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APPLICATIONS OF CURVED

BERNSTEIN-GELFAND-GELFAND SEQUENCES

by

David M.J. Calderbank

Abstract. — I discuss applications of Bernstein-Gelfand-Gelfand sequences in con-

formal di�erential geometry.

Résumé(Applications des suites de Bernstein-Gelfand-Gelfand courbées). — J'étudie

des applications des suites de Bernstein-Gelfand-Gelfand en géométrie di�érentielle

conforme.

One of the themes of mathematics in the twentieth century has been the growing
realization that representation theory and geometry are closely related. There are
at least two aspects to this. Firstly, there is the geometric study of representation
theory that follows inevitably from the de�nition of a Lie group, where global methods
of geometry and topology are applied to homogeneous spaces. Secondly, there is the
increasing use of representation theory as a tool and language for the invariant analysis
of geometric structure�that is to say, the local (pointwise) aspects of di�erential
geometry. Although this second aspect also has a long history (the work of Cartan
stretches back into the nineteenth century), I think it is fair to say that only in
the last twenty years or so has representation theory really begun to gain ground
as an alternative to the hands-on approach of local coordinate computations. One
area which has motivated this shift is quaternionic geometry, the study of which only
intensi�ed relatively recently in the history of di�erential geometry, driven by many
di�erent forces, such as supersymmetry, the classi�cation of metric holonomies, and
the geometry of moduli spaces. Confronted by an unfamiliar geometry, geometers
turned to the representation theory of H∗ ·GL(n,H) and its subgroups (such as Sp(n)
and Sp(1) Sp(n)) as an e�cient way to develop intuition.
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116 D.M.J. CALDERBANK

This paper concerns the role of representation theory in geometric structures, but,
in keeping with the theme of the conference (and the author's interests), the emphasis
will be on conformal and Riemannian geometry, rather than quaternionic geometry.
The aim is demonstrate that even in these classical subjects, representation theoretic
methods not only provide an e�cient language when computations become unman-
ageable, but also that they lead to genuinely new insights and constructions. Nowhere
has this been more true than in the study of invariant di�erential operators, and so I
will focus on an area where much progress has been made in recent years: Bernstein-
Gelfand-Gelfand sequences.

1. Parabolic geometries and the BGG sequences

A parabolic geometry is a geometry modelled on a generalized �ag variety G/P ,
where G is a semisimple Lie group and P is a parabolic subgroup. These compact
homogeneous spaces arise naturally in representation theory as projectivized orbits
of highest weight vectors in irreducible representations. A parabolic subgroup P has
a decomposition P = L � N , where L is reductive and N is nilpotent�L is often
called the Levi factor. It is convenient to describe parabolic subgroups by crossing
nodes on the Dynkin diagram of G, so that if the crossed nodes (and adjoining lines)
are deleted, the result is the Dynkin diagram of (the semisimple part of) L. Such
diagrams will also denote the corresponding �ag varieties. Strictly speaking, these
diagrams describe complex geometries, whereas real �ag varieties should be denoted
by Satake diagrams with crosses. I shall ignore this distinction. Here are some
examples, together with names for the corresponding parabolic geometries (or rather,
for suitable real forms of these geometries).

Quaternionic Even conformal Quaternionic CR

G semisimple Lie group • • • · · · • •
•
✔• • · · · • •
❚•

• • • · · · •〈=•

P parabolic subgroup • × • · · · • •
•
✔× • · · · • •
❚•

• × • · · · •〈=•

L Levi factor • • · · · • •
•
✔• · · · • •
❚•

• • · · · •〈=•

The key example for this paper is G = SO(n+1, 1), P = CO(n)� (Rn)∗, with G/P ∼=
Sn. This is the conformal sphere, identi�ed as the �sky� in (n + 1, 1)-dimensional
spacetime. The Dynkin diagram is shown above for n � 6 even. For n = 1�5,
the diagrams are ×, ××, ×〉=• , • × • , × •〉=• . The geometries for n = 1, 2 are
projective and Möbius geometry respectively.

Geometries �modelled on� homogeneous spaces are most simply de�ned as Cartan
geometries, i.e., one views the homogeneous geometry on G/P as a principal P -bundle

SÉMINAIRES & CONGRÈS 4



APPLICATIONS OF CURVED BERNSTEIN-GELFAND-GELFAND SEQUENCES 117

G → G/P equipped with the parallelism TG ∼= G× g; then a curved analogue of this
is a principal P -bundle G → M equipped with a Cartan connection.

1.1. Definition. � Let M be a manifold of the same dimension as G/P .

(i) A Cartan geometry of type (g, P ) on M is a principal P -bundle π : G → M ,
together with a P -equivariant g-valued 1-form η : TG → g such that for each
u ∈ G, ηu : TuG → g is an isomorphism restricting to the canonical isomorphism
between Tu(Gπ(u)) and p.

(ii) The curvature K : Λ2TG → g of a Cartan geometry is de�ned by

K(U, V ) = dη(U, V ) + [η(U), η(V )].

It induces a curvature function κ : G → Λ2g∗⊗ g via

κ(u)(ξ, χ) = Ku

(
η−1(ξ), η−1(χ)

)
= [ξ, χ] − ηu[η−1(ξ), η−1(χ)],

where u ∈ G and the brackets are the Lie bracket in g and the Lie bracket of
vector �elds on G.

Cartan geometries usually arise from a more familiar geometric structure onM by a
process of prolongation [10, 26]. In the case of conformal geometry this prolongation
procedure is the famous construction of the normal Cartan connection.

Associated to a P -module E is a vector bundle E = G ×P E. For example, the
Cartan connection η identi�es the tangent bundle of M with G ×P g/p. An important
special case of this is a G-module W, viewed as a P -module by restriction. In this
case, W = G ×P W = G̃ ×G W, where G̃ = G ×P G. A Cartan connection on G
induces a principal bundle connection of G̃ and hence a covariant derivative on W .
In various contexts, such linear representations of the Cartan connection have been
called �tractor� or �local twistor� connections [1, 2].

When the Cartan connection is �at (e.g., on the homogeneous model), parallel
sections of W can be identi�ed, at least locally, with W, so we have

(1.1) 0 → W → C∞(W ) → C∞(T ∗M ⊗W ).

This is the beginning of a resolution, the (dualized, generalized) Bernstein-Gelfand-
Gelfand resolution, of W (or, more accurately, of the sheaf of parallel sections of
W ).

A di�erential geometer or topologist, asked to extend (1.1), would immediately
come up with a resolution by a complex of �rst order di�erential operators, the twisted
de Rham complex:

C∞(W ) → C∞(T ∗M ⊗W ) → C∞(Λ2T ∗M ⊗W ) → C∞(Λ3T ∗M ⊗W ) → · · ·
The problem with this resolution is that W is often quite a complicated bundle, and
hence so are the bundles in this resolution. Bernstein, Gel'fand and Gel'fand [5] found
a way to break up these bundles under the action of P using di�erential projections
and hence obtain a resolution with much simpler bundles, but perhaps higher order
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118 D.M.J. CALDERBANK

di�erentials. (In fact, they only considered the Borel case, and their construction was
generalized to arbitrary parabolics by Lepowsky [22].)

This paper is about the curved version of this construction, which began with the
work of Baston [3] (see also [7, 14, 16]), who gave a double complex construction of
the BGG resolution in the case that N is abelian, and argued that his construction
could be generalized to curved geometries, with one crucial di�erence. Namely (as one
might expect from the twisted de Rham sequence above) the curved BGG sequence
is no longer a complex. Unfortunately, Baston's proofs were not entirely clear, and
it was not until the work of �ap, Slovák, and Sou£ek [11] that the curved BGG
sequences were obtained for arbitrary parabolic geometries, and with full arguments.

My goal in this paper is to try to indicate why this is a signi�cant achievement and
why curved BGG sequences might be useful in practice. In other words, my focus
will be on applications rather than the theory.

For applications, the main thing needed from the theory is an e�cient algorithm
for computing the bundles in the BGG sequence. These bundles are associated to
Lie algebra homology groups, and most algorithms to compute them are based on
Kostant's theorem [20], which states that this homology can be obtained by applying
the a�ne action of Weyl group re�ections to the highest weight vector of W.

I want to explain how to do this, using some notation devised a few years ago for
representations of parabolic subgroups.

Let G have rank m and let ε1, . . . εm be an orthonormal basis for the Cartan
subalgebra h ∼= h∗ so that the roots are given in the �standard� form that one �nds
in any book on Lie theory (e.g. [19]): for type Am and G2 it is more convenient to
identify h with Rm+1/〈(1, 1, . . . 1)〉 or R3/〈(1, 1, 1)〉. In terms of this basis, all but one
or two of the simple roots of g are of the form εi − εi+1.

The highest weights of irreducible representations may now be described by m-
tuples (λ1, . . . λm)�or (m+1)-tuples for Am and G2�where the entries are �integral�
in the sense that the inner products with the coroots are integers (this usually means
the entries are all integers, or all half-integers in some cases). In order to have a
representation of G, this weight has to be to be G-dominant, i.e., the inner product
of

∑
λiεi with the simple roots should be non-negative. In practice this means that

λ1 � λ2 � · · · � λm with some additional inequalities depending on the type of the Lie
group. For representations of P , only P -dominance is needed, i.e., the inequality only
needs to hold for roots of the Levi factor of P . In terms of the Dynkin diagram, whose
nodes are in one-to-one correspondence with simple roots, this means the inequalities
corresponding to crossed nodes need not hold.

If the node corresponding to εi − εi+1 is crossed, then the highest weight of a
P -representation need not satisfy λi � λi+1. This can be indicated by writing the
highest weights of P -representations as (λ1, . . . λi|λi+1, . . . λm). If this highest weight
happens to satisfy λi � λi+1 anyway, then the corresponding P -representation is
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APPLICATIONS OF CURVED BERNSTEIN-GELFAND-GELFAND SEQUENCES 119

the irreducible P -subrepresentation generated by the highest weight vector of the
G-representation associated to (λ1, . . . λi, λi+1, . . . λm).

This works well for the simple examples which arise in practice. If more nodes are
crossed, then more bars are needed, although in general, one would have to dream
up a di�erent notation for the exceptional roots at the right hand end of the Dynkin
diagram.

The Weyl group is generated by re�ections in the hyperplanes orthogonal to the
simple roots. The advantage of working in an orthonormal basis is that re�ections are
easy to handle. In particular, a (not necessarily simple) root εi−εj acts by exchanging
λi and λj . The a�ne action is obtained by conjugating this action with translation
by the half sum of the positive roots. In practice this means that (εi − εj).λ = λ̃

where λ̃i = λj − (j − i) and λ̃j = λi + (j − i). Note that if λi � λj (for i < j) then
λ̃i < λ̃j .

A more systematic notation involves using the basis corresponding to the funda-
mental weights, perhaps indicating the coe�cients by writing them above the nodes
on the Dynkin diagram [4]. The problem with this notation is that non-simple root
re�ections are di�cult to apply, which entails a two pass procedure to compute the
BGG sequence (again, see [4]).

The zeroth bundle in the BGG sequence of a G-representation λ is associated to
the irreducible P -subrepresentation with the same highest weight. The �rst bundle
is associated to the direct sum of all irreducible P -representations whose highest
weight can be obtained by applying a simple a�ne root re�ection to λ. The second
bundle is obtained by applying a second, not necessarily simple, a�ne root re�ection
to these weights and keeping the P -dominant weights which can be obtained from
λ by a composite of two simple a�ne root re�ections. One continues applying root
re�ections in this way, so that the length of the element of the Weyl group (in terms of
simple roots) increases by one at each step. It is usually easy to see which re�ections
will give P -dominant weights: in simple examples there are often only one or two
re�ections which work, and the they will often automatically increase the length of
the element of the Weyl group by one. Furthermore, the same sequence of re�ections
generates the BGG sequence of any generic G-representation. In conformal geometry,
the sequence of root re�ections begins ε1 − ε2, ε1 − ε3, ε1 − ε4, . . . .

For example, the BGG resolution of the trivial representation in conformal geo-
metry starts as follows:

0 → (0, 0, 0, . . .0) → (0|0, 0, . . .0) → (−1|1, 0, . . .0) → (−2|1, 1, 0, . . .0) → · · ·

Here, and throughout the paper, I adopt the usual convention of denoting a represent-
ation, an associated bundle and its (sheaf of) smooth sections by the corresponding
highest weight. In conventional terms, the �rst entry of (λ1|λ2, . . . λm) is the con-
formal weight, while the remaining elements describe the representation of SO(n),
the semisimple part of L. If

∑
i�2 |λi| = k then the representation is a subspace
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of ⊗kRn. In particular, if (λ2, . . . λ
) = (1, 1, . . .1, 0, 0, . . .0) with k ones, then the
representation is just ΛkRn. This notation is consistent with Fegan [17], except for
the sign of the conformal weight.

The BGG sequence of the trivial representation given above is therefore simply
the de Rham complex, except that in even dimensions, the middle-dimensional forms
decompose into two components under the conformal group, namely, the selfdual and
antiselfdual forms.

This is a complex even in the curved case.

2. The adjoint representation

The most �natural� representation of G is the adjoint representation g. The corres-
ponding BGG sequence governs the deformation theory of the parabolic geometry. In
conformal geometry, the adjoint representation is (1, 1, 0, . . .0) and the BGG sequence
begins:

(1|1, 0, . . .0) → (0|2, 0, . . . 0) → (−2|2, 2, 0, . . .0) → (−3|2, 2, 1, 0, . . .0) → · · ·

The �rst three sheaves arising here are: vector �elds, symmetric traceless weightless
bilinear forms (which are linearized conformal metrics) and Weyl tensors (which are
linearized conformal curvatures). The operators are conformally invariant, so one can
identify the �rst three as: the conformal Killing (or Ahlfors) operator, the linearized
Weyl curvature operator (which is second order), and the conformal Bianchi operator.
In the �at case, this is a complex, and its �rst three cohomology groups give the
conformal vector �elds, the formal tangent space to the moduli space of �at conformal
structures, and the obstruction space for integrating deformations.

The above sequence is only completely correct in more than four dimensions. In
three dimensions, the linearized Weyl curvature is replaced by the third order lin-
earized Cotton-York operator, while in four dimensions, the bundle of Weyl tensors
splits into selfdual and antiselfdual parts and the conformal Bianchi identity becomes
second order. This decomposition is very important, because it means that on a
selfdual conformal 4-manifold, part of the BGG sequence is a complex, namely the
sequence

(1|1, 0) → (0|2, 0) → (−2|2,−2),

where (−2|2,−2) denotes the sheaf of antiselfdual Weyl tensors. It is precisely
this sequence which lies behind the deformation theory of selfdual conformal struc-
tures [13, 21].

Similar ideas should apply in other examples, such as quaternionic and quaternionic
CR geometry.
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3. Selfdual Einstein metrics

The remaining examples in the paper will mostly concern the SO(n + 1, 1)-repre-
sentation (1, 1, 1, 0, . . .0), with BGG sequence

(1|1, 1, 0, . . .0) → (0|2, 1, 0, . . .0) → (−1|2, 2, 0, . . .0) → · · ·

or part of this sequence on a selfdual 4-manifold:

(1|1,−1) → (0|2,−1) → (−1|2,−2).

The sheaves appearing here are (antiselfdual) 2-forms of weight 1, weightless Cotton-
York tensors and weight −1 Weyl tensors. In terms of the spinor bundles Σ± =
(1
2 |

1
2 ,±

1
2 ), the latter sequence is

S2Σ− → S3Σ− ⊗ Σ+ → S4Σ−

which is a complex on any selfdual 4-manifold. This is the elliptic complex appearing
in Chapter 13 of [6], where Arthur Lancelot Besse (with some help from his friends)
gives a proof of the following theorem:

3.1. Theorem(Hitchin [18]). � Suppose M is a compact selfdual Einstein manifold

with positive scalar curvature. Then M is isometric to S4 with a round metric or

CP 2 with a Fubini-Study metric.

Let me outline the proof. The operator from S4Σ− ⊕ S2Σ− to S3Σ− ⊗ Σ+ is a
twisted Dirac operator and the Atiyah-Singer index formula computes its index to be
5χ−7τ where χ is the Euler characteristic and τ is the signature ofM . A Weitzenböck
argument shows that the only contribution to this index is the dimension of the
kernel of the operator D2 : S2Σ− → S3Σ− ⊗ Σ+. Hence the dimension of kerD2 is
5χ−7τ = 10−2b+, where we use a vanishing theorem for half of the de Rham complex
(i.e., part of another BGG sequence) to obtain b1 = b− = 0, so that χ = 2 + b+ and
τ = b+.

A simple representation-theoretic argument shows that the map sending a 2-form
α to the vector �eld dual to ∗(dα) maps α ∈ kerD2 to a Killing �eld. Since b1 = 0,
dα is nonzero for all nonzero α in kerD2 and hence dim Isom M � dimkerD2. The
Hitchin-Thorpe inequality shows that 10 − 2b+ � 4 and so our manifold has lots of
isometries. Elementary arguments now show that it must be S4 or CP 2.

4. Applications in Einstein-Weyl geometry

One of my contributions to this subject has been some simple applications in
Einstein-Weyl geometry. Weyl geometry is a generalization of Riemannian geometry,
in the following sense: a Riemannian manifold is a conformal manifold together with
a trivialization of the oriented real line bundle L1 = (1|0, . . . 0), whereas a Weyl
manifold is a conformal manifold together with a covariant derivative D on this line
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bundle. Such a covariant derivative induces a torsion-free conformal connection (a
�Weyl connection�) generalizing the Levi-Civita connection of a Riemannian metric.
An Einstein-Weyl manifold is a Weyl manifold such that the symmetric tracefree part
of the Ricci tensor of the Weyl connection vanishes.

Many concepts from Riemannian geometry generalize naturally to Weyl geometry,
except that there is a new feature with no counterpart in the Riemannian case, namely
the curvature of the covariant derivative on L1, which is called the Faraday curvature

FD. (This term was coined by Tammo Diemer to re�ect the origins of gauge theory
and Weyl geometry in electromagnetism.)

The applications I will discuss are about controlling the Faraday curvature using
the following trick: twist a complex of di�erential operators by D on some power of
L1 so that it is no longer a complex unless FD = 0.

For example, dual to the de Rham complex of exterior derivatives is the complex
of exterior divergences

· · · → (2 − n|1, 1, 0, . . .0) → (1 − n|1, 0, . . . 0) → (−n|0, . . . 0)

where n is the dimension of the manifold. On an oriented manifold, this can also be
viewed as the end of the de Rham complex. Now twist this complex by D on Ln−4

to give a sequence

(−2|1, 1, 0, . . .0) → (−3|1, 0, . . .0) → (−4|0, . . . 0)

which will no longer be a complex unless n = 4 or FD = 0. In particular FD itself,
being a 2-form, is a section of (−2|1, 1, 0, . . .0).

4.1. Proposition. � Let δD denote the twisted exterior divergence on 2-forms and sup-

pose δDFD = 0. Then FD = 0 or n = 4.

The proof is easy [8]: if δDFD = 0 then 0 = (δD)2FD = (n− 4)〈FD, FD〉.
On an Einstein-Weyl manifold the (twice) contracted Bianchi identity shows that

δDFD = 1
nDscalD, where scalD is the trace of the Ricci curvature (using the con-

formal structure), which is a section of L−2. Hence if scalD is identically zero, then
FD = 0 or n = 4. The four dimensional case really does occur: hypercomplex
4-manifolds are Einstein-Weyl with scalD = 0 (see [23]).

I now discuss a more complicated example. Suppose n � 4 and M is conformally
�at, or n = 4 and M is selfdual. Then the BGG sequence of (1, 1, 1, 0, . . .0) or
(1, 1,−1) is a complex. Twist this complex with D on L−3 to obtain:

(−2|1, 1, 0, . . .0) → (−3|2, 1, 0, . . .0) → (−4|2, 2, 0, . . .0)

(−2|1,−1) → (−3|2,−1) → (−4|2,−2).or

These sequences of �rst order di�erential operators will no longer form a complex
unless FD = 0 in the �rst case, or FD

− = 0 (i.e., FD is selfdual) in the second case.
Now, exactly as in the previous proposition, apply the �rst operator D0 in these
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sequences to FD or FD
− to deduce that D0F

D = 0 implies FD = 0 in the �rst case,
and that D0F

D
− = 0 implies FD

− = 0 in the second case.
On an Einstein-Weyl manifold the (once) contracted Bianchi identity shows that

D0F
D = δDW = 0 in the �rst case (the Weyl curvature W vanishes) and that

D0F
D
− = δDW− = 0 in the second case (W is selfdual).

This yields a new proof of a result of Eastwood and Tod, and a new theorem about
Einstein-Weyl 4-manifolds [8].

4.2. Theorem(Eastwood-Tod [15]). � Let M,D be a conformally �at Einstein-Weyl

manifold in four or more dimensions. Then FD = 0 so D is locally the Levi-Civita

connection of an Einstein metric.

4.3. Theorem. � Let M,D be a conformally selfdual Einstein-Weyl manifold. Then

FD is also selfdual, so D is locally the Levi-Civita connection of an Einstein metric

or the Obata connection of a hypercomplex structure.

The second part of this theorem follows because if FD is selfdual, δFD = 0 and so
DscalD = 0. If scalD = 0, then D is �at on (0|1,−1) and M is locally hypercomplex�
see Pedersen and Swann [23].

5. Recent developments

In the few months since the Luminy meeting, there have been some further de-
velopments, which I believe make BGG sequences more accessible to the conformal
geometer, and, perhaps more signi�cantly, substantially broaden the range of possible
applications. These developments arise from the PhD thesis of Tammo Diemer [12],
who has given a surprisingly simple construction of Bernstein-Gelfand-Gelfand res-
olutions which has the additional bene�t of providing bilinear pairings generalizing
the wedge product on the de Rham complex. Just as the BGG operators have higher
order, in general, than the exterior derivative, so too the wedge product generalizes
to bilinear di�erential pairings, no longer necessarily zero order, but still satisfying a
Leibniz rule with respect to the BGG operators.

The search for such pairings was motivated by joint work to understand the re-
lationship between di�erent BGG sequences, called �helicity raising and lowering� in
mathematical physics, or �the translation principle� in representation theory. The
construction in [12] was given in terms of parabolic Verma modules (as in the ori-
ginal work of Bernstein, Gel'fand, Gel'fand and Lepowsky): we have presented the
geometric (i.e., dualized) and curved version in [9]. In the curved case the Leibniz rule
only holds up to curvature terms, and these led us to consider multilinear di�erential
operators, which have a rather rich structure (they form an A∞-algebra).

Here I would like to explain brie�y some motivations and potential applications of
bilinear di�erential pairings in conformal geometry.
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Adjoints. � A di�erential operator D from C∞(E) to C∞(F ) has a natural adjoint
D∗, from C∞(L−n ⊗ F ∗) to C∞(L−n ⊗E∗). On sections compactly supported in the
interior of M we have

∫
M
〈De, φ〉 =

∫
M
〈e,D∗φ〉. This duality should manifest itself

locally as the existence of a bilinear di�erential pairing X(e, φ), valued in vector
densities, such that

(5.1) div X(e, φ) = 〈De, φ〉 − 〈e,D∗φ〉.

The adjointness of D and D∗ would then follow from the divergence theorem. If D and
D∗ have order k, then X(·, ·) has order k− 1. In particular, for �rst order di�erential
operators, the pairing is algebraic. In general one might not expect X(·, ·) to be well
de�ned, since adding the exterior divergence of a bivector density does not alter the
product rule (5.1). It is a rather pleasant surprise then, that there often is a natural
choice. For example, for the conformal Laplacian ∆ = tr D2 − n−2

4(n−1) scalDid, acting

on sections of L(2−n)/2, we have

div
(
(Dφ)ψ − φ(Dψ)

)
= (∆φ)ψ − φ(∆ψ)

and the pairing inside the divergence is conformally invariant. The conformal Lapla-
cian appears in a singular BGG sequence, which is not covered by the general results
above, but a similar observation holds for the conformal Hessian,H0 = sym0(D

2+rD),
where rD is the (normalized) Ricci tensor; this is the �rst operator in the BGG se-
quence:

(1|0, 0, . . .0) → (−1|2, 0, . . .0) → (−2|2, 1, . . .0) → · · · .

Helicity raising and lowering. � It has been known for some time that solutions
of twistor equations (i.e., elements in the kernel of the �rst operator in a BGG se-
quence) may be paired with solutions of conformally invariant �eld equations to give
solutions of other such equations. Many examples have been computed in which this
pairing is zero or �rst order, especially using Penrose twistors in four dimensions [25].

If one wants to study �elds with sources, then it is no longer enough to be able
to manipulate solutions of (source-free) �eld equations; one must compute the extra
source terms that arise in these pairings. It is also natural to ask what happens if the
twistor �eld is no longer required to solve the twistor equation. Clearly, one would
like some sort of product rule:

Dk(φ · F ) = (D0φ) · F + φ · (DkF )

where the Dk's denote the kth operators in some BGG sequences and the dots denote
some pairings. Again examples have been known for some time where the pairings
are all zero order. For instance, F ∈ (3 − n|2, 2, 0, . . .0) and ω ∈ (1|1, 1, 0, . . .0) may
be contracted to give a bivector density, and there is a simple Leibniz rule for the
exterior divergence:

(5.2) δ〈F, ω〉 = 〈δF, ω〉 + 〈F,D0ω〉,
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where the second δ denotes the conformally invariant divergence of Weyl tensors
of weight 3 − n. This has been used by Penrose to discuss his quasi-local mass
construction [24]: bivector densities can be integrated over cooriented codimension
two surfaces and (5.2) provides a conservation law in source-free regions if D0ω = 0.

Several years ago, Tammo Diemer and I began to wonder whether there was a
systematic theory behind this. We noticed that in general we would need higher
order pairings, and found some examples involving �rst order pairings, such as the
following:

δ
(
F (Dφ, ·, ·) − 1

2
(δDF )(·, ·)φ

)
= φdivD(Sdiv F ) − (Sdiv F )(Dφ, ·)

+ 〈H0φ, F 〉 +
1
2
〈W,F 〉φ

where F ∈ (2 − n|2, 1, 0, . . .0), φ ∈ (1|0, 0, . . .0), Sdiv F is the symmetric divergence
in (1 − n|2, 0, . . .0), δDF is the skew divergence in (1 − n|1, 1, 0, . . .0), and W is the
Weyl curvature.

With these examples, and others, in mind, it was natural to look for a result along
the following lines:

5.1. Theorem. � Let (M,η) be a normal parabolic geometry modelled on G/P and

let W1, W2 and W3 be �nite dimensional G-modules with a nontrivial G-equivariant

linear map W1 ⊗ W2 → W3. Then there are nontrivial bilinear di�erential pairings

C∞(Hk(W1)) ×C∞(H
(W2)) −→ C∞(Hk+
(W3))
(α, β) �−→ α � β

which satisfy a Leibniz rule with curvature terms:

Dk+
(α � β) = (Dkα) � β + (−1)kα � (D
β) − 〈K, α, β〉 + 〈α,K, β〉 − 〈α, β,K〉,
where H∗ denote the Lie algebra homology bundles appearing in the BGG sequences,

K ∈ C∞(H2(M)) is the Lie algebra homology class of the curvature of the Cartan

connection, and 〈·, ·, ·〉 are some trilinear di�erential operators. Furthermore, D2K =
0, and the composite of two operators in a BGG sequence is given by Dk+1 ◦ Dkφ =
K � φ.

This theorem was proven in the �at case (using Verma modules) in [12], and, in
general, in [9]. The cup product � and trilinear operators are given quite explicitly
and generalize to the multilinear di�erential operators mentioned earlier. Potential
applications include quadratic and higher degree obstructions in the deformation the-
ory of parabolic geometries discussed in section 2.

I want to end by suggesting another answer to a question which several people
asked me at Luminy: what is the point of studying complexes which are no longer
complexes? In other words, the objection is that since D2 is not zero, there is no
cohomology theory any more. I have attempted to indicate some answers in the
above applications, but the work in [9] has also suggested the following construction.
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Let P → M be a principal G-bundle with a principal connection and let ∇ be the
induced covariant derivative on the adjoint bundle gM = P ×G g. Then there is a
twisted de Rham sequence

C∞(gM ) → C∞(T ∗M ⊗ gM ) → C∞(Λ2T ∗M ⊗ gM ) → · · ·

which is not a complex in general: the composite of two twisted exterior derivatives
(d∇)2 is given by the wedge product with the curvature R∇ ∈ C∞(Λ2T ∗M ⊗ gM ),
where the wedge product is contracted by the Lie bracket.

Denote the sheaf C∞(ΛT ∗M⊗gM ) byA and consider the supersymmetric coalgebra
of sA, i.e., the subspace of symmetric elements of

⊕
k�0 ⊗kA in the graded sense,

where the grading on A is shifted by one, and the coproduct is inherited from the
obvious coproduct on

⊕
k�0 ⊗kA. Then (R∇, d∇,∧) de�ne linear maps ⊗kA → A for

k = 0, 1, 2. The sum of these may be extended to a coderivation ∂ and one readily
�nds that ∂2 = 0, since d∇R∇ = 0, (d∇)2 = R∇ ∧ (·), the wedge product and d∇

satisfy a Leibniz rule, and the wedge product satis�es the graded Jacobi identity. In
other words, even though (d∇)2 is not zero, the triple (R∇, d∇,∧) has square zero
in a generalized sense. If E is an associated bundle, then the same trick applies to
E � gM , with trivial Lie bracket on E.

A similar construction works for the BGG sequence, except that the contracted
cup product does not satisfy the graded Jacobi identity: instead one needs to extend
(K,D, �) by multilinear di�erential operators. This is an example of an L∞-algebra.

In all these cases a natural question arises: what is the homology of the di�erential
coderivation ∂?
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