
Discrete Linear Interpolatory Operators

J. Szabados

20 February 2006

Abstract. This is a survey on discrete linear operators which, besides approximating in
Jackson or near-best order, possess some interpolatory property at some nodes. Such operators
can be useful in numerical analysis.
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A central problem in approximation theory is the construction of simple functions that ap-
proximate well a given set of functions. Traditionally, by “simple” we mean polynomials or rational
functions as they are easily implemented on computers, and the set of functions is generally char-
acterized by continuity or belonging to some Lp class. These functions may be defined on finite or
infinite intervals, or in complex domains. Another characteristic is the measure of error which can
be the supremum or Lp norm, etc., with a weight usually introduced in the case of non-compact
domains.

But what are the available data to construct such approximations? From a practical point
of view, this is a crucial question. For example, convolution integrals are very useful in proving
Jackson’s theorem, but to actually calculate them one needs complete knowledge of the function.
Obviously, this precludes any numerical application. In practice, we are generally given a discrete

set of data (like function values at certain points) from which we wish to reconstruct the function.
Another feature which is important to us is that we prefer to construct linear operators since

they are easier to handle. For example, the so-called “best approximation” is not at all “best” for
our purposes, since (except in inner product spaces) it represents a non-linear operator which may
be very difficult to calculate.

A natural candidate that satisfies the above requirements is some kind of interpolation operator.
It is based on a discrete set of data, and additionally gives a zero error at an increasing number of
well defined points. Depending on the nature of the interpolation, it is relatively easy to construct
such interpolation operators.

However, there is a significant drawback to these operators. In the case of Lagrange interpo-
lation, for example, no matter how we choose the n nodes we get at least an extra O(log n) factor
compared to the optimal Jackson order of convergence. And if we try to avoid this problematic
situation by considering Hermite–Fejér interpolation then, although we obtain the Jackson order
of convergence in some cases, this process is saturated. That is, it will not give the Jackson order
of approximation, for example, for Lip 1 classes, let alone for classes of functions with higher order
of smoothness.
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It transpires that the reason for this negative behavior of interpolating polynomials is the strict
restriction on the degree. In 1963, at an Oberwolfach conference, Paul Butzer raised the following
question: Is it possible to construct an interpolation process that gives the Jackson order of conver-
gence? Of course, this was meant in the sense that we should now allow interpolating polynomials
of degree higher than Lagrange or Hermite–Fejér interpolation, say polynomials of degree ≤ an for
some constant a. It was Géza Freud [11] who answered this question affirmatively by constructing
polynomials pn of degree at most 4n − 3, interpolating at ∼ n/3 nodes and approximating to the
Jackson order

max
|x|≤1

|f(x) − pn(x)| ≤ c ω(f, 1/n), |x| ≤ 1,

where ω is the ordinary modulus of continuity. This was later improved upon by Freud and Vértesi
[14] who constructed a sequence of discrete linear polynomial operators (DLPO, in what follows)
Jn(f, x) of degree at most 4n − 2 which interpolate at the Chebyshev nodes cos((2k − 1)/(2n))π,
k = 1, . . . , n, and provide a Timan type (pointwise) estimate

|f(x) − Jn(f, x)| ≤ c[ω(f,

√
1 − x2

n
) + ω(f,

1

n
)], |x| ≤ 1. (1)

Freud and Sharma [12, 13] further extended this result to operators based on general Jacobi nodes,
and also succeeded in decreasing the degree of the polynomial to n(1 + ε), for an arbitrary ε > 0.
(Of course, the c in the above then depends upon ε.)

Freud’s work [11] initiated a substantial series of papers exhibiting constructions of a similar
character. R. B. Saxena [19] succeeded in constructing a sequence of DLPOs J⋆

n which realized the
even stronger Telyakovskii–Gopengauz estimate

|f(x) − J⋆
n(f, x)| ≤ c ω(f,

√
1 − x2

n
), |x| ≤ 1.

Furthermore, for 2π-periodic continuous functions, O. Kis and P. Vértesi [17] constructed a very
simple interpolating process: Let ℓk(x) be the fundamental functions of trigonometric interpolation
based on the equidistant nodes xk = 2kπ/(2n+1), k = 0, . . . , 2n, i.e., let ℓk(x) be that trigonometric
polynomial of order n for which ℓk(xj) = δjk, j, k = 0, . . . , 2n, and consider the sequence of operators

Un(f, x) =

n
∑

k=0

f(xk)[4ℓk(x)3 − 3ℓk(x)4].

Then, for every 2π-periodic continuous functions f , we have

max
x∈R

|f(x) − Un(f, x)| ≤ c ω(f,
1

n
),

and, for this trigonometric polynomial Un(f, x) of degree at most 4n, evidently

Un(f, xk) = f(xk), k = 0, . . . , 2n,

because of the nice identity

n
∑

k=0

[4ℓk(x)3 − 3ℓk(x)4] = 1
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(cf. Turetskii [27]). With a proper transformation, Kis and Vértesi [17] also constructed an operator
that realized the Timan estimate (cf. (1)) and interpolates at some nodes. In that construction,
the limit of the ratio of the degree of the polynomial and the number of points of interpolation
was greater than 1. Later, O. Kis and J. Szabados [16] sharpened this to the following: Given

0 < ε ≤ 1, let n ≥ 20/ε2 and f ∈ C[−1, 1]. There exists a sequence of DLPOs pn of degree at most

n(1 + ε) such that pn interpolates f in at least n points and

|f(x) − pn(x)| ≤ 13

ε2
ω(f,

π
√

1 − x2

2n
), |x| ≤ 1.

This answers a question raised by Freud and Sharma [12] about the construction of linear operators
of minimal degree compared to the number of points of interpolation, that at the same time realize
the Telyakovskii–Gopengauz estimate.

In the algebraic case, the above mentioned operators are based on nodes of orthogonal polyno-
mials which is not the best choice from a numerical point of view. Usually, data about an unknown
function are given at equidistant nodes. Since Lagrange interpolation at equidistant nodes behaves
very poorly (the norm of the operator grows exponentially with the number of nodes), it was not at
all obvious if convergent operators based on equidistant nodes could be constructed. On p. 581 of
[3], R. DeVore raised this question while requesting a Jackson order of convergence. One possible
solution is the following: As an intermediate approximation, we take the rational functions

Rn(f, x) =
n

∑

k=−n

f(k/n)

(x − k/n)4

/

n
∑

k=−n

1

(x − k/n)4
, (2)

based on equidistant nodes. These are a special case of the so-called Shepard operators which
approximate to Jackson order (for details, see later). Then, to approximate (2) by polynomials,
we can use any standard constructive operator (for example, the one developed by Bojanic and
DeVore [2]). An easy calculation shows that the moduli of continuity of f and (2) are equivalent,
thus solving the problem (for details, see [24]). Also, if the operator obtained in this way is of
degree n, then for some c, 0 < c < 1, it is possible to modify it so that the new operator will
interpolate at the equidistant nodes k/(cn), k = 0,±1, . . . ,±cn (cf. [25], Theorem 3).

With the exception of Lagrange interpolation, all of the above mentioned operators are satu-

rated, i.e., the order of convergence cannot be improved upon beyond a certain limit, even if the
function has better and better structural properties. The question then becomes: Can we con-
struct discrete linear operators that are not saturated, and approximate “close” to the order of
best approximation En(f)? Of course, by Korovkin’s theorem, such operators cannot be positive.
In the case of 2π-periodic functions, the well-known de la Vallée Poussin means do have the de-
sired approximation order, but they are not discrete. In [23], the following family of operators was
constructed. Let j, n be positive and k, ℓ nonnegative integers such that 1

2 (jn + kn − k + ℓ − 1) is
a nonnegative integer. Set

sjkℓn(t) =
sin jnt

2 (sin nt
2 )k(cos t

2 )ℓ

j(n sin t
2 )k+1

,

tν =
2πν

jn
, ν = 0,±1,±2, . . . ,

and let
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Sjkℓn(g, t) =

jn−1
∑

ν=0

g(tν)sjkℓn(t),

be a discrete linear operator defined on all 2π-periodic continuous functions g. This is a gener-
alization of many of the classical kernels and operators. s100n(t) (n odd) is the Dirichlet kernel,
s110n(t) is the Fejér kernel, s310n(t) is the de la Vallée Poussin kernel, and s130n(t) is the Jackson
kernel. Correspondingly, S100n(g, t) (n odd) and S101n(g, t) (n even) are ordinary interpolation
polynomials, S110n(g, t) is the Jackson polynomial and S310n(g, t) is the discrete version of the de
la Vallée Poussin operator (see [16] and [23]). These sequences of operators converge if the so-called
Lebesgue constant

‖Ljkℓn‖ = max
t∈R

jn−1
∑

ν=0

|sjkℓn(t − tν)|

remains bounded as n → ∞ (the other parameters being considered as constants). Namely, the
following typical error estimate holds:

max
t∈R

|Sjkℓn(g, t) − g(t)| ≤ (1 + ‖Ljkℓn‖)ET
n (g), (3)

where ET
n (·) is the error in the best approximation by trigonometric polynomials. For some special

choices of the parameters j, k, ℓ, the following relations hold:

‖Lj10n‖ =
1

j

j
∑

ν=1

cot
2ν − 1

4j
π =

2

π
(log

8π

j
+ γ) + αj

where γ = 0.5772 · · · is the Euler constant and 0 < αj < π
72j2 ;

‖Lj11n‖ ≤ 2

π
log j + 2.283 if j is even, n is odd;

‖L221n‖ ≤ 2√
3
;

‖L332n‖ ≤ 11

9
.

In all of these cases, (3) yields the order of best approximation. In addition, evidently

Sjkℓn(g, tν) = g(tν), ν = 1, . . . , jn,

i.e., the ratio of the order of the operator to the number of interpolation points is

jn + kn + ℓ − k + 1

2jn
,

which is fairly close to the optimal ratio 1/2 (which corresponds to the minimal degree interpolation)
provided j is large compared with k.

The obvious transformation x = cos t converts these results into estimates for continuous
functions on the interval [−1, 1]. Let
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Pjkℓn(f, x) = Sjkℓn(f(cos t), t)

and

xν = cos tν , ν = 0, . . . , jn − 1.

This new polynomial operator will have the analogous properties

Pjkℓn(f, xν) = f(xν), ν = 0, . . . , jn − 1,

and

max
|x|≤1

|f(x) − Pjkℓn(f, x)| ≤ (1 + ‖Ljkℓn‖)En(f),

where En(·) is the error in the best approximation by algebraic polynomials of degree at most n.
Let the number rn = mn/n be the ratio of the degree mn of a polynomial operator to the

number n of nodes where it interpolates. For Lagrange interpolation we always have limn→∞ rn = 1.
In the case of (convergent) Hermite–Fejér interpolation, limn→∞ rn = 2. A classical result of
Bernstein [1] says that if ε > 0 is arbitrary, then there exists a linear polynomial operator with
bounded norm such that

lim
n→∞

rn = 1 + ε. (4)

In general, it is desirable to investigate the relation between the norm ‖Ln‖ of a (not necessar-
ily linear) polynomial operator of degree mn and the number of nodes n where it interpolates.
Generalizing the results just mentioned, it can be shown that for such operators

lim
n→∞

‖Ln‖
log n

mn−n+2

> 0.

This was proved first for Chebyshev nodes [26], and later generalized by B. Shekhtman [20] to an
arbitrary system of nodes. We emphasize that this result is true without assuming linearity of the
operator. It holds, for example, for operators of the form

Ln(f, x) = pn(f, x) +
n

∑

k=1

[f(xk) − pn(f, xk)]qk(x),

where pn is the best approximating polynomial of degree mn and the qk are polynomials of the
same degree such that qk(xj) = δkj , j, k = 1, . . . , n. Sequences of operators having property (4) for
general systems of nodes xk = cos tk, k = 1, . . . , n, and approximating to the order O(En(1+ε)) were
constructed by Erdős, Kroó and Szabados [10] who showed that such approximation is possible if
and only if

lim sup
n→∞

Nn(In)

n|In|
≤ 1

π
whenever lim

n→∞
n|In| = ∞,

and

lim
n→∞

n · min
1≤k≤n−1

(tk − tk+1) > 0,
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where Nn(In) is the number of tk’s in the interval In ⊂ [0, π].
We have, until now, dealt with polynomial operators. From a numerical point of view, rational

functions are just as useful as polynomials, and as we shall see, they enjoy certain advantages over
polynomial operators. We have already briefly mentioned the operator (2). With an exponent
2 instead of 4, and in the case of bivariate functions, this operator was originally introduced
by D. Shepard [21]. His interesting paper went unnoticed for some time, but his operator was
rediscovered in 1976 by J. Balázs (oral communication). It was then proved in [24] that for the
sequence of operators

Rn(f, x) =

n
∑

k=−n

f(k/n)

|x − k/n|p

/

n
∑

k=−n

1

|x − k/n|p , (5)

in the case p = 4, we have

max
|x|≤1

|f(x) − Rn(f, x)| ≤ c ω(f,
1

n
),

i.e., a Jackson order of convergence. The major advantage of this sequence of discrete linear opera-
tors is that it is based on equidistant nodes (and not on the roots of some orthogonal polynomials).
In addition, these operators (for p = 2) have the properties

Rn(f, k/n) = f(k/n), R′
n(f, k/n) = 0, k = 0, . . . ,±n,

i.e., they behave like Hermite–Fejér interpolating polynomials.
Balázs’ rediscovery of Shepard’s operators initiated a series of papers dealing with further

problems and generalizations. We mention only a few significant papers and results. G. Somorjai
[22] proved that, for p > 2,

max
|x|≤1

|f(x) − Rn(f, x)| ≤ c

n
⇔ f ∈ Lip 1,

and

max
|x|≤1

|f(x) − Rn(f, x)| = o

(

1

n

)

⇔ f = const.,

i.e., the saturation property of the operator Rn. The important (and much more difficult) case
p = 2 was handled by Della Vecchia, Mastroianni and Totik [4]. They proved that for p = 2 the
trivial class (for which the approximation order is o(1/n)) is the set of constant functions, and the
saturation class (for which the order of approximation is O(1/n)) is contained in ∩α<1Lip α. They
also proved the surprising fact that, for arbitrary subsequences of the Shepard operators, arbitrarily
fast convergence may be achieved for some nonconstant functions.

The case 0 < p ≤ 2 was handled by X. L. Zhou [28]. With the notation

Tε,pf := max
0≤x≤1

∣

∣

∣

∣

∣

∫

0≤t≤1, |t−x|≥ε

f(t) − f(x)

|t − x|p dt

∣

∣

∣

∣

∣

,

he proved that the saturation order is n1−p or 1/ log n, and the saturation class is

{f : f ∈ Lip (p − 1), sup
ε>0

Tε,pf < ∞}
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or

{f : ω(f, t) = O(| log t|−1), sup
ε>0

Tε,1f < ∞}

according as 1 < p ≤ 2 or p = 1, respectively. He also showed that the case 0 < p < 1 is not
interesting, since then

max
0≤x≤1

|f(x) − Rn(f, x)| → 0 ⇔ f = const.

Many of the above mentioned results have been generalized to weighted approximation (see
[6]–[9], [18]), as well as to general systems of nodes (see [5]).
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