
Interrelations between
Mathematics and Physics

Yu. I. Manin∗

Abstract

After briefly describing the mathematical structure of modern
physics, this paper analyzes the divergence between the develop-
ment of physics and of mathematics in the first half of the 20th
century, with emphasis on the role in each discipline of rigorous
definitions and proofs, of algebraic calculations and of intuitive
ideas.

Résumé

Après avoir décrit la structure mathématique de la physique mo-
derne, cet article analyse la divergence entre mathématiques et
physique dans la première moitié du XXe siècle, en étudiant,
pour chacune des disciplines, le rôle respectif des définitions et
démonstrations rigoureuses, des calculs algébriques et des idées
intuitives.

1. Foreword

I would like to start with an explicit description of the conceptual framework
of this study.

To render it concisely, it is useful to look at the case of comparative
linguistics. The history of a language is not a history of all, or even of “the
most important,” utterances (oral or written) in this language. Rather, it is a
history of evolution of the language as a system. Hence we need a preliminary
description of the system(s) whose genesis we are studying.

AMS 1991 Mathematics Subject Classification: 00A30, 01A60, 01A65
∗Max–Planck–Institut für Mathematik, Bonn, Deutschland.
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An application of this Saussurian scheme to the history of mathematics
(which, incidentally, I do not consider to be a mere language) was probably
particularly appealing to Jean Dieudonné who, as an active member of the
Bourbaki group, participated in the creation of a systematic picture of modern
mathematics.1 In this talk I follow his example, on a much humbler scale.
Needless to say that restrictions of time, space, and competence, force me to
choose a thin chain of connected ideas and present them in a highly selective
way.

Thus I refuse (somewhat reluctantly) to discuss the history with Rankean
insistence on wie es eigentlich gewesen ist. One reason for this refusal is that
the history of contemporary mathematics tends to degenerate into credit and
priority assignments, lacking pathetically the dramatic appeal with which the
history of struggles for real power is charged. A more personal and compelling
motive is succinctly put by Joseph Brodsky in his autobiographical essay Less
Than One: “The little I remember becomes even more diminished by being
recollected in English.”

A last word of warning and apology is due. Any system is, of course, a
theoretical construct. As such, it is at best relative and culture dependent, at
worst subjective. It is precisely in this function that it can serve as material
for the history of mathematics of the 20th century.

2. Mathematical Physics as a System

2.1. Physics

Physics describes the external world, and in its domain of competence, does
this in two complementary modes: classical and quantum.

In the classical mode, events occur to the matter and fields which reside
and evolve in the space–time. Physical laws directly constrain observables.
They are basically deterministic and expressed by the differential equations
which (sometimes demonstrably, sometimes hypothetically) satisfy appropri-
ate uniqueness and existence theorems.

A statistical submode of the classical mode of description deals with proba-
bilities and averages which (sometimes demonstrably, sometimes presumably)
can be deduced from an ideal deterministic description. The need for a statis-

1Jean Dieudonné, as I remember him, had a strong voice, strong hands, and strong
opinions. In particular, he insisted on using tensor products and commutative diagrams
instead of classical subscripts and superscripts in calculations involving tensors. I used to
believe his judgement that this was a chalk–saving device, until one day I had to calculate
with tensors myself. Then I found out that subscripts were much more economical.
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tical treatment arises from two basic premises: too many degrees of freedom
and/or instability. (Metaphorically speaking, instability means that each con-
secutive decimal digit is a new degree of freedom.)

A fundamental physical abstraction is that of an isolated system which
evolves in oblivion of the rest of the world, and of interaction between poten-
tially isolated systems, or one isolated system and the rest of the world.

In one of the most remarkable flights of fancy of classical physics, space–
time itself appears as such an isolated system governed by Einstein’s equations
of general relativity (perhaps, with an energy–momentum tensor summarily
responsible for everything which is not pure space–time).

In the quantum mode of theoretical description, the observable world is
inherently probabilistic. Moreover, and more significantly, the basic laws
— which are in a sense deterministic — govern an unobservable entity, the
probability amplitude, which is a complex valued function on a quantum path
space. Roughly speaking, the amplitude of a composite event is the product
of the amplitudes of its constituents, whereas the amplitude of an event which
is a sum of alternatives is the sum of the amplitudes of these alternatives.

The probability of an event is the modulus squared of its amplitude. Phys-
ical observables are the appropriate averages, even if one speaks about an
elementary act of scattering of an individual particle. The observable wave
behavior of, say, light is only an imperfect reflection of the inherent wave
behavior of the amplitudes (wave functions) of an indeterminate number of
photons described by the Fock space of the quantized electromagnetic field.

Partly as a result of historical development, many quantum models con-
tain as an intermediate stage a classical model which is then quantized. The
word “quantization” rather indiscriminately refers to a wide variety of pro-
cedures of which two of the most important are operator, or Hamiltonian,
quantization, and path integral quantization. The first is more algebraic and
usually has a firmer mathematical background. The second possesses an enor-
mous heuristic and aesthetic potential. I haven chosen the latter for my more
detailed subsequent discussion.

If I had included the first one, the picture of the divergence of Mathematics
and Physics in the first half of this century sketched below in Sec. IV would
appear less pronounced. Nevertheless, the main results of my analysis would
survive.

One more subject matter deserving a separate historical and structural
study is the duality between these two approaches. It started with clas-
sical mechanics, Lagrange, and Hamilton, and continued via Heisenberg–
Schrödinger wave mechanics to the path integral/scattering matrix contro-
versy. On the fringes of physics it contains such recent mathematical gems as

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1998



160 YU. I. MANIN

Virasoro algebra representations on the moduli spaces of curves.

2.2. Mathematics

If there is one most important notion of mathematical physics, it is that of
action functional. It encompasses the classical ideas of energy and work, its
density in a domain of space–time is the Lagrangian, and multiplied by

√
−1

and exponentiated, it furnishes the basic probability amplitude. Action is
measured in absolute Planck units, and therefore can be thought of as a real
number. More precisely, we will consider the following scheme of description
central for both modes of physical description referred to above.

The modeling of a physical system starts with the specification of its
kinematics. This includes a space P of virtual classical paths of the system and
an action functional S : P → R. For example, P may consist of parametrized
curves in a classical phase space of a mechanical system, or of Riemannian
metrics on a given smooth manifold (space–time), or of triples (a connection
on a given vector bundle, a metric on it, a section of it) etc. The value of the
action functional at a point p ∈ P is usually given in the form

∫
p L, that is a

volume form integrated over one of the spaces figuring in the description of p.
Classical equations of motion specify a subspace Pcl ⊂ P. This subset

consists of the solutions of the variational equations δ(S) = 0, i. e., of the
stationary points of the action functional.

If the classical description is the statistical one, then exp(−S) is the prob-
ability density.

In the quantum description, we choose physically motivated subsets
B ⊂ P, typically determined by boundary conditions, and define the average
of an observable O in B by a path integral of the type

(2.1) 〈O〉B :=
∫

B
O(p) e i

R
p
L Dp.

These are our main actors. In the following, I present some musings about
the history of this picture as seen through the eyes of physicists and mathe-
maticians.

I will be most interested in the idea of the integral and its final incarnation,
in the form of the path integral.

3. The Integral

The notion of an integral is one of the central and recurring themes in the
history of mathematics for the last two millennia. The ardent problem solving

SÉMINAIRES ET CONGRÈS 3
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is periodically followed by the anxious definition seeking, only to be replaced
by new non–rigorous but amazingly efficient heuristics leaving a logically–
minded fundamentalist in each of us baffled.

Richard Feynman who created the hierogram (2.1) (still lacking a pre-
cise mathematical meaning exactly in those cases when it is most needed by
physicists2) used to boast that (2.1) allowed the calculation of the anomalous
magnetic momentum of the electron, which coincided with its experimental
value up to ten digits:

“As of 1983, the theoretical number was 1.00115965246, with an un-
certainty of about 20 in the last two digits; the experimental number was
1.00115965221, with an uncertainty of about 4 in the last digit. This accu-
racy is equivalent to measuring the distance from Los Angeles to New York, a
distance of over 3000 miles, to within the width of a human hair.” [Feynman
1988, p. 118]

This feat was recently matched by physical calculations (even called “pre-
dictions”, cf. [Candelas et al. 1991]) of various interesting numbers in algebraic
geometry, such as the number Nd of rational curves of degree d on a generic
three–dimensional quintic (e. g. 70428 81649 78454 68611 34882 49750 for
d = 10, a theoretical(?) number still unchecked in an experiment(?) involv-
ing a mathematical definition of Nd and a computer.) The ideology of path
integration played an essential role in these calculations, leading to an inter-
pretation of an instance of (2.1) as a sum over instantons in a sigma–model,
which in this particular case are rational curves on a quintic.

The intuitive physical picture of an integral is the quantity of something
in a domain. If the first calculations of this “something” are later interpreted
as, say, the volume of a pyramid, one can hardly doubt that they were used
for estimating the actual quantity of stone (and slaves’ labor) needed for the
building of an Egyptian pharaoh’s tomb. Kepler’s Stereometria Doliorum
mentions wine casks in its title. The domain in question acquired a temporal
dimension when the length of a path was calculated as an integral of velocity,
and the notion of energy was gradually replaced by that of action. In the
twentieth century, topology became one of the substances the quantity of which
could be measured by integration of closed differential forms (De Rham theory
of periods anticipated by Poincaré). Probability turned out to be another
such substance, and Wiener’s treatment of Brownian motion as a measure in
a space of continuous paths paved the way both for Kolmogorov’s axiomatic

2For a more positive view, see [Glimm and Jaffe 1981], a remarkable book which in-
fluenced the structure of this essay. On page 313 however the authors say: “... it is a
theoretical puzzle whether a theory of electrodynamics exists in the sense of a mathematical
framework ...”
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treatment of probability and our present reluctant acceptance of Feynman’s
integral. (This is at least partially supported by the successes of constructive
field theory and stochastic integration. However, the random surfaces inherent
in string path integrals present considerable difficulties.)

Mathematically, any calculation (or definition) of an integral is based upon
two physically intuitive principles: additivity with respect to domains and
integrands, and a form of limiting procedure. There are at least two archetypal
forms of passing to a limit.

One is represented by Cavalieri’s indivisibles, Riemann sums, etc. It is
connected with the topological structure of the domain of integration, specifi-
cally with the idea of boundary and thin layers of (d+1)–dimensional objects
surrounding a d–dimensional object. The Stokes formula in all its modifica-
tions belongs to this circle of ideas, while the De Rham complex is its linear
dual form.

Another form of limiting procedure is measure–theoretical rather than a
topological one. There are basic domains filled with well measured quanti-
ties of the substance of interest (volume, action, probability ...). We try to
approximate other distributions by using mosaic portraits of them and allow-
ing the size of local discrepancies to tend to zero. However, locality is not
topological anymore, and the image of boundary becomes useless or irrele-
vant. Instead, we have to deal with measurable sets which must only form an
algebra with respect to intersections and unions. Infinite–dimensional con-
structions are usually of this type. The well known effect “volume in high
dimensions tends to concentrate near the boundary”prevents using the image
of indivisibles effectively. Even in finite dimensions, the boundary can fail to
serve the role of Cavalieri’s indivisible if it is very rough (fractal). The subtle
measure theoretic studies of the beginning of this century had much to say
about it.

There are two integrals in (2.1), of quite different nature. The action
S =

∫
p L is usually a classical entity, L being a local Lagrangian. A beautiful

recent idea due to a collaboration of physicists and mathematicians (E. Wit-
ten [1989] and M. F. Atiyah [1989] playing leading roles, A. S. Schwarz having
supplied a crucial first example) consisted in considering those path integrals
in which the action is a topological invariant of p. Locally this means that
classical equations of motion δ(S) = 0 are identically satisfied. An example
of such an action functional is the Chern–Simons invariant defined on the
space of connections on a vector bundle over a three–dimensional manifold.
The quantum observables (whose choice and name was motivated by the the-
ory of strong interactions) are Wilson loops: averaged traces of monodromy
representations along closed curves in the base.
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In this context, the algebraic properties of the path integral reflected in the
additivity of

∫
p L and resulting “multiplicativity”of the whole of (2.1) become

so strong that they can be used to define a sufficiently rigid mathematical
structure of “Topological Quantum Field Theory” which can then be studied
by precise mathematical means. This was done by G. Segal and M. F. Atiyah.
See [Reshetikhin and Turaev 1991] and [Blanchet et al. 1995] for some recent
mathematical developments in this area.

The history of the integral seen from our vantage point can be conceived
in terms of a Toynbeean challenge/response scheme. Challenges come from
physics broadly construed, including geometry. It can be convincingly argued
that even Euclidean geometry is in fact just the kinematics of rigid bodies
in the absence of a gravitational field (curved the space–time), and both
the invention and the development of the first non–Euclidean geometries (of
constant curvature) was inextricably connected with physics. Gauss wanted
to know what was the actual geometry of interstellar space. Hilbert’s return
to axiomatics was a mathematical response to the challenge of the discovery
of multiple possible geometries of the physical world.

4. The Schism

In this section of my talk I argue that the main event in the relationship
between mathematics and physics in the first half of this century was their
estrangement, after several centuries of close alliance.

The divergence started in the last two decades of the last century and was
connected with the deepening understanding of two microworlds: a mathe-
matical one embodied in the idea of the classical continuum of real numbers,
and a physical one open to experiment.

Roughly speaking, around the turn of the century Peano, Jordan, Cantor,
Borel, Stieltjes, and Lebesgue discovered and displayed with great subtlety the
new properties of continuum, continuity and measurability. They have given
a series of definitions of integration of increasing generality, and invented
constructions and existence proofs for many strange mathematical objects
which did not belong to the world of classical geometry and analysis but had
to be accepted as a consequence of classical ways of mathematical reasoning
stretched, as it seemed, to their limit.

The growing reaction against many counterintuitive discoveries led math-
ematicians to self–analysis centered around several basic problems: What is a
mathematical proof? What meaning can be given to a statement about exis-
tence of a mathematical object? What is the status of mathematical infinity?

The outcome of this is well known. Fifty years of introspection were
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quite fruitful from the mathematical viewpoint: they produced mature math-
ematical logic, including theory of proof, theory of computability, and a clear
picture of the hierarchy of expanding languages and axiom systems that math-
ematicians have had to adopt consecutively in their quest for mathematical
truth.

In the meantime, physicists were engaged in a totally different quest.
Planck’s discovery of a quantum of action announced on December 14, 1900,
initiated the quantum age. Physics needed sophisticated mathematics to for-
mulate newly discovered non–classical laws, but new mathematics was of no
help. Whatever was needed was hastily invented or reinvented: matrix al-
gebra, spinors, Fock space, the delta function, the representation theory of
Lorentz group. None of the pioneers (Bohr, Einstein, Pauli, Schrödinger,
Dirac) needed the Lebesgue integral, or was interested in the cardinality of
continuum. Logic interested them even less.

This does not mean that physicists had no philosophical preoccupations;
in fact they had. But if mathematicians discussed the relationships between
language and thought, physicists were troubled by the relation of language to
reality. The basic problem confronted by the critics of classical mathematics
was the inexpressibility of infinity, related to the inherently finitary syntactic
structure of language. The basic problem confronted in the Bohr–Einstein
controversy was the inexpressibility of quantum indeterminacy, related to
the inherently classical semantics of language. Philosophy of mathematics
and philosophy of physics almost completely lost contact with each other.
Such ardent critics of the alleged inadequacies of contemporary research as
Brouwer in mathematics and Pauli in physics shared not a single common
idea. Mathematical criticism tended to become deeply autistic, while physical
criticism strived to find better ways to express complex reality.3

A gap formed in traditional professional interactions as well. From the
first successes of the quantum electrodynamics in the thirties until the re-
newed interaction in the sixties, mathematicians contributed almost nothing
to the main physics research program of this century: Quantum Field The-
ory. Similarly, physicists payed no attention not only to mathematical logic
(understandably) or analytical number theory (traditionally), but also to the
emerging algebraic topology. Thirty years later, topology was to become
the new common ground for the two communities. Somewhat paradoxically,
mathematics gained from this renewed interaction more than physics: new in-
variants of three– and four–dimensional manifolds, quantum groups, quantum
cohomology were its fruits.

3It is characteristic that G. H. Hardy’s Rouse Ball Lecture [Hardy 1929] on“Mathematical
Proof” delivered in 1928 does not even mention existence of quantum physics.
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The following well known empirical observation fits well into the picture
we have sketched. Whenever a fresh mathematical tool for understanding
physics is needed, physicists are very quick at inventing new or transforming
already existing algebraic formalism to deal with it. We have already men-
tioned Heisenberg algebra, spinors and Dirac delta function. One can add
the Schwinger–Dyson equation (for an otherwise undefined path integral),
the Berezin integral on supermanifolds and Witten’s topological invariants
expressed as path integrals of a topological QFT. All this constitutes only a
small sample of inventions which are by now thoroughly absorbed and trans-
formed into honest mathematics.

It is “only” when one has to deal with infinitary constructions, that is,
limits of various kinds, that mathematicians do their job unassisted. Accord-
ing to Bourbaki’s chapters on integration [Bourbaki 1974], mathematicians
contributed to the theory of integral in the last century exclusively careful
analysis of limits.

After the creation of the modern notion of a topological space and the
discovery of limiting procedures basic to measure theory, the next major pack-
age of startlingly new infinitary constructions was introduced by Alexander
Grothendieck with his treatment of homological algebra, derived categories
and functors, topos and sites. But this is another story.

5. Discussion

Direct contact between mathematical and physical modes of thought more
often than not creates a tension. The basic values are different, the accepted
types of social behavior clash, time scales for a problem to keep attention of the
public tend to be incommensurable.4 In a remarkable piece of introspection,
Dyson [1972] has shown how impenetrable the walls between mathematics
and physics can be in one and the same mind. We would be much more
tolerant to each other if we could discern in ourselves the two personalities so
convincingly displayed by Dyson. A recent discussion (cf. [Jaffe and Quinn
1993, 1994]) shows the vulnerability of our community, when in a period of
renewed fruitful interaction we try to harmonize our attitudes to what is and
what is not a proof, what may and what may not be published, and who

4The relevant psychological difficulties are not often expressed in print. For an interesting
recent reaction see S. Mac Lane’s contribution in [Jaffe and Quinn 1994] of which we cite
only one sentence: “Thus, when I attended a conference to understand the use of a small
result of mine, I heard lectures about ‘topological quantum field theory’, without a slightest
whiff of a definition; I was told that the notion had cropped up at some prior conference, so
that ‘Everybody knew it.’ ”
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should be credited for what.
All of this is fortunately restricted to our social life. It seems that deep

insights survive however we mess them up, and it is precisely the comple-
mentarity of mathematical and physical thinking that makes their interaction
creative.

The crucial distinction between the ways we present our ideas in the last
half of this century lies not so much in our attitudes towards a rigorous proof
as towards exact definitions.

Mathematicians have developed a very precise common language for say-
ing whatever they want to say. This precision is embodied first of all in the
definitions of the objects they work with, stated usually in the framework
of a more or less axiomatic set (or category) theory, and in the skillful use
of metalanguage (which our natural languages provide) to qualify the state-
ments. All the other vehicles of mathematical rigor are secondary, even that
of rigorous proof. In fact, barring direct mistakes, the most crucial difficulty
with checking a proof lies usually in the insufficiency of definitions (or lack
thereof). In plain words, we are more deeply troubled when we wonder what
the author wants to say than when we do not quite see whether what he or
she is saying is correct. The flaws in the argument in a strictly defined envi-
ronment are quite detectable. Good mathematics might well be written down
at a stage when proofs are incomplete or missing, but informed guesses can
already form a fascinating system: outstanding instances are A. Weil’s con-
jectures and Langlands’s program, but there are many examples on a lesser
scale.

The etymology of the term de–fin–itio shows that its primary function is
to set strict limits. In the course of a given study, we agree to consider only
locally compact topological spaces satisfying the countability condition, only
finite–dimensional Lie algebras, only coarse moduli spaces of stable algebraic
curves and so on. If we fail to mention a relevant restriction in the course of
presenting a professional seminar, we will be politely reminded about it. If we
claim to having done anything serious, our work will be carefully scrutinized
for all the necessary caveats.

Of course, our definitions are far from being arbitrary. One function of a
good definition is to be a carrier of analogies between various situations, and
to this end the cage of a definition must be of optimal size. For example, one
can convincingly argue that by far the most important result of the group
theory is exactly the definition of an abstract group and its action on a set,
because it describes a structure reappearing again and again in geometry,
number theory, probability, the theory of space–time, theory of elementary
particles, and so on. The whole ideology of Bourbaki’s treatise consists in
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representation of mathematics as a building supported by a strict system of
good definitions (axioms of basic structures). And since a good definition is
sometimes the work of generations of good mathematicians, the temptation
to believe that we already know them all can be great.

To the contrary, an inexperienced reader of the most interesting physi-
cal papers is often left in a vacuum about the precise meaning of the most
common terms. Physicists are undoubtedly constrained by their own rules,
but these rules are not ours. What is a current algebra, a supersymmetry
transformation, a topological field theory, a path integral, finally? They are
very open concepts, and it is precisely their openness that makes them so
interesting.

Here is what the history of our two metiers teaches: we cannot live without
each other. At least for some of us, life becomes dull if it goes on for too long
without contacts with good physics.

It is the interaction with a wildly differing set of values that counts most.
As a perceptive study by Hardy Grant [1995] shows, in terms of cultural

history of Isaiah Berlin’s variety, mathematics is a very classical endeavour.
In fact, it is based upon a commonly accepted idea of truth and ways to
achieve it, forming a stable system. The Romantic Revolution of a century
and a half ago did not really influence mathematics mainly because there was
little place in it for personal whims.

In this century romantics comes from physics: the vast expanses of the
Universe, the wonderfully erratic behavior of the microworld, the observer’s
subjectivism and the power of the unobservable, the Big Bang, the Anthropic
Principle, our in turn humble and megalomaniacal attempts to cope with
irreverent Nature.

Mathematics supplies hygienic habits and headaches.
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