �→ g · z of G on ΩC. The function J(g, z) is called the universal factor of
automorphy. Finally we define

(2.5) Jπ(g, z) := π(J(g, z)) and Kπ(z, w) := π(κ(z, w))−1 .

Then z, w �→ Kπ(z, w) is holomorphic in the first variable and anti-holomorphic in
the second variable.
Let S(ΩC) :=

{
g ∈ GC | g−1 · ΩC ⊂ ΩC

}
. Then S(ΩC) is a maximal closed semi-

group in GC and there exists a maximal closed and convexG-invariant coneWmax ⊂ g

such that Wmax ∩−Wmax = {0} (pointed), Wmax −Wmax = g (generating), and (see
[21, 23, 44] )

S(ΩC) = G exp(iWmax) .

LetWmin = {X ∈ g | ∀Y ∈Wmax : −B(X, θ(Y )) ≥ 0}, where B stands for the Killing
form. Then Wmin is a minimal G-invariant pointed and generating cone in g. Define
g∗ = σ(g)−1. If s = g exp(iW ) ∈ S(ΩC) then

s∗ = exp(iW )g−1 = g−1 exp(iAd(g)W ) ∈ S(ΩC) .

We notice the following well known and important lemma.
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206 G. ÓLAFSSON

Lemma 2.2. — Let s, s1, s2 ∈ S(ΩC) and let w, v ∈ ΩC. Then the following holds:

1. (s1s2) · v = s1 · (s2 · v);
2. J(s1s2, v) = J(s1, s2 · v)J(s2, v);
3. Jπ(s1s2, v) = Jπ(s1, s2 · v)Jπ(s2, v);
4. J(s∗, w)κ(s · v, w)J(s, v) = κ(v, s∗ · w);
5. Jπ(s, v)−1Kπ(s · v, w) = Kπ(v, s∗ · w) (Jπ(s∗, w)∗)−1.

Proof. — 1) and 2) We have, with q1, q2 and q3, denoting elements in P−,

s1s2 exp(v) = s1 exp(s2 · v)k(s2 exp v)q1
= exp(s1 · (s2 · v))k(s1 exp(s2 · v))q2k(s2 exp v)q1
= exp(s1 · (s2 · v))k(s1 exp(s2 · v))k(s2 exp v)q3

where we have used that KC normalizes P±.
3) Follows from (2).
4) By the defining relation

s∗ exp(w) = exp(s∗ · w)J(s∗, w)q1
we get exp(−s∗ · w) = q2J(s∗, w) exp(−w)s. Hence

exp(−s∗ · w) exp(v) = q2J(s∗, w) exp(−w)s exp(v)
= q2J(s∗, w) exp(−w) exp(s · v)J(s, v)q3 .

Hence the claim follows.
5) This follows from (4) using that π(g∗) = π(g)∗.

We notice that all of those relations can be lifted to G̃. We will use this fact without
further comments. Let (π,V) be an irreducible representation of K̃. Let O (ΩC,V)
be the space of V-valued holomorphic functions on ΩC. Define a representation ρπ of
G̃ on O(ΩC,V) by

ρπ(g)f(z) := Jπ(g−1, z)−1f(g−1 · z) .
Then ρπ is a representation of G̃ by Lemma 2.2, part 3. Let (ρ,H) be an irreducible
unitary highest weight module with lowest weight π, then we can choose p+ such
that {0} �= Hp

+ �K V. Furthermore there is an injective map H ↪→ O(ΩC,Hp
+
)

intertwining ρ and ρπ, see [5]. Here are the main ideas in the proof. Let σ : gC → gC

be the conjugation with respect to g. For w ∈ p+ define qw : Hp
+ → H by

qw(v) :=
∞∑
n=0

ρπ(σ(w))nv
n!

.

If v �= 0 the series defining qw(v) converges if and only if w ∈ ΩC. Define U : H →
O(ΩC,Hp

+
) by

(U(w))(z) := q∗z(w) .

Then U intertwines the representation ρ and ρπ and gives the geometric realization of
ρ. One should remark, that even if the classification of unitary highest weight modules
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is known, it is still an open problem to describe analytically the unitary structure for
ρπ in general.
Let λ0 ∈ iz(k)∗ such that λ0(−iZ0) = 1. Let µ(π) be the highest weight of π.

Then µ(π) = µ0 + rλ0 where µ0 ∈ i(k ∩ k′)∗ is ∆+
c dominant. Consider the affine

line L(µ0) = {µ0 + tλ0|t ∈ R}. The following is due to Jakobsen, Enright, Howe and
Wallach:

Theorem 2.3. — Let the notation be as above. Then there exists constants a(µ0) ≤ 0
and c(µ0) > 0 such that the Representation ρπ is unitary if and only if

µ(π) ∈ {µ0 + rλ0 | r < a(µ0)} ∪̇ {µ0 + zjλ0 | j = 0, . . . , n}

with z0 = a(µ0) and zj+1 − zj = c(µ0).

Write U(µ0) = {µ0 + rλ0 | r < a(µ0)} = µ0 + (−∞, a(µ0))λ0.

Theorem 2.4. — Assume that (ρπ,H(ρπ)) is unitary. Then all the polynomials on p+

are in H(ρπ) if and only if r < a(µ0). In that case the space H(ρπ)K � U(p−)×K V
is exactly the space of polynomial functions on p+.

If µ = tλ0, i.e., π is a character, then Kπ(·, w) ∈ H(ρπ)ω and

(f,Kw) = f(w)

for all f ∈ H(ρπ).

Theorem 2.5(Harish-Chandra). — Let ρ(∆+) = 1/2
∑

α∈∆+ α. The representation
(ρπ,H(ρπ)) is isomorphic to a direct summand in L2(G) if and only ρπ defines a
representation of G and

〈µ(π) + ρ, α〉 < 0 ∀α ∈ ∆+
n .

The highest weight representations in L2(G) are called the holomorphic discrete
series of G. In this case the inner product on H(π) is given by

(f, g) = c

∫
ΩC

(f(z),K(z, z)−1g(z)) dµ(z)

where µ is a G-invariant measure on ΩC.
We also have the following, see [24, 51, 52]:

Theorem 2.6. — Let aq = t ∩ q and assume that aq is maximal abelian in q ∩ k. Let
∆(p+, aq) = {α|aq | α ∈ ∆+

n }. Then (ρπ,H(ρπ)) is isomorphic to a direct summand
in L2(G/H) if and only if ρπ defines a representation of G, VK∩H �= {0} (and thus
µ(π) ∈ ia∗q), and

〈µ(π) + ρ|aq, α〉 < 0 , ∀α ∈ ∆(p+, aq) .
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208 G. ÓLAFSSON

The highest weight representations in L2(G/H) are called the holomorphic discrete
series of G/H .
We notice that there are holomorphic discrete series of G/H that are not in the

holomorphic discrete series of G. This is due to the so-called ρ�-shift, see [51] for
further discussion and examples.
The highest weight representations are closely related to holomorphic represent-

ations of semi-groups of the form G exp(iW ), see [22, 23, 24, 42, 57]. Let π be a
unitary representation of G in a Hilbert space H(π). Let

W (π) := {X ∈ g | ∀u ∈ H(π)∞ : (idπ(X)u,u) ≤ 0} .

Then W (π) is a G-invariant closed convex cone in g. If W (π) is pointed and
generating, then G exp(iW (π)) = S(W (π)) is a closed semi-group with interior
S(W (π))o = G exp(iW (π)o) = S(W (π)o).

Theorem 2.7. — Let ρπ be a unitary highest weight representation. Then W (π) is
pointed and generating and ρπ extends to an involutive, holomorphic, and contractive
representation of the semi-group S(W (π)) := G exp(iW (π)). In particular we have
for all s ∈ S(W (π)):
1. ρπ(s)∗ = ρπ(s∗).
2. ||ρπ(s)|| ≤ 1 for all s ∈ S(W (π)).

We also notice the following due to K-H. Neeb and Olshanskii, see [42]:

Theorem 2.8. — Let π be a unitary representation of G. If W (π) is pointed and
generating, then π is a direct integral of highest weight representations.

We will in the following mainly work with characters, i.e., d(π) = dim(H(π)) = 1.
Each character corresponds to a element µ ∈ izk such that

χµ(expZ) = eµ(Z) .

If we replace G with the universal covering group G̃ � K̃×p, where K̃ is the universal
covering group of K, then each µ ∈ izk gives rise to a character of K̃ and its com-
plexification K̃C. ForK itself we need to assume that µ(Z) ∈ 2πiZ for Z ∈ exp−1 {e}.
If π = χµ is a character, then we write Jµ, Kµ, etc.

3. The Restriction Principle and the Segal-Bargmann Transform

Let us start by recalling the restriction principle put forward in [54]. Let MC be
a connected complex manifold and let M ⊂ MC be a totally real submanifold thus
locally the inclusion M ↪→ MC is the same as Rn ↪→ Cn and if F is a holomorphic
function on MC such that the restriction F |M = 0 then it follows that F = 0. Let
F be a Hilbert space of holomorphic functions F : MC → C. (We can also consider
vector valued functions or even sections of a holomorphic vector bundle overMC.) We
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assume that F is a reproducing Hilbert space, that is the evaluation maps F �→ F (w)
are all continuous on F. This implies the existence of a Kw ∈ F such that

F (w) = (F,Kw)

for all F ∈ F and all w ∈ MC. We notice that K(z, w) := Kw(z) is holomorphic in
z and anti-holomorphic in w. The function K(z, w) is the reproducing kernel for F.
We have

1. K(z, w) = (Kw,Kz) = (Kz,Kw) = K(w, z) .
2. ||Kw||2 = K(w,w).

Let µ be a measure on M and let D : M → C∗. Assume that m �→ D(m)F (m) is
in L2(M,µ) for all F ∈ F. Define the restriction map R : F→ L2(M,µ) by

[RF ] (m) := D(m)F (m) .

Then R is injective. If G is a Lie group and H is a closed subgroup such that G acts
on MC, H acts on M , and F is a unitary G-module, then it is natural to assume
that µ is H invariant, so that L2(M,µ) is a unitary H-module. We would then
determine D such that R is an H-morphism. Assume that Im (R) is dense. Then
R∗ : L2(M,µ)→ F is injective and

R∗h(z) = (R∗h,Kz)

= (h,RKz)

=
∫
h(m)D(m)K(z,m) dµ .

Thus we have

(3.1) RR∗h(x) =
∫
h(m)D(x)D(m)K(x,m) dµ .

Now polarize R∗ to get R∗ = U |R∗|. Then U : L2(M,µ)→ F is a unitary isomorph-
ism.

Definition 3.1. — The map U : L2(M,µ)→ F is called the generalized Segal-Bargmann
transform.

We have U∗R∗ = |R∗| and hence RU = |R∗|. Thus for x ∈ M and h ∈ L2(M,µ)
we get

Uh(x) = D(x)−1 |R∗|h(x) .
To find an explicit expression for the Segal-Bargmann transform we need to take the
square root of RR∗ in (3.1). This can be done in some special cases. Let us start
with the classical Segal-Bargmann transform. Let MC = Cn and M = Rn. Let F be
the classical Fock-space of holomorphic functions F : Cn → C such that

||F ||2 := π−n

∫
|F (z)|2 e−|z|2 dxdy <∞ .
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Then F is a reproducing Hilbert space with inner product

(F,G) = π−n

∫
F (z)G(z) e−|z|2 dxdy

and reproducing kernel K(z, w) = ez·w where z ·w = z1w̄1 + · · ·+ znw̄n. Let D(x) :=
e−|x|2/2. Then the restriction map R becomes

RF (x) = e−|x|2/2F (x) .

The holomorphic polynomials P (z) =
∑

aαz
α are dense in F and obviously RP ∈

L2(Rn). Hence all the Hermite functions hα(x) = (−1)|α|
(
Dαe−|x|2

)
e|x|

2/2 are in
the image of R so Im(R) is dense. For z, w ∈ Cn let (z, w) =

∑
zjwj . We then have

R∗g(z) =
∫
g(y)e−|y|2/2ez·y dy

= e(z,z)/2
∫
g(y)e−(z−y,z−y)/2 dy

= e(z,z)/2g ∗ p(z)

where p(z) = e−(z,z)/2 is holomorphic. It follows that

(3.2) RR∗g(x) = g ∗ p(x) .

As p ∈ L2(R) it follows in particular that ||RR∗|| ≤ ||p||2, so RR∗ is continuous, and

(R∗g,R∗g) = (RR∗g, g) ≤ ||RR∗|| ||g||22 .

Thus we have the lemma:

Lemma 3.2. — R∗ is continuous.

Let pt(x) = (2πt)−n/2e−(x,x)/2t be the heat kernel on Rn. Then (pt)t>0 is a
convolution semi-group and p = (2π)n/2p1. Hence

√
RR∗ = (2π)n/4p1/2∗ or

RUg(x) = |R∗| g(x) = (2π)n/4p1/2 ∗ g(x) = 2n/4π−n/4

∫
g(y)e−(x−y,x−y) dy .

As RUg(x) = e−(x,x)/2U(g)(x) it follows that

Ug(x) = (2/π)n/4e(x,x)/2
∫
g(y)e−(x−y,x−y) dy

for x ∈ Rn. But the function on the right hand side is holomorphic in x. By analytic
continuation we get the following theorem.

Theorem 3.3. — The map U : L2(Rn)→ F given by

Ug(z) = (2/π)n/4
∫
g(y) exp(− (y, y) + 2(z, y)− (z, z) /2) dy

is a unitary isomorphism.
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Next we consider the case where MC = ΩC is a bounded symmetric domain of the
form G/K and the corresponding real forms H/H ∩K (see [23, 25, 26, 34, 46, 47]
for classifications, structure theory and further information). Let η : ΩC → ΩC be an
anti-holomorphic involution fixing the point 0 = {K} ∈ ΩC. Then Ω = Ω

η
C
is a real

form of ΩC. The group G is locally isomorphic to the group I(ΩC)o of holomorphic
isomorphism of ΩC. Define τ : I(ΩC)o → I(ΩC)o by τ(f)(z) = η(f(η(z)). Then τ is
an involution commuting with the Cartan involution θ with K = Gθ. Lift τ to the
Lie algebra of I(ΩC)o which is isomorphic to g and then extend that involution – also
denoted by τ – to an involution on gC. As GC is simply connected it follows that τ
defines an involution on GC leaving G invariant. Let H = Gτ ⊂ HC = Gτ

C
and notice

that HC is connected as GC is simply connected. We have that Ω = H/H ∩ K =
Ho/Ho ∩K. The classification of these spaces is given by the following table:

gc with complex structure

gc = hC g = h× h h

Dual Hermitian

sl(p+ q,C) su(p, q)× su(p, q) su(p, q)
so(2n,C) so∗(2n)× so∗(2n) so∗(2n)
so(n+ 2,C) so(2, n)× so(2, n) so(2, n)
sp(n,C) sp(n,R)× sp(n,R) sp(n,R)
e6 e6(−14) × e6(−14) e6(−14)
e7 e7(−25) × e7(−25) e7(−25)

gc without complex structure

gc g h

Dual Hermitian

sl(p+ q,R) su(p, q) so(p, q)
su(n, n) su(n, n) sl(n,C)× R

su∗(2(p+ q)) su(2p, 2q) sp(p, q)
so(n, n) so∗(2n) so(n,C)
so∗(4n) so∗(4n) su∗(2n)× R

so(p+ 1, q + 1) so(2, p+ q) so(p, 1)× so(1, q)
sp(n,R) sp(n,R) sl(n,R)× R

sp(n, n) sp(2n,R) sp(n,C)
e6(6) e6(−14) sp(2, 2)
e6(−26) e6(−14) f4(−20)
e7(−25) e7(−25) e6(−26) × R

e7(7) e7(−25) su∗(8)
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We notice that in the first table the symmetric space Ω is a complex bounded
symmetric domain, ΩC = Ω×Ω, where stands for “opposite complex structure”, and
the imbedding of Ω into ΩC is the diagonal imbedding ω �→ (ω, ω). The holomorphic
functions on ΩC are then the functions f(z, w) which are holomorphic in the first
variable and anti-holomorphic in the second variable. Some of those cases were treated
in detail in [56]. We note that all the classical irreducible Riemannian symmetric
spaces (with a possible extension by R) show up in the third column in this list.
The spaces that are missing are: E6(2) / SU(6) × SU(2), E6(6) / Sp(4), E7(7) / SU(8),
E7(−5) / SO(12) × SU(2), E8(8) / SO(16), E8(−24) /E7× SU(2), F4(4) / Sp(3) × SU(2),
G2(2) / SU(2) × SU(2). It is interesting that this list contains all the quaternions
exceptional Riemannian symmetric spaces.
Our aim is to use the generalized Bargmann transform to analyze the representation

ρπ|Ho where ρπ is a unitary highest weight representation with minimal K-type π
acting on the finite dimensional Hilbert space V(π). In this case we let

Dπ(h) = Jπ(h, 0)−1 = π(k(h))−1

for all h ∈ P+KCP
−. Then Dπ(gk) = π(k)−1Dπ(g). Assume for the moment that

||Dπ|| ∈ L2(Ω, dm), where dm is the H-invariant measure on Ω given by∫
Ω

f(x)dm(x) =
∫
H

f(h · 0) dh .

This can be made precise using the root structure of H/H ∩K and G/K. Define

RF (h) = Dπ(h)F (h · 0) , F ∈ H(ρπ) .
Let V(π)→ Ω be the vector bundle

H ×π|H∩K V(π)→ Ω .

Then RF ∈ L2(V(π)) for all F ∈ H(ρπ).

Lemma 3.4. — Assume that Dπ ∈ L2(Ω) and that π ∈ U(µ0). Then the restriction
map R : H(ρπ) → L2(Ω, dm) is injective and intertwines ρπ|H and the left regular
action λ of H on L2(V(π)). Furthermore Im(R) is dense in L2(V(π)).

Proof. — Let h ∈ H and F ∈ H(ρπ). Let a ∈ H . Then
R(ρπ(h)F )(a) = Dπ(a)[ρπ(h)F ](a)

= Dπ(a)Jπ(h−1, a · 0)−1F (h−1a · 0)
= Jπ(a, 0)−1Jπ(h−1, a · 0)−1F (h−1a · 0)
= Jπ(h−1a, 0)−1F (h−1a · 0)
= Dπ(h−1a)F (h−1a · 0)
= λ(h)RF (a) .

Assume that RF = 0. Then Dπ(a)F (a · 0) = 0 for all a ∈ H . As Dπ(a) is regular
it follows that F (a · 0) = 0. But then F |Ω = 0 and hence F = 0.
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Let f ∈ L2(V(π)) and ε > 0. Let g be a compactly supported section such that
||f − g||2 < ε/2. Then the function h �→ Dπ(h)−1g(h) is K ∩ H invariant and can
therefore be viewed as a V(π)-valued function on the compact set cl(Ω), the closure
of Ω. Let p : Ω→ V(π) be a polynomial such that

sup
z∈cl(Ω)

∣∣∣∣p(x)−Dπ(x)−1g(x)
∣∣∣∣ <

√
ε

2 ||Dπ||2
.

Then

||f −Rp|| ≤ ||f − g||+ ||g −Dπp||

But

||g −Dπp||2 =
∫
H

||g(h)−Dπ(h)p(h · 0)||2 dh

=
∫
||Dπ(h)||2

∣∣∣∣Dπ(h)−1g(h)− p(h · 0)
∣∣∣∣2 dh

≤ ε2/4 .

Hence ||f −Rp||2 < ε.

Polarizing R∗ gives us now a unitary H-isomorphism U : L2(V(π)) → H(ρπ).
Hence

Theorem 3.5. — Assume that Dπ ∈ L2 (V(π)) and that µ ∈ U(µ0). Then ρπ|H is
unitary equivalent to the representation of H on L2(V(π)).

Let us remark here, that in the case where ΩC = Ω× Ω̄, i.e., G = H×H , then each
of the highest weight representations ρπ is of the form ρH ⊗ ρ̄H where ρH is a highest
weight representation of H and ρ̄H is the conjugate (or dual) representation. The
above result therefore tells us, that ρH ⊗ ρ̄H � L2(V(πH)) where πH is the minimal
K ∩H-type of ρH .
We will now analyze the generalized Segal-Bargmann transform in more detail for

the scalar case. In that case χµ|Ho ∩K is always trivial so Dπ, which we will now
denote by Dµ, is a function on Ω given by Dµ(h · 0) = Dµ(h), h ∈ Ho. The map R∗

is given by

R∗f(z) = (f,RKz)

=
∫
Ω

f(y)Dµ(y)K(z, y) dm(y)

=
∫
Ho

f(h · 0)Jµ(h−1, z)−1 dh(3.3)
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214 G. ÓLAFSSON

where the last equation follows from Lemma 2.2. Hence for x = t · 0, t ∈ Ho, we get

RR∗f(x) =
∫
Ω

f(y)Dµ(x)Dµ(y)K(x, y) dm(y)

=
∫
H

f(h)Jµ(t, 0)−1Jµ(h−1, t · 0)−1 dh

=
∫
f(h)Jµ(h−1t, 0)−1 dh

= f ∗Dµ(t) .

Thus again the result is a convolution operator with an L2-function and the gen-
eralized Segal-Bargmann transform is again given by a convolution with a function
ϕ. Contrary to the classical case, this convolution operator does not result from
a convolution semi-group. Hence the task of determining the function ϕ becomes
much more involved. But since Dµ is a Ho ∩ K-biinvariant function it is determ-
ined by its restriction to a maximal vector subgroup of H and can be determined by
the spherical Fourier transform on Ho/Ho ∩ K. Hence one can in ”principle” find
a Ho ∩ K-biinvariant function ϕ on Ho such that the generalized Segal-Bargmann
transform is given by:

Theorem 3.6. — The Segal-Bargmann transform is given by

Uf(z) = Dµ(z)−1f ∗ ϕ(z) .

Here are few problems that are still unsolved or have only case by case solutions:

1. Decompose the restriction of ρµ for more singular parameters.
2. Find an explicit formula for ϕ.
3. We have a canonical orthonormal basis {pI}I for H(ρµ) given by polynomi-
als. Is there an expression for the corresponding orthonormal bases {U∗pI} for
L2 (Ω, µ)?

4. Work out the case where π is not assumed to be one-dimensional.

4. The Principal Series of Gc and Reflection Positivity

The material in this section follows [30, 31] with few modifications. We use [23] as
standard reference for the structure theory of Gc/H . Let τ : g→ g be the involution
from the previous section. Then g = h⊕ q and we define gc := h⊕ iq . Let Gc be the
analytic subgroup of GC corresponding to gc as before.

Lemma 4.1. — We have H = G ∩Gc.

Proof. — Let σ be the conjugation with respect to G and let σc be the conjugation
with respect to Gc. Then σ|Gc = τ |Gc and σc|G = τ |G. The claim follows directly
from this.
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Let Pmax := LAN− := KCP
− ∩Gc. Then Pmax is a maximal parabolic subalgebra

of Gc. Notice that LA = KC∩Gc, A = exp(RX0) with X0 = iZ0, and N− = P−∩Gc.
We let N+ = P+ ∩Gc = τ(N−) = θ(N−) We remark that things are set up so that

Ω = H/H ∩K = HPmax/Pmax .

Let us recall some facts about parabolic induction that will be used in this and next
section. Let aq be the maximal abelian subspace in q ∩ k from Theorem 2.6. Let
ac := ia ⊂ qc ∩ pc. Then ac is maximal abelian in qc ∩ pc. Let ∆c be the roots of
ac in gc and choose a set of positive roots ∆c+. Let m = zk(ac) = zh(ac), and let
nmin = ⊕α∈∆c+gcα. Then pmin = pmin(∆c+) = m ⊕ ac ⊕ nmin is a minimal parabolic
subalgebra of gc. Let p = l⊕ a⊕ n be any parabolic subalgebra containing pmin and
such that a ⊂ ac. Let Pmin = MAcN = NG(pmin) ⊂ P =: LAN = NG(p). Notice
that we are using p for a moment in two different ways, but the meaning should be
clear in each case. Define ρ(n) ∈ a∗ by 2ρ(n)(X) := Tr(ad(X))|n, X ∈ a. Let λ ∈ a∗

and define
πλ = IndG

c

LAN1⊗−λ⊗ 1 .
The minus sign has been inserted in order to simplify some formulas later on. The
Hilbert space H(λ) for πλ is the space of measurable function f : Gc → C such that

f(glan) = aλ−ρ(n)f(g)

and
∫
K |f(k)|

2
dk < ∞. The inner product in this space is (f, g) =

∫
K f(k)g(k) dk.

Let P̄ = τ(P ) = LAN̄ . Define π̄−λ = IndG
c

P̄ 1⊗ λ⊗ 1 and H̄(−λ) in the same way by
replacing P by P̄ . The following result is then obtained by a simple calculation.

Lemma 4.2. — The map T : H̄(−λ) → H(λ), f �→ f ◦ τ defines a Gc-isomorphism
between π̄−λ and πλ ◦ τ .

We will now specialize to the situation where P = Pmax. The set of positive roots
is now chosen such that −∆+

n ⊂ ∆c+.

Lemma 4.3(Matsuki). — The set HPmax is open in Gc.

We also have:

Lemma 4.4. — If P is any parabolic subgroup Pmin ⊂ P ⊂ Pmax, then HP = HPmax.

Let K0(λ) ⊂ H(λ) be the space of smooth functions with Supp(f) ⊂ HPmax such
that f |H has compact support. Let

S(Ω) =
{
g ∈ Gc | g−1HPmax ⊂ HPmax

}
= S(ΩC) ∩Gc.

The cone Cmax = gc ∩ iWmax is a maximal H-invariant cone in qc = iq and S(Ω) =
H exp(Cmax) = S(Cmax). Notice that

τ(S(Ω)) = S(−Cmax) = {g ∈ Gc | gHPmax ⊂ HPmax}
= {g ∈ Gc | g ·Ω ⊂ Ω} .
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Let f ∈ K0(λ) and s ∈ S(−Cmax). Then πλ(s)f ∈ K0(λ). Write

x = h(x)aH(x)n(x) ∈ HPmax .

Then
πλ(s)f(h) = aH(s−1h)λ−ρf(h(s−1h)) .

We have HPmax ⊂ N+Pmax. For x ∈ N+Pmax write x = n̄(x)l(x)aN̄ (x)nN̄ (x). As
X0 = iZ0 and ZGC

(Z0) = KC it follows that our group A is just exp(izk) and hence
aN̄ (x)µ = χµ(kc(x)) = Dµ(x). We will therefore use the notation Dµ in the following.
Assume that we have chosen λ such that the unitary highest weight representation
ρλ+ρ exists. Then Ω× Ω 
 (x, y) �→ Kλ+ρ(x, y) ∈ C is positive definite. By equation
(2.2) and (2.5) we get

(4.1) aN̄ (τ(exp x)
−1 exp y)−λ−ρ = Kλ+ρ(x, y) x, y ∈ Ω .

Define a map Lλ : K0(λ)→ H(−λ) by

Lλf(x) =
∫
N+

f(τ(x)n̄) dn̄

=
∫
Ω

f(exp y)Kλ+ρ(y, x) dy(4.2)

=
∫
H/H∩K

f(h)aN̄ (x
−1h)−λ−ρ dh .(4.3)

Lemma 4.5. — Let f ∈ K0(λ) and s ∈ S(Ω). Then Lλ(πλ(τ(s))f) = π−λ(s)Lλf .

Proof. — We have with s∗ = τ(s−1):

Lλ(πλ(τ(s))f)(x) =
∫
N+

f(s∗y)aN̄ (τ(x)
−1y)−λ−ρ dy

=
∫
N+

aN̄ (s
∗y)λ−ρf(n̄(s∗y))aN̄ (τ(x)

−1y)−λ−ρ dy

Notice that y = τ(s)s∗y = τ(s)n̄(s∗y)l(s∗y)aN̄(s∗y)nN̄ (s∗y). Hence the last integral
becomes

Lλ(πλ(s∗)f)(x) =
∫
N+

f(n̄(s∗y))aN̄ (τ(x)
−1τ(s)n̄(s∗y))−λ−ρaN̄ (s

∗y)−2ρ dy

=
∫
N+

f(n̄) aN̄ (τ(s
−1x)−1n̄)−λ−ρ dn̄

= π−λ(s)Lλf(x) .

Motivated by the fact that the pairing

H(λ)×H(−λ) 
 (f, g) �→
∫
K

f(k)g(k) dk ∈ C
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is Gc-invariant, we now define a new form on K0(λ) by

(f, g)λ = (f, Lλg) .

Lemma 4.6. — Let the notation be as above. Let f, g ∈ K0(λ) and let λ ∈ a∗. Define
F = f ◦ exp and G = g ◦ exp. Then

(f, g)λ =
∫
Ω

∫
Ω

F (x)G(y)Kλ+ρ(y, x) dydx

=
∫
Ho

∫
Ho

f(h)g(k)aN̄ (h
−1k)−λ−ρ dkdh.

In particular (·, ·)λ is positive semidefinite if λ+ ρ < a(0).

Proof. — Let F and G be as before. As Supp(F ), Supp(G) ⊂ Ω it follows by equation
(4.2) that

(f, g)λ =
∫
Ω

f(exp(x))Lλg(exp(x)) dx

=
∫
Ω

F (x)
∫
Ω

G(y)Kλ+ρ(y, x) dy dx

=
∫
Ω

∫
Ω

F (x)G(y)Kλ+ρ(y, x) dydx .

The second equation follows by equation (4.3).

Assume that (·, ·)λ is positive semidefinite. Let
L(λ) = {u ∈ K0(λ) | ∀v ∈ K0(λ) : (u, v)λ = 0}

and let K(λ) be the completion of K0(λ)/L(λ). Then πλ defines a involutive repres-
entation of S(−Cmax) on K(λ):

Lemma 4.7. — Let f, g ∈ K(λ). Then for all s ∈ S(−Cmax) the relation

(πλ(s)f, g)λ = (f, πλ(s∗)g)λ

follows. Thus πλ ◦ τ defines a involutive representation of S(Ω). In particular πλ(h)
is unitary for all h ∈ H and πλ(expX) is self adjoint for all X ∈ −Cmax.

Proof. — As (πλ(s)f, g) =
(
f, π−λ(s

−1)g
)
for all λ ∈ a∗

C
and λ is real it follows that

(πλ(s)f, Lλg) = (f, π−λ(s−1)Lλg) = (f, Lλ(πλ(τ(s−1))g) = (f, πλ(s∗)g)λ .

This lemma implies that by starting from the representation πλ, we have construc-
ted a involutive representation of the semi-group S(Ω). By the Lüscher-Mack theorem
such a representation can be extended to a unitary representation of G. Another way
of obtaining such an extension is to use the theory of local representation developed
by P. Jorgensen [28, 29]. We will give a short review of the Lüscher-Mack theory and
use reference [21, 14, 32, 39, 60, 30, 31].
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We have seen that π � πλ ◦ τ passes to a representation on K(λ) (also denoted by
π) such that π(h) is unitary and π(exp(X)), X ∈ Cmax is self-adjoint. As a result
we arrive at self-adjoint operators dπ(Y ) with spectrum in (−∞, 0] such that for
Y ∈ Cmax, π(expY ) = edπ(Y ) on K(λ). As a consequence of that we notice that

t �−→ et dπ(Y )

extends to a continuous map on {z ∈ C | Re(z) ≥ 0} which is holomorphic on the
open right half plane {z ∈ C | Re(z) > 0}. Furthermore,

e(z+w) dπ(Y ) = ez dπ(Y )ew dπ(Y ) .

The Lüscher-Mack Theorem now states, see [39]:

Theorem 4.8(Lüscher-Mack). — Let C ⊂ qc be a closed H-invariant pointed and gen-
erating convex cone. Let ρ be a strongly continuous contractive representation of S(C)
on the Hilbert space H such that ρ(s)∗ = ρ(s∗). Let G̃ be the connected, simply con-
nected Lie group with Lie algebra g = h ⊕ q. Then there exists a continuous unitary
representation ρ̃ : G̃ → U(H), extending ρ, such that for the differentiated represent-
ations dρ and dρ̃:

1) dρ̃(X) = dρ(X) ∀X ∈ h.
2) dρ̃(iY ) = i dρ(Y ) ∀Y ∈ C.

We apply this to our situation and get the following theorem:

Theorem 4.9. — Let the notation be as before and assume that ρλ+ρ is unitary with
λ+ ρ < a(0). Then the following holds:

1) S(C) acts via s �→ π(s) by contractions on K(λ).
2) Let G̃ be the simply connected Lie group with Lie algebra g. Then there exists

a unitary representation π̃ of G̃ such that dπ̃(X) = dπ(X) for X ∈ h and
i dπ(Y ) = dπ̃(iY ) for Y ∈ C.

3) The representation π̃ is irreducible if and only if π is irreducible.

We notice the following consequence of 2.8:

Lemma 4.10. — Let the notation be as before. In particular assume that λ+ρ < a(0).
Then π̃ is a direct integral of highest weight representations.

We will now identify the representation π̃ using the special situation we have here.
Let 1λ+ρ be the constant function z �→ cλ+ρ where the constant cλ+ρ is determined
by

||1λ+ρ|| = 1 .
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Define a map U : K0(λ)→ H(ρλ+ρ) by

Uf(z) =
∫
Ho

f(h) ρλ+ρ(h)1λ+ρ(z) dh

=
∫
Ho/Ho∩K

f(h) ρλ+ρ(h)1λ+ρ(z) dh

= cλ+ρ

∫
Ho

f(h)Jλ+ρ(h−1, z)−1 dh

= cλ+ρ

∫
F (h · 0)Jλ+ρ(h−1, z)−1 dh

where F (h · 0) = aN̄ (h)λ−ρf(n̄(h)). Notice the similarity with the map R∗ from
equation (3.4). So in some sense the map U is just R∗ and hence naturally related to
the generalized Segal-Bargmann transform. We refer now to [31] for the proof of the
following Lemma.

Lemma 4.11. — Let f, g ∈ K0(λ) then (f, g)λ = (Uf, Ug).

Theorem 4.12. — The map U extends to an unitary isomorphism U : K(λ)→ H(ρλ+ρ)

such that U(πλ(τ(s))f) = ρλ+ρ(s)U(f), s ∈ S(Ω). In particular ˜(πλ ◦ τ) is unitarily
isomorphic to ρλ+ρ

Proof. — We will prove here the intertwining relation U(πλ(τ(g))f) = ρλ+ρ(g)U(f).
For that we need the following transformation rule for the integral over H (see [30],
Lemma 5.12):

∫
Ho/Ho∩K

f(h(sh)H ∩K)aH(sh)−2ρ dḣ =
∫
Ho/Ho∩K

f(hH ∩K) dḣ .

We also notice that if X ∈ p+ then

ρλ+ρ(X)1λ+ρ = 0 .

Thus if we decompose s∗h as s∗h = hopp(s∗h)aH,opp(s∗h)n̄ ∈ HAN̄ , then

ρλ(s∗h)1λ+ρ = aH,opp(s∗h)λ+ρρλ+ρ(s∗h)1λ+ρ .

Finally the relation between our usual decomposition according to HAN and the one
using HAN̄ , denoted by the subscript opp in the following, is

x = h(x)aH(x)n⇐⇒ τ(x) = h(x)aH(x)−1τ(n) = hopp(τ(x))aH,opp(τ(x))n̄ .

Thus

h(x) = hopp(τ(x)) and aH,opp(τ(x)) = aH(x)−1 .
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Using this we get

U(πλ(τ(s))f)(z) =
∫
Ho

f(s∗h) ρλ+ρ(h)1λ+ρ dh

=
∫
Ho

f(h(s∗h))aH(s∗h)λ−ρρλ+ρ(h)1λ+ρ dh

=
∫
Ho

f(h(s∗h))aH(s∗h)−2ρ ρλ+ρ(sh(s∗h))1λ+ρ dh

=
∫
Ho

f(h) ρλ+ρ(sh)1λ+ρ dh

= ρλ+ρ(s)Uf(z) .

As this holds for all s ∈ S(Ω) it follows that π̃(s) = ρλ+ρ(s) for all s ∈ S(Ω) =
S(ΩC) ∩Gc. But then both of them have to agree on S(W (ρλ+ρ)).

Our inner product for the realization of ρλ+ρ has some peculiar properties. Let
U ⊂ Ω be open and let K0,U (λ) be the set of functions in K0(λ) such that Supp(f) ⊂
U and notice that we can make U arbitrary small. Let KU (λ) be the projection of
K0,U (λ) into K(λ).

Lemma 4.13. — Let U �= ∅ be an open set in Ω. Then KU (λ) is dense in K(λ).

The argument proving Lemma 4.13 actually shows that the δ-distribution f �→ f(0)
is in K(λ). Take δ in the definition of U to get

U(δ)(z) = 1λ+ρ(z)

or

U∗1λ+ρ = δ .

Now an orthogonal basis of H(ρλ+ρ) can be constructed applying elements of U(p−)
to 1λ+ρ. This corresponds to applying differential operators to 1λ+ρ. The above
arguments imply the following lemma:

Lemma 4.14. — The δ distribution is a normalized lowest K-type of the highest weight
module K(λ) corresponding to the constant function z �→ cλ+ρ. The K-finite elements
of K(λ) are finite linear combinations of derivatives of the δ -distribution.

We end this section by pointing out one difference in our presentation here and the
one in [31]. In that paper we identified Ω with a bounded subset in p− ∩ gc instead
of p+ ∩ gc. The action of Gc in those two realization is just a twist by τ . Therefore
the action of the group on Ω is twisted by τ but there is no twist in the identification
of the representation, expressed here by the fact that πλ ◦ τ � π̄−λ.
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5. The Character Formula

We will now show that the relation between the representations πλ ◦ τ and ρλ+ρ
can also been made precise using the H-invariant spherical distribution characters.
For a moment we will let G stand for any semisimple Lie group and H for a closed
subgroup. Let π be a unitary representation ofG or one of the induced representations
πλ defined in the last section. The space H(π)∞ can be made into a complete locally
convex, and Hausdorff topological vector space, and G acts continuously on H(π)∞

by π∞(g) = π(g)|H(π)∞, see [66]. Let H(π)−∞ be the continuous dual of H(π)∞.
Then G acts on H(π)−∞ by

〈u, π−∞(g)ν〉 := 〈π∞(g−1)u, ν〉 , u ∈ H(π)∞, ν ∈ H(π)−∞ .

Here 〈·, ·〉 stands for the canonical bilinear pairing between H(π)∞ and H(π)−∞. A
non-zero element ν ∈ H(π)−∞H is called an H-invariant distribution vector. Let ν
be an H-invariant distribution vector. Then we can imbed H(π)∞ into C∞(G/H) by

H(π)∞ 
 u �−→
(
gH �→ 〈π(g−1)u, ν〉

)
∈ C∞(G/H) .

Let ν ∈ H(π)−∞H and ϕ ∈ C∞
c (G/H) and define π−∞(ϕ)ν by

π−∞(ϕ)ν =
∫
G/H

ϕ(ġ)π−∞(g)ν dġ .

Notice that if π is unitary then we have a conjugate linear embeddingH(π) �H(π)∗ ⊂
H(π)−∞, and π has an H-invariant distribution vector if and only if the dual repres-
entation on H(π)∗ has an H-invariant distribution vector, say ν∗. Let ν ∈ H(π)−∞H ,
then π−∞(ϕ)ν ∈ H(π)∗∞ for all ϕ ∈ C∞

c (G/H) and we can define the H-invariant
distribution Θπ by

C∞
c (G/H) 
 ϕ �→ Θπ(ϕ) := 〈π−∞(ϕ)ν, ν∗〉 ∈ C .

It is in most cases an unsolved problem to find an explicit formula for the distribution
Θπ.
As an example let us assume that G = H ×H . In this case G/H � H , (a, b)H �→

ab−1, such that the action of H ×H on G/H is mapped into (a, b) · c = acb−1. An
irreducible unitary representation π of G has an H-invariant distribution vector if
and only if π = ρ⊗ ρ̄, where ρ is an irreducible unitary representation of H and ρ̄ is
the representation on H̄(ρ) � H(ρ)∗. In this case there is – up to scalar – only one
H-invariant distribution vector, and the corresponding distribution is a multiple of
the usual character

Θπ(ϕ) = Trπ(ϕ) .

As a second example we take one of the representations π−λ = IndG
c

Pmin
1 ⊗ λ ⊗ 1

where Pmin =MAN is a minimal parabolic subgroup of Gc. Define the Weyl groups
W = NK(A)/ZK(A) and W0 = NK∩H(A)/ZK∩H(A). Then W0 ⊂ W and W0\W =
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∪̇rj=1W0mj , for some elements 1 = m1, . . . ,mr ∈W . Then by [40] it follows that
⋃̇r

j=1
HmjMAN ⊂ Gc

is a open and dense. Associated to each of those open orbit is an H -invariant
distribution vector [45]. We will describe the construction for the set HPmin. For
x ∈ HPmin write

x = h(x)bH(x)n(x) ∈ HAN .

Define pλ(x) = bH(x)−λ−ρ, λ ∈ ac∗
C
, for x ∈ HAN , and pλ(x) = 0 for x �∈ HAN .

The function pλ is sometimes called the Poisson kernel of Gc/H (related to the open
orbit HPmin). We have pλ(xman) = a−λ−ρpλ(x), and by [45] it is known that pλ
is continuous if Re〈λ + ρ, α〉 < 0 for all positive roots. In that case p−λ ∈ H(λ) ↪→
H(−λ)−∞. Here the pairing is given by

〈f, p−λ〉 =
∫
K

f(k)p−λ(k) dk =
∫
H

f(h) dh , f ∈ H(−λ)∞ .

By construction it follows that p−λ is H-invariant, or p−λ ∈ H(−λ)−∞H . Again
by [45] it follows that λ �→ p−λ ∈ H(−λ)−∞H has a meromorphic continuation to
all of ac∗

C
. If ϕ ∈ C∞

c (Gc/H) then π−∞
−λ (ϕ)p−λ ∈ H(λ)∞. Hence we can apply the

distribution vector pλ to π−∞
−λ (ϕ)p−λ to get the distribution ζλ defined by

〈ϕ, ζλ〉 = 〈π−∞
−λ (ϕ)p−λ, pλ〉 .

Formally, without bothering about convergence or the use of Fubini’s Theorem, we
get

〈ϕ, ζλ〉 =
∫
H

π−∞
−λ (ϕ)p−λ(h) dh

=
∫
H

∫
Gc/H

ϕ(ġ)p−λ(g−1h) dgdh

=
∫
Gc/H

ϕ(ġ)
[∫

H

p−λ(g−1h) dh
]
dġ

=
∫
Gc/H

ϕ(ġ)ϕλ(ġ−1) dġ .

It turns out that this calculation is not only formal for our spaces Gc/H and certain
spectral parameters λ, but it can be made formally correct and gives rise to the theory
of spherical functions, see [11, 48].
We will now assume that ρπ is an unitary highest weight module corresponding

to a holomorphic discrete series of G/H . (The same arguments also holds for the
universal covering space G̃/H , but the arguments become more involved because
again we would have to discuss the universal covering of the semi-groups S(W (π)),
the lifting of g �→ k(g) to G̃ and K̃, etc.) We refer to [4, 24, 35, 36, 51, 52, 55] for
the theory of spherical highest weight modules, Hardy spaces and the holomorphic
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discrete series. We use the notation from section 2. In particular t is a Cartan
subalgebra of k and g such that aq = t∩ q is maximal abelian in q. We use ∆, etc for
the set of roots of tC in gC, whereas ∆̃ stands for the set of roots of aqC in gC. We
choose compatible sets of roots, i.e., ∆̃+ = {α̃ = α|aq | α ∈ ∆}. In this case ρ̃ = ρ|aq.
Let W be a G-invariant cone in g such that Wmin ⊂ W ⊂ Wmax for some choice

of ordering. Let S(W ) = G exp(iW ), S(W o) = G exp(iW o) = S(W )o, and define
Ξ ⊂ GC/HC by

Ξ = Ξ(W o) = S(−W o)xo, xo = {HC} ∈ GC/HC .

Then Ξ is an open submanifold of GC/HC. In particular Ξ is complex. We notice that
G/H ⊂ cl(Ξ)\Ξ and that γ−1(G/H) ⊂ Ξ for all γ ∈ S(W o). LetH2(W ) be the Hardy
space of all holomorphic functions on Ξ such that γ · F : G/H 
 m �→ F (γ−1m) ∈ C,
is in L2(G/H) and the L2-limit

β(F ) := lim
γ→1

γ · F ∈ L2(G/H)

exists. Define an inner product on H2(W ) by

(F,G) = (β(F ), β(G)) .

Then H2(W ) is a Hilbert space carrying an involutive representation of S(W ) defined
by γ · F (z) = T (γ)F (z) = F (γ−1 · z). This representation decomposes discretely and
with multiplicity one into a direct sum of holomorphic discrete series representations

H2(W ) =
⊕
π

E(π)

where the sum is taken over all the holomorphic discrete series representations that
extend to holomorphic representations of S(W ). Here E(π) stands for the realization
of ρπ in H2(W ). This realization can be made explicit in the following way. Let
0 �= u0 be a H ∩K-invariant vector in Vπ, the representation space for the minimal
K-type π. Let s ∈ S(W ). Then s ∈ HCKCP

+. Write s = hkH(s)p. For u ∈ Vπ let

ϕπ,u(s) := (π(kH(s−1))u,u0) .

Then ϕπ,u ∈ H2(W ) if and only if 〈µ(π) + ρ̃, α̃〉 < 0 for all α̃ ∈ ∆̃+
n and in that case

the closed G-invariant subspace generated by {ϕπ,u | u ∈ Vπ} is isomorphic to E(π).
We normalize u0 so that this map is an unitary isomorphism of Vπ into L2(G/H).
Notice that the map Vπ 
 u �→ ϕπ,u is K-equivariant.
The spaceH2(W ) is a reproducing Hilbert space. LetK(z, w) be the corresponding

reproducing kernel. For z ∈ Ξ the map w �→ K(w, z) = Kz(w) extends to a smooth
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function on S(−W )xo. In particular K(z, ·) = β(Kz) is a well defined, smooth L2-
function on G/H . For F ∈ H2(W ) and γ ∈ S(−W o) we have

F (γ · z) = (F,Kγ·z)

= [T (γ−1)F ](z)

= (T (γ−1)F,Kz)

= (F, T (γ)Kz) .

Thus

(5.1) K(γ · z, w) = K(z, γ∗ · w) .

It follows that K is determined by the function k ∈ O(Ξ)H , k(z) = K(z, x0), and
K(γ1 · x0, γ2 · x0) = k(γ∗2γ1) (by abuse of notation, viewing k as a H-biinvariant
function). Finally we have

β−1(f)(z) = F (z) =
∫
G/H

f(m)K(z,m) dm

= (f,Kz)

=
∫
G/H

f(ġ) k(ġ−1 · z) dġ

Lemma 5.1. — Let F ∈ H2(W )∞. Then

(5.2) β(F )(m) = lim
0<t→0

F (exp(itZ0) ·m) .

Proof. — Decompose f into K-types f =
∑

δ∈K̂ fδ. The Fourier series
∑

fδ con-
verges to f in the C∞-topology, a fact due to Harish-Chandra, see [66], Lemma
4.4.2.1. Denote the highest weight of δ by µ(δ). Then, using the notation from The-
orem 2.3, we have µ(δ) = µ0 + rδλ0. Each µ(δ) is a weight in one of the spaces E(π)
and we have rπ < 0. Furthermore — as E(π)K = U(p−)Vπ — we get

(5.3) µ(δ) = µ(π)−
∑

α∈∆+

nαα , nα ∈ N0 = N ∪ {0} .

Hence rδ ≤ rπ < 0. Furthermore

δ(exp(−itZ0)) = erδt Id .

Notice that 0 < erδt < 1 for all t > 0. Hence we have for z ∈ S(−W ) · x0:

f(exp(itZ0) · z) =
∑

fδ(exp(itZ0) · z)

=
∑

erδtfδ(z) .

It follows that the series
∑

δ

∣∣fδ(exp(itZ0) · z)
∣∣ is uniformly dominated by the series∑

δ |fδ(z)|, and the claim follows.
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Let prπ : L
2(G/H) → E(π) be the orthogonal projection and define Tπ := β−1 ◦

prπ : L2(G/H)→ H2(W ). Then

Tπ(f)(w) := β−1(prπ(f))(w) =
∫
prπ(f)K(w,m) dm .

As f �→ Tπf(w) is continuous it comes from a function Θπ(·, w) ∈ E(π) ⊂ H2(W ).
Thus

(5.4) β−1(prπ(f))(w) =
∫
f(m)Θπ(m,w) dm .

The function m �→ Θπ(m,w) extends to Ξ such that Θπ(z, w) is holomorphic in the
first variable, anti-holomorphic in the second variable, and Θπ(z, w) = Θπ(w, z). As
the projection L2(G/H) → H2(W ) is given by f �→ (w �→ (f,Kw)) and H2(W ) =
⊕πE(π) it follows that

K(z, w) =
∑
π

Θπ(z, w) .

Lemma 5.2. — Let {ϕν}ν∈N
be an orthonormal basis for E(π). Then Θπ(z, w) =∑∞

ν=1 ϕν(z)ϕν(w) .

Proof. — This is well known, but let us recall the proof here. As z �→ Θπ(z, w) is in
E(π) it follows that

Θπ(z, w) =
∑

aν(w)ϕν (z) .

But

ϕν(w) = Tπ(βϕν)(w) = (ϕν ,Θπ(·, w)) = aν(w) .

Since prπ and β
−1 are intertwining it follows that

Θπ(s · z, w) = Θπ(z, s∗ · w) , s ∈ S(−W ) .

Hence Θπ is determined by a function θπ:

(5.5) θπ(z) = Θπ(z, x0) = Θπ(x0, z) .

By construction we have Θπ(γ1 · x0, γ2 · x0) = θπ(γ∗2γ1) and

Tπf(γ · x0) =
∫
G/H

f(ġ)θπ(ġ−1γ) dġ =
∫
G/H

f(m) θπ(γ∗m) dm .

Furthermore we have the Lemma:

Lemma 5.3. — The reproducing kernel has a decomposition in the form k =
∑

π θπ.

Let Θπ be the spherical distribution defined by f �→ prπ(f)(x0). We can now realize
the spherical distribution character as a hyperfunction on G/H in the following way:
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Lemma 5.4. — Let f ∈ C∞
c (G/H). Then

Θπ(f) = lim
0<t→0

∫
G/H

f(m)Θπ(exp(itZ0) · x0,m) dm

= lim
0<t→0

∫
G/H

f(m)θπ(exp(itZ0) ·m) dm.

Furthermore we have

1. The distribution Θπ extends to a holomorphic function on Ξ = S(−W o) · x0
given by Θπ(z) = θπ(z) =

∑
ϕν(x0)ϕν(z);

2. There exists a character χ : D(G/H)→ C such that DΘπ = χ(D)Θπ.

Proof. — It is clear that Θπ is an H-invariant distribution. The first part now follows
by (5.2), (5.4), (5.5), and Lemma 5.2. Let D ∈ D(G/H). Then D : βE(π)K →
L2(G/H). But the multiplicity of ρπ in L2(G/H) is one. HenceD(βE(π)K) = E(π)K .
But E(π) is irreducible, so D has to be a scalar on E(π).

Finding the character formula for the holomorphic discrete series now becomes the
problem of determining the function θπ. Let µ = µ(π) denote the highest weight of
π, let u = uµ(π) ∈ Vπ be a highest weight vector. We assume that ϕ1(z) = ϕπ,u.
Furthermore ‖u‖ = 1 as ‖ϕ1‖ = 1. We have

ϕ1(t−1z) = tµϕ1(z) , ∀t ∈ exp(tC) ∩ S(W ) .

We assume that the other functions ϕν are weight vectors of weight say µν . Since
H(ρπ) = U(p−) ·Vπ it follows that

µν = µ−
∑
α∈∆+

nαα , nα ∈ N ∪ {0} =: N0 .

This, ϕ1(x0) = (u,u0), and Lemma 5.4 imply the following.

Theorem 5.5. — Let θπ =
∑

ϕν(x0)ϕν be as above. Then θπ is a H-invariant function
on Ξ such that for all D ∈ D(G/H) = D(Gc/H)

Dθπ = χπ(D)θπ

where χπ is a character on D(G/H). Furthermore

lim
t→∞

e−tµ(π)(X)θπ(exp−tX · x0) = |(u,u0)|2

for all X ∈ it, such that α(X) > 0 for all α ∈ ∆+
c ∪∆+

n .

Theorem 5.5 implies that θπ|Gc/H∩Ξ is aH -invariant eigenfunction on S(−Co)/H ,
C = W ∩ qc. We will therefore turn our attention to spherical functions on Gc/H .
We use [11, 48] as standard reference.
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Definition 5.6. — A continuous H-invariant function ϕ : S(−Co) · x0 → C, ϕ �= 0, is
called a spherical function if there exists a character χ : D(Gc/H)→ C such that (in
the sense of distributions)

Dϕ = χ(D)ϕ , ∀D ∈ D(Gc/H) .

To construct spherical functions let ac = ia, and Pmin = MAN be the minimal
parabolic subgroup of G corresponding to the positive system ∆̃+. Then N+ :=
P+ ∩ Gc ⊂ N , N = N0N

+, and N̄ = N̄0N
−. Let LA = KC ∩ Gc as before. Let

now X0 = −iZ0, and define ∆+ =
{
α ∈ ∆(gc, ac) | α(X0) = 1

}
. For α ∈ ∆+ let

Hα ∈ ac be determined by Hα = [X, τ(X)] for some X ∈ gcα and α(Hα) = 2. Let
∆0 =

{
α ∈ ∆ | α(X0) = 0

}
and ∆+

0 = ∆0 ∩∆+.

Lemma 5.7. — Let λ ∈ a∗pC
and s ∈ S(−Co

max) Then the following conditions are
equivalent.

1. The function H 
 h �→ p−λ(sh) ∈ C is integrable;
2. The function Ω 
 ω �→ pλ(ω) ∈ C is integrable,
3. λ ∈ E :=

{
λ ∈ a∗pC

| ∀α ∈ ∆+ : Re〈λ,Hα〉 < 2−mα

}
.

The equivalence of (1) and (2) was first proved in [11]. The implication (3)=⇒(2)
was proved in [48], and finally (2)=⇒(3) was proved in [37].
Assume that λ ∈ E . Define

ϕλ(s) :=
∫
H

p−λ(sh) dh

and

cΩ(λ) =
∫
Ω

pλ(expX) dX .

Let c0(λ) be the Harish-Chandra c-function for the Riemannian symmetric space
L/H ∩K. Thus

c0(λ) =
∫
N̄∩L

pλ(n̄) dn̄

wherever the integral converges. Finally we let

c(λ) :=
∫
N̄∩HPmin

pλ(n̄) dn̄ = cΩ(λ)c0(λ) .

There is a well known product formula for the c-function for a Riemannian symmet-
ric space in terms of the c-function cα(λα) for rank one symmetric spaces constructed
from the roots α, see [18]. For the space Gc/H this was an open problem for a long
time. The general case was solved by B. Krötz and the author in [37]. We refer to
that article and [50] for further references.
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Theorem 5.8(KÓ99). — The following product formula for cΩ(λ) is valid

cΩ(λ) = d
∏

α∈∆+

B

(
mα

2
,−〈λ, 1

2
Hα〉 −

mα

2
+ 1

)
(5.6)

= d
∏

α∈∆+

Γ
(
mα

2

)
Γ

(
−λ(Hα)+mα

2 + 1
)

Γ
(
−λ(Hα)

2 + 1
)(5.7)

for some constante d. In particular the c-function for G/H is a product over the
c-functions for the rank one subsymmetric spaces G(α)/H ∩G(α), α ∈ ∆+:

c(λ) =
∏

α∈∆+

cα(λα) .

Here G(α) is the analytic subgroup of Gc corresponding to the Lie algebra g(α) =
gα + [g−α, gα] + g−α.

For the function ϕλ we have according to [11, 48]:

Theorem 5.9. — The function ϕλ is a spherical function for λ ∈ E. It has a mero-
morphic continuation as a spherical function for λ ∈ ac∗

C
. Furthermore

lim
0<t→∞

e−t〈λ−ρ̃,X〉ϕλ(exp(tX)) = c(λ)

for all X ∈ (−Co
max) ∩

{
Y ∈ ac | ∀α ∈ ∆+

0 : α(Y ) > 0
}
and λ ∈ E.

Recall that if π is a irreducible representation of K with highest weight µ, and
such that VH∩K

π �= {0}, then µ ∈ ia∗q = ac∗.

Corollary 5.10. — Let the notation be as before. In particular ρπ is a holomorphic
discrete series representation of G/H. Denote the highest weight of π by µ. Let
λ := µ+ ρ̃ ∈ ac∗. Assume that λ ∈ E. Then

θπ(s · x0) =
|(u,u0)|2
c(λ)

ϕλ(s · x0) .

Define the coefficients Γµ(λ) by recursion as in [18], p. 427, and set for a ∈
exp(−Co

max ∩
{
Y ∈ ap | ∀α ∈ ∆+

0 : α(Y ) > 0
}
) :

Φλ(a) = aλ−ρ
∑

µ∈N0∆+

Γµ(λ)a−µ .

Theorem 5.11(Ó97). — For generic λ ∈ a∗
C
we have

ϕλ =
∑
w∈W0

c(w · λ)Φw·λ = cΩ(λ)
∑

w∈W0

c0(w · λ)Φw·λ.
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For the evaluation of (u,u0) we recall some facts from [33]. As before we let
µ = µ(π) and λ = µ+ ρ̃. Let

d(µ)G =
∏

α∈∆+(µ+ ρ, α)∏
α∈∆+(ρ, α)

.

If ρπ is in the holomorphic discrete series of G, then d(µ)G is the formal dimension of
ρπ, [17].

Lemma 5.12. — Let the notation be as above. Then

|(u,u0)|2 = d(µ)Gc(λ) .

Proof. — By definition

〈ϕ1, ρ−∞
π (g)Θπ〉 = ϕ1(g · x0) .

We also have ‖ϕ1‖ = 1. Assume first that ρπ belongs to the holomorphic discrete series
of G and that λ ∈ E . Then |(u,u0)|2 = d(µ)Gc(λ) follows from Definition III.3 and
Theorem III.4 in [33]. The general statement follows now by analytic continuation,
see Theorem IV.15 in [33].

Using the same analytic continuation arguments as in the proof of Theorem IV.15,
[33] combined with Corollary 5.10 and Theorem 5.11 we arrive at the following char-
acter formula for the holomorphic discrete series representation ρπ.

Theorem 5.13. — Assume that ρπ corresponds to a holomorphic discrete series rep-
resentation of G/H. Let µ be the highest weight of π and let λ = µ+ ρ̃. Then

θπ = d(µ)Gϕλ .

In particular
θπ = d(µ)GcΩ(λ)

∑
w∈W0

c0(w · λ)Φw·λ

for generic µ.

This gives us the character formula for ρπ. Assume now that π is a character χλ+ρ
related to the representation π̄−λ as before. Then this does not relate the H-spherical
character of π directly with that of π̄−λ. But write ρ(∆+) = ρ0 + ρ+ where ρ0 is the
sum over the compact roots and ρ+ is the sum over the non-compact roots. Then
H(−λ) can be embedded into H̄Pmin(−λ−ρ0) where the subscript Pmin indicates that
we are inducing from the minimal parabolic subgroup. It is easy to check that the
restriction of p−λ to H̄(−λ) is non-zero and corresponds to the corresponding Poisson
kernel. Thus by restriction ϕλ can be viewed as the character of π̄−λ (related to the
open orbit HPmin = HPmax).
As a final remark we would like to mention, that most of the compactly causal

symmetric spaces G/H can be compactified as the Sylov boundary G1/P1max of a
bounded symmetric domain G1/K1 of tube type, see [3, 55] for details and list.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000



230 G. ÓLAFSSON

In short there exists a connected semisimple Lie group G1 such that G1/K1 is a
bounded symmetric domain which can also be realized as a tube type domain. The
Sylov boundary of G1/K1 is a compact symmetric space S1 = K1/L1 = G1/P1max,
where P1max is a maximal parabolic subgroup of G1. Furthermore there exists an
injective G-map F : G/H → S1 with open dense image. Using F one can identify
L2(G/H) with L2(S1). The map F can be extended to a holomorphic isomorphism
of Ξ into a open dense subset of G1/K1. This can be used to compare the Hardy
space on G/H (or a covering in some cases) with the classical Hardy space. We refer
to [4, 55] for details. It is still an open question how to use the orbit G-structure of
S1 to analyze L2(G/H).
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SÉMINAIRES & CONGRÈS 4
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