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Abstract. Approximation theory is concerned with the ability to ap-
proximate functions by simpler and more easily calculated functions. The
first question we ask in approximation theory concerns the possibility of
approximation. Is the given family of functions from which we plan to ap-
proximate dense in the set of functions we wish to approximate? In this
work we survey some of the main density results and density methods.
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1 Introduction

Approximation theory is that area of analysis which, at its core, is concerned
with the ability to approximate functions by simpler and more easily calculated
functions. It is an area which, like many other fields of analysis, has its primary
roots in the mathematics of the 19th century.

At the beginning of the 19th century functions were essentially viewed via
concrete formulae, series, or as solutions of equations. However largely as a
consequence of the claims of Fourier and the results of Dirichlet, the modern
concept of a function distinguished by its requisite properties was introduced
and accepted. Once a function, and more specifically a continuous function,
is defined implicitly rather than explicitly, the birth of approximation theory
becomes an inevitable and unavoidable development.

It is in the theory of Fourier series that we find some of the first results
of approximation theory. These include conditions on a function that ensure the
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pointwise or uniform convergence (of the partial sums) of its Fourier series, as
well as the omnipresent L2-convergence. Similar results were also developed for
other orthogonal series, and for power series (analytic functions). However these
results are of a rather particular form. They are concerned with conditions for
when certain formulae hold. In the classical theory of Fourier series one does
not ask if trigonometric polynomials can be used to approximate, or even if
the information provided by the Fourier coefficients is sufficient to provide an
approximation. Rather one wants to know if the partial sums of the Fourier
series converge to the function in question.

The first question we ask in approximation theory concerns the possibil-
ity of approximation. Is the given family of functions from which we plan to
approximate dense in the set of functions we wish to approximate? That is,
can we approximate any function in our set, as well as we might wish, using
arbitrary functions from our given family? In this work we survey some of the
main density results and density methods.

The first significant density results were those of Weierstrass who proved
in 1885 (when he was 70 years old!) the density of algebraic polynomials in the
class of continuous real-valued functions on a compact interval, and the density
of trigonometric polynomials in the class of 2π-periodic continuous real-valued
functions. These theorems were, in a sense, a counterbalance to Weierstrass’
famous example of 1861 on the existence of a continuous nowhere differentiable
function. The existence of such functions accentuated the need for analytic
rigour in mathematics, for a further understanding of the nature of the set
of continuous functions, and substantially influenced the further development
of analysis. If this example represented for some a ‘lamentable plague’ (as
Hermite wrote to Stieltjes on May 20, 1893, see Baillard and Bourget [1905]),
then the approximation theorems were a panacea. While on the one hand
the set of continuous functions contains deficient functions, on the other hand
every continuous function can be approximated arbitrarily well by the ultimate
in smooth functions, the polynomials.

The Weierstrass approximation theorems spawned numerous generaliza-
tions which were applied to other families of functions. They also led to the
development of two general methods for determining density. These are the
Stone-Weierstrass theorem generalizing the Weierstrass theorem to subalgebras
of C(X), X a compact space, and the Bohman-Korovkin theorem characterizing
sequences of positive linear operators that approximate the identity operator,
based on easily checked, simple, criteria.

A different and more modern approach to density theorems is via “soft
analysis”. This functional analytic approach actually dates back almost 100
years. A linear subspace M of a normed linear space E is dense in E if and only
if the only continuous linear functional that vanishes onM is the identically zero
functional. For the space C[a, b] this result can already be found in the work of
F. Riesz from 1910 and 1911 as one of the first applications of his “representation
theorem” characterizing the set of all continuous linear functionals on C[a, b].
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Density theorems can be found almost everywhere in analysis, and not
only in analysis. (For a density result equivalent to the Riemann Hypothesis
see Conrey [2003, p. 345].) In this article we survey some of the main results
regarding density of linear subspaces in spaces of continuous real-valued func-
tions endowed with the uniform norm. We only present a limited sampling of
the many, many density results to be found in approximation theory and in
other areas. A monograph many times the length of this work would not suffice
to include all results. In addition, we do not prove all the results we quote.
Writing a paper such as this involves compromises. We hope, nonetheless, that
you the reader will find something here of interest.

2 The Weierstrass Approximation Theorems

We first fix some notation. We let C[a, b] denote the class of continuous real-

valued functions on the closed interval [a, b], and C̃[a, b] the class of functions

in C[a, b] satisfying f(a) = f(b). (C̃[a, b] may be regarded as the restriction
to [a, b] of (b − a)-periodic functions in C(IR).) We denote by Πn the space of
algebraic polynomials of degree at most n, i.e.,

Πn = span{1, x, . . . , xn},

and by Tn the space of trigonometric polynomials of degree at most n, i.e.,

Tn = span{1, sinx, cos x, . . . , sinnx, cosnx}.

The paper stating and proving what we call the Weierstrass approximation
theorems is Weierstrass [1885]. It seems that the importance of the paper was
immediately appreciated, as the paper appeared in translation (in French) one
year later in Weierstrass [1886]. Weierstrass was interested in complex function
theory and in the ability to represent functions by power series and function
series. He viewed the results obtained in this 1885 from that perspective. The
title of the paper emphasizes this viewpoint. The paper is titled On the pos-
sibility of giving an analytic representation to an arbitrary function of a real
variable. We state the Weierstrass theorems, not as given in his paper, but as
they are currently stated and understood.

Weierstrass Theorem 2.1. For every finite a < b algebraic polynomials are
dense in C[a, b]. That is, given an f in C[a, b] and an arbitrary ε > 0 there
exists an algebraic polynomial p such that

|f(x) − p(x)| < ε

for all x in [a, b].
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Weierstrass Theorem 2.2. Trigonometric polynomials are dense in C̃[0, 2π].

That is, given an f in C̃[0, 2π] and an arbitrary ε > 0 there exists a trigonometric
polynomial t such that

|f(x) − t(x)| < ε

for all x in [0, 2π].

These are the first significant density theorems in analysis. They are gen-
erally paired since in fact they are equivalent. That is, each of these theorems
follows from the other.

It is interesting to read this paper of Weierstrass, as his perception of these
approximation theorems was most certainly different from ours. Weierstrass’
view of analytic functions was of functions that could be represented by power
series. The approximation theorem, for him, was an extension of this result to
continuous functions.

Explicitly, let (εn) be any sequence of positive values for which
∑∞

n=1 εn <
∞. Let pn be an algebraic polynomial (which exists by Theorem 2.1) satisfying

‖f − pn‖ := max
a≤x≤b

|f(x) − pn(x)| < εn, n = 1, 2, ...

Set q0 = p1 and qn = pn+1 − pn, n = 1, 2, ... Then

f(x) =

∞∑

n=0

qn(x).

Thus every continuous function can be represented by a polynomial series that
converges both absolutely and uniformly. Similarly, ‘nice’ functions in C̃[0, 2π]
enjoy the property that their Fourier series converges absolutely and uniformly.
What Weierstrass proved was that every function in C̃[0, 2π] can be represented
by a trigonometric polynomial series that converged both absolutely and uni-
formly.

The paper Weierstrass [1885] was reprinted in Weierstrass’ Mathematis-
che Werke (collected works) with some notable additions. While this reprint
appeared in 1903, there is reason to assume that Weierstrass himself edited
this paper. One of these additions was a short “introduction”. We quote it
(verbatim in meaning if not in fact).

The main result of this paper, restricted to the one variable case, can be
summarized as follows:

Let f ∈ C(IR). Then there exists a sequence f1, f2, . . . of entire functions
for which

f(x) =

∞∑

i=1

fi(x)

for each x ∈ IR. In addition the convergence of above sum is uniform on every
finite interval.
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Note that there is no mention of the fact that the fi may be assumed to
be polynomials.

Weierstrass’ proof of Theorem 2.1 is rather straightforward. The same is
not quite true of his proof of Theorem 2.2. He extends f from [a, b] so that it
is continuous and bounded on all of IR. He then smooths f by convolving it
with the normalized heat (Gauss) kernel (1/k

√
π)e−(x/k)2 . This “smoothed” fk

is entire and is therefore uniformly approximable on the finite interval [a, b] by
its truncated power series. Moreover the fk uniformly approximate f on [a, b]
as k → 0+. Together this implies the desired result.

Over the next twenty-five or so years numerous alternative proofs were
given to one or the other of these two Weierstrass results by a roster of some
of the best analysts of the period. The proofs use diverse ideas and techniques.
There are the proofs by Weierstrass, Picard, Fejér, Landau and de la Valleé
Poussin that used singular integrals, proofs based on the idea of approximating
one particular function by Runge (Phragmén), Lebesgue, Mittag-Leffler, and
Lerch, proofs based on Fourier series by Lerch, Volterra and Fejér, and the
wonderful proof of Bernstein. Details concerning all these proofs can be found,
for example, in Pinkus [2000] and Pinkus [2005]. We explain, without going
into all the details, three of these proofs.

One of the more elegant and cited proofs of Weierstrass’ theorem is due
to Lebesgue [1898]. This was Lebesgue’s first published paper. He was, at the
time of publication, a 23 year old student at the École Normale Supérieure. The
idea of his proof is simple and useful. Lebesgue noted that each f in C[a, b] can
be easily approximated by a continuous, piecewise linear curve (polygonal line).
Each such polygonal line is a linear combination of translates of |x|. As algebraic
polynomials (of any fixed degree) are translation invariant, it thus suffices to
prove that one can uniformly approximate |x| arbitrarily well by polynomials on
any interval containing the origin. Lebesgue then does exactly that. Explicitly

|x| = 1 −
∞∑

n=1

an(1 − x2)n

where a1 = 1/2, and

an =
(2n− 3)!

22n−2n!(n− 1)!
, n = 2, 3, . . .

This “power series” converges absolutely and uniformly to |x| for all |x| ≤ 1.
Truncating this series we obtain a series of polynomial approximants to |x|.

When Fejér was 20 years old he published Fejér [1900] that formed the basis
for his doctoral thesis. Fejér proved more than the Weierstrass approximation
theorem (for trigonometric polynomials). He proved that for any f in C̃[0, 2π]
it is possible to uniformly approximate f based solely on the knowledge of
its Fourier coefficients. He did not obtain this approximation by taking the
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partial sums of the Fourier series. It is well-known that these do not necessarily
converge. Rather, he obtained it by taking the Cesàro sums of the partial sums
of the Fourier series. In other words, assume that we are given the Fourier series
of f

f(x) ∼
∞∑

k=−∞

cke
ikx,

where

ck =
1

2π

∫ 2π

0

f(x)e−ikx dx

for every k ∈ ZZ. Define the nth partial sums of the Fourier series via

sn(x) :=

n∑

k=−n

cke
ikx

and set

σn(f ;x) =
s0(x) + · · · + sn(x)

n+ 1
.

The σn are termed the nth Fejér operator. Note that σn(f ; ·) belongs to Tn

for each n. What Fejér proved was that, for each f in C̃[0, 2π], σn(f ; ·) tends
uniformly to f as n→ ∞. This was also the first proof which used a specifically
given sequence of linear operators.

Simpler linear operators that approximate were introduced by Bernstein
[1912/13]. These are the Bernstein polynomials. For f in C[0, 1] they are
defined by

Bn(f ; x) =
n∑

m=0

f
(m
n

)(m
n

)
xm(1 − x)n−m.

Bernstein proved, by probabilistic methods, that the Bn(f ; ·) converge uni-
formly to f as n → ∞. A proof of this convergence is to be found in Example
4.2.

3 The Functional Analytic Approach

The Riesz representation theorem characterizing the space of continuous linear
functionals on C[a, b] is contained in the 1909 paper of F. Riesz [1909]. The
following year, in a rarely referenced paper, Riesz [1910] also announced the
following (stated in more modern terminology).

Theorem 3.1. Let uk ∈ C[a, b], k ∈ K, where K is an index set. A necessary
and sufficient condition for the existence of a continuous linear functional F on
C[a, b] satisfying

F (uk) = ck, k ∈ K
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with ‖F‖ ≤ L is that
∣∣∣∣∣
∑

k∈K′

akck

∣∣∣∣∣ ≤ L

∥∥∥∥∥
∑

k∈K′

akuk

∥∥∥∥∥
∞

hold for every finite subset K ′ of K, and all real ak.

In this same paper Riesz also states the parallel result for Lp[a, b], 1 < p <
∞. Questions concerning existence and uniqueness in moment problems were
of major importance in the development of functional analysis. The full details
of the 1910 announcement appear in Riesz [1911]. In these papers is also to be
found the following result (again we switch to more modern terminology).

Theorem 3.2. Let M be a linear subspace of C[a, b]. Then f ∈ C[a, b] is in
the closure of M , i.e., f can be uniformly approximated by elements of M , if
and only if every continuous linear functional on C[a, b] that vanishes on M also
vanishes on f .

Riesz quotes E. Schmidt as the author of the very interesting problem whose
solution is the above Theorem 3.2. As he writes, the question asked is: Being
given a countable system of functions φn ∈ C[a, b], n = 1, 2, ..., how can one
know if one can approximate arbitrarily and uniformly every f ∈ C[a, b] by the
φn and their linear combinations? (Riesz [1911, p. 51]). Schmidt, in his thesis
in Schmidt [1905], had given both a necessary and a sufficient condition for the
above to hold. Both were orthogonality type conditions. However neither was
the correct condition. The concept of a linear functional vanishing on a set of
functions is very orthogonal-like. Lerch’s theorem (Lerch [1892], see also the
more accessible Lerch [1903]), states that if h ∈ C[0, 1] and

∫ 1

0

xnh(x) dx = 0, n = 0, 1, . . . ,

then h = 0. This theorem was well-known and frequently quoted. So it was not
unreasonable to look for conditions of the form given in Theorem 3.2.

Lerch’s theorem is, in fact, a simple consequence of Weierstrass’ theorem.
If pk is a sequence of polynomials that uniformly approximate h, then

lim
k→∞

∫ 1

0

pk(x)h(x) dx =

∫ 1

0

[h(x)]2 dx.

However ∫ 1

0

pk(x)h(x) dx = 0

for every k, and thus ∫ 1

0

[h(x)]2 dx = 0
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which, since h is continuous, implies h = 0.
As Riesz states, one consequence of the above Theorem 3.2 is that M is

dense in C[a, b] if and only if no nontrivial continuous linear functional vanishes
onM . The proof of Theorem 3.2, contained in Riesz [1911], is just an application
of Theorem 3.1.

Proof: We start with the simple direction. Assume f is in the closure of M .
If F is a continuous linear functional that vanishes on M , then

F (f) = F (f − g)

for every g ∈M . Given ε > 0, there exists a g∗ ∈M for which

‖f − g∗‖∞ < ε.

Thus

|F (f)| = |F (f − g∗)| ≤ ‖F‖‖f − g∗‖∞ < ε‖F‖.

As this is valid for every ε > 0 we have F (f) = 0.
Now assume that f is not in the closure of M . Thus ‖f − g‖∞ ≥ d > 0

for every g ∈M . From this inequality and Theorem 3.1 there necessarily exists
a continuous linear functional F on C[a, b] satisfying F (g) = 0, for all g ∈ M ,
F (f) = 1, and ‖F‖ ≤ L for any L ≥ 1/d. This holds since we have

|a| ≤ Ld|a| ≤ L‖af − g‖∞,

for all g ∈M and all a.

Shortly thereafter Helly [1912] applied these results to a question concern-
ing the range of an integral operator. He proved the following two theorems.

Theorem 3.3. Let K ∈ C([a, b]× [a, b]) and f ∈ C[a, b]. Then a necessary and
sufficient condition for the existence of a measure of bounded total variation ν
satisfying

f(x) =

∫ b

a

K(x, y) dν(y),

is the existence of a constant L for which

∣∣∣∣∣

n∑

k=1

akf(xk)

∣∣∣∣∣ ≤ L

∣∣∣∣∣

n∑

k=1

akK(xk, y)

∣∣∣∣∣

for all points x1, . . . , xn in [a, b], all real values a1, . . . , an, all y ∈ [a, b], and all
n.
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Theorem 3.4. Let K ∈ C([a, b] × [a, b]). Then a necessary and sufficient
condition for an f ∈ C[a, b] to be uniformly approximated by functions of the
form ∫ b

a

K(x, y)φ(y) dy

where the φ are piecewise continuous functions, is that for every measure µ of
bounded total variation satisfying

∫ b

a

K(x, y) dµ(x) = 0

we also have ∫ b

a

f(x) dµ(y) = 0.

In 1911 the concept of a normed linear space did not exist, and the Hahn-
Banach theorem had yet to be discovered (although the Helly [1912] paper
contains results that come close). Banach’s proof of the Hahn-Banach theorem
appears in Banach [1929] (Hahn’s appears in Hahn [1927]). Both the Hahn
and Banach papers contain a general form of Theorems 3.1, namely the Hahn-
Banach theorem. Both also essentially contain the statement that a linear
subspace is dense in a normed linear space if and only if no nontrivial continuous
linear functional vanishes on the subspace. Banach, in his book Banach [1932,
p. 57], prefaces these next two theorems with the statement: We are now going
to establish some theorems that play in the theory of normed spaces the analogous
role to that which the Weierstrass theorem on the approximation of continuous
functions by polynomials plays in the theory of functions of a real variable.

Theorem 3.5. Let M be a linear subspace of a real normed linear space E.
Assume f ∈ E and

‖f − g‖ ≥ d > 0

for all g ∈ M . Then there exists a continuous linear functional F on E such
that F (g) = 0 for all g ∈M , F (f) = 1, and ‖F‖ ≤ 1/d.

The result of Theorem 3.5 replaces Theorem 3.1 in the proof of Theorem
3.2 to give us the well-known

Theorem 3.6. Let M be a linear subspace of a real normed linear space E.
Then f ∈ E is in the closure of M if and only if every continuous linear func-
tional on E that vanishes on M also vanishes on f .

In none of these works of Hahn and Banach are the above-mentioned 1910
or 1911 papers of Riesz mentioned. These Riesz papers seem to have been
essentially forgotten. In fact the general method of proof of density based on
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this approach is to be found in the literature only after the appearance of the
book of Banach and the blooming of functional analysis. The name of Riesz is
often mentioned in connection with this method, but only because of the Riesz
representation theorem and similar duality results bearing his name.

Today we also recognize the Hahn-Banach theorem as a separation theorem,
and as such we also have the following two results.

Theorem 3.7. Let E be a real normed linear space, φn elements of E, n ∈ I,
and f ∈ E. Then f may be approximated by finite convex linear combinations
of the φn, n ∈ I, if and only if

sup{F (φn) : n ∈ I} ≥ F (f)

for every continuous linear functional (form) F on E.

Theorem 3.8. Let E be a real normed linear space, φn elements of E, n ∈ I,
and f ∈ E. Then f may be approximated by finite positive linear combinations
of the φn, n ∈ I, if and only if for every continuous linear functional (form) F
on E satisfying F (φn) ≥ 0 for every n ∈ I we have F (f) ≥ 0.

Theorem 3.8 follows from Theorem 3.7 by considering the convex cone
generated by the φn.

There are numerous generalizations of these results. The book of Nachbin
[1967] where these results may be found is one of the few to concentrate on
density theorems. Much of the book is taken up with the Stone-Weierstrass
theorem. However there are also other results such as the above Theorems 3.7
and 3.8.

4 Other Density Methods

The Weierstrass theorems had a significant influence on the development of
density results, even though the theorems themselves simply prove the density
of algebraic and trigonometric polynomials in the appropriate spaces. Various
proofs of the Weierstrass theorems, for example, provided insights that led to
the development of two general methods for determining density. We discuss
these methods in this section.

The first of these methods is given by the Stone-Weierstrass theorem. This
theorem was originally proven in Stone [1937]. Stone subsequently reworked
his proof in Stone [1948]. It represents, as stated by Buck [1962, p. 4], one of
the first and most striking examples of the success of the algebraic approach to
analysis. There have since been numerous modifications and extensions. See,
for example, Nachbin [1967], Prolla [1993] and references therein.

We recall that an algebra is a linear space on which multiplication between
elements has been suitably defined satisfying the usual commutative and asso-
ciative type postulates. Algebraic and trigonometric polynomials in any finite
number of variables are algebras. A set in C(X) separates points if for any
distinct points x, y ∈ X there exists a g in the set for which g(x) 6= g(y).
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Stone-Weierstrass Theorem 4.1. Let X be a compact set and let C(X)
denote the space of continuous real-valued functions defined on X . Assume A
is a subalgebra of C(X). Then A is dense in C(X) in the uniform norm if and
only if A separates points and for each x ∈ X there exists an f ∈ A satisfying
f(x) 6= 0.

Proof: The necessity of the two conditions is obvious. We prove the sufficiency.

First some preliminaries. From the Weierstrass theorem we have the ex-
istence of a sequence of algebraic polynomials (pn) (with constant term zero)
that uniformly approximates the function |t| on [−c, c], any c > 0. As such, if f
is in A, the closure of A in the uniform norm, then so is pn(f) for each n which
implies that |f | is also in A. Furthermore

max{f(x), g(x)} =
f(x) + g(x) + |f(x) − g(x)|

2

and

min{f(x), g(x)} =
f(x) + g(x) − |f(x) − g(x)|

2
.

It thus follows that if f, g ∈ A, then max{f, g} and min{f, g} are also in A.
This of course extends to the maximum and minimum of any finite number of
functions.

Finally, let x, y be any distinct points in X , and α, β ∈ IR. We claim
that there exists an h ∈ A satisfying the interpolation conditions h(x) = α and
h(y) = β. By assumption there exists a g ∈ A for which g(x) 6= g(y), and
functions f1 and f2 in A such that f1(x) 6= 0 while f2(y) 6= 0. If g(x) = 0 then
we can construct the desired h as a linear combination of g and f1. Similarly, if
g(y) = 0 then we can construct the desired h as a linear combination of g and
f2. Assuming g(x) and g(y) are both not zero, the desired h can be constructed,
for example, as a linear combination of g and g2.

We now present a proof of the theorem. Given f ∈ C(X), ε > 0 and
x ∈ X , for every y ∈ X let hy ∈ A satisfy hy(x) = f(x) and hy(y) = f(y).
Since f and hy are continuous there exists a neighborhood Vy of y for which
hy(w) ≥ f(w) − ε for all w ∈ Vy. The ∪y∈XVy cover X . As X is compact, it
has a finite subcover, i.e., there are points y1, . . . , yn in X such that

n⋃

i=1

Vyi
= X.

Let g = max{hy1
, . . . , hyn

}. Then g ∈ A and g(w) ≥ f(w) − ε for all w ∈ X .

The above g depends upon x, so we shall now denote it by gx. It satisfies
gx(x) = f(x) and gx(w) ≥ f(w) − ε for all w ∈ X . As f and gx are continuous
there exists a neighborhood Ux of x for which gx(w) ≤ f(w) + ε for all w ∈
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Ux. Since ∪x∈XUx covers X , it has a finite subcover. Thus there exist points
x1, . . . , xm in X for which

m⋃

i=1

Uxi
= X.

Let
F = min{gx1

, . . . , gxm
}.

Then F ∈ A and
f(w) − ε ≤ F (w) ≤ f(w) + ε

for all w ∈ X . Thus
‖f − F‖ ≤ ε.

This implies that f ∈ A.

Example 4.1. As we mentioned prior to the statement of the Stone-Weierstrass
theorem, algebraic polynomials in any finite number of variables form an alge-
bra. They also separate points and contain the constant function. Thus alge-
braic polynomials in m variables are dense in C(X) where X is any compact
set in IRm. This fact first appeared in print (at least for squares) in Picard
[1891] which also contains an alternative proof of Weierstrass’ theorems. The
paper Weierstrass [1885] as “reprinted” in Weierstrass’ Mathematische Werke
in 1903 contains an additional 10 pages of material including a proof of this
multivariable analogue of his theorem.

Another method that can be used to prove density is based on what is
called the Korovkin theorem or the Bohman-Korovkin theorem. A primitive
form of this theorem was proved by Bohman in Bohman [1952]. His proof,
and the main idea in his approach, was a generalization of Bernstein’s proof
of the Weierstrass theorem. Korovkin one year later in Korovkin [1953] proved
the same theorem for integral type operators. Korovkin’s original proof is in
fact based on positive singular integrals and there are very obvious links to
Lebesgue’s work on singular operators that, in turn, was motivated by various
of the proofs of the Weierstrass theorems. Korovkin was probably unaware
of Bohman’s result. Korovkin subsequently much extended his theory, major
portions of which can be found in his book Korovkin [1960]. The theorem and
proof as presented here is taken from Korovkin’s book.

A linear operator L is positive (monotone) if f ≥ 0 implies L(f) ≥ 0.

Bohman–Korovkin Theorem 4.2. Let (Ln) be a sequence of positive linear
operators mapping C[a, b] into itself. Assume that

lim
n→∞

Ln(xi) = xi, i = 0, 1, 2,

and the convergence is uniform on [a, b]. Then

lim
n→∞

(Lnf)(x) = f(x)
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uniformly on [a, b] for every f ∈ C[a, b].

Proof: Let f ∈ C[a, b]. As f is uniformly continuous, given ε > 0 there exists
a δ > 0 such that if |x1 − x2| < δ then |f(x1) − f(x2)| < ε.

For each y ∈ [a, b], set

pu(x) = f(y) + ε+
2‖f‖(x− y)2

δ2

and

pℓ(x) = f(y) − ε− 2‖f‖(x− y)2

δ2
.

Since
|f(x) − f(y)| < ε

for |x− y| < δ, and

|f(x) − f(y)| < 2‖f‖(x− y)2

δ2

for |x− y| > δ, it is readily verified that

pℓ(x) ≤ f(x) ≤ pu(x)

for all x ∈ [a, b].
Since the Ln are positive linear operators, this implies that

(Lnpℓ)(x) ≤ (Lnf)(x) ≤ (Lnpu)(x) (4.1)

for all x ∈ [a, b], and in particular for x = y.
For the given fixed f , ε and δ the pu and pℓ are quadratic polynomials that

depend upon y. Explicitly

pu(x) =

(
f(y) + ε+

2‖f‖y2

δ2

)
−
(

4‖f‖y
δ2

)
x+

(
2‖f‖
δ2

)
x2.

Since the coefficients are bounded independently of y ∈ [a, b], and

lim
n→∞

Ln(xi) = xi, i = 0, 1, 2,

uniformly on [a, b], it follows that there exists an N such that for all n ≥ N ,
and every choice of y ∈ [a, b] we have

|(Lnpu)(x) − pu(x)| < ε

and
|(Lnpℓ)(x) − pℓ(x)| < ε
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for all x ∈ [a, b]. That is, Lnpu and Lnpℓ converge uniformly in both x and y
to pu and pℓ, respectively. Setting x = y we obtain

(Lnpu)(y) < pu(y) + ε = f(y) + 2ε

and

(Lnpℓ)(y) > pℓ(y) − ε = f(y) − 2ε.

Thus given ε > 0 there exists an N such that for all n ≥ N and every
y ∈ [a, b] we have from (4.1)

f(y) − 2ε < (Lnf)(y) < f(y) + 2ε.

This proves the theorem.

A similar result holds in the periodic case C̃[0, 2π], where “test functions”
are 1, sinx, and cosx. Numerous generalizations may be found in the book of
Altomare and Campiti [1994].

How can the Bohman-Korovkin theorem be applied to obtain density re-
sults? It can, in theory, be applied easily. If the Un = span{u1, . . . , un},
n = 1, 2, ..., are a nested sequence of finite-dimensional subspaces of C[a, b], and
Ln is a positive linear operator mapping C[a, b] into Un that satisfies the condi-
tions of the above theorem, then the (uk)∞k=1 span a dense subset of C[a, b]. In
practice it is all too rarely applied in this manner. The importance of the Ko-
rovkin theory is primarily in that it presents conditions implying convergence,
and also in that it provides calculable error bounds on the rate of approximation.

Example 4.2. One immediate application of the Bohman-Korovkin theorem
is a proof of the convergence of the Bernstein polynomials Bn(f) to f for each
f in C[0, 1]. Recall from section 2 that for each such f

Bn(f ; x) =

n∑

m=0

f
(m
n

)(m
n

)
xm(1 − x)n−m.

We can consider the (Bn) as a sequence of positive linear operators mapping
C[a, b] into Πn, the space of algebraic polynomials of degree at most n. It is
readily verified that Bn(1 ; x) = 1, Bn(x ; x) = x and Bn(x2 ; x) = x2 + x(1 −
x)/n for all n ≥ 2. Thus by the Bohman-Korovkin theorem Bn(f) converges
uniformly to f on [0, 1].

Example 4.3. Recall from section 2 that the Fejér operators σn maps C̃[0, 2π]
into Tn. It is easily checked that σn is a positive linear operator. Furthermore,
σn(1;x) = 1, σn(sinx;x) = (n/(n+1)) sinx, and σn(cosx;x) = (n/(n+1)) cosx.
Thus from the periodic version of the Bohman-Korovkin theorem σn(g) con-

verges uniformly to g on [0, 2π], for each g ∈ C̃[0, 2π].
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5 Some Univariate Density Results

Example 5.1. Müntz’s Theorem. Possibly the first generalization of conse-
quence of the Weierstrass theorems, and certainly one of the best known, is the
Müntz theorem or the Müntz-Szász theorem.

It was Bernstein who in a paper in the proceedings of the 1912 Interna-
tional Congress of Mathematicians held at Cambridge, Bernstein [1913], and
in his 1912 prize-winning essay, Bernstein [1912], asked for exact conditions on
an increasing sequence of positive exponents λn so that the sequence (xλn) is
fundamental in the space C[0, 1]. Bernstein himself had obtained some partial
results. In the paper in the ICM proceedings Bernstein wrote the following: It
will be interesting to know if the condition that the series

∑
1/λn diverges is not

necessary and sufficient for the sequence of powers (xλn) to be fundamental; it
is not certain, however, that a condition of this nature should necessarily exist.

It was just two years later that Müntz [1914] was able to provide a solution
confirming Bernstein’s qualified guess. What Müntz proved is the following.

Müntz’s Theorem 5.1. The sequence

xλ0 , xλ1 , xλ2 , . . .

where 0 ≤ λ0 < λ1 < λ2 < · · · → ∞ is fundamental in C[0, 1] if and only if
λ0 = 0 and

∞∑

k=1

1

λk
= ∞. (5.1)

There are numerous proofs and generalizations of the Müntz theorem.
It is to be found in many of the classic texts on approximation theory, see
e. g. Achieser [1956, p. 43–46], Cheney [1966, p. 193–198], Borwein, Erdélyi
[1995, p. 171–205]. (The last reference contains many generalizations of Müntz’s
theorem and also surveys the literature on this topic.) We present here the
classical proof due to Müntz, with some additions from Szász [1916] that put
Müntz’s argument into a more elegant form.

Proof: Let
Mn = span{xλ0 , . . . , xλn},

and
E(f,Mn)∞ = min

p∈Mn

‖f − p‖∞.

Based on the Weierstrass theorem it is both necessary and sufficient to prove
that

lim
n→∞

E(xm,Mn)∞ = 0

for each m = 0, 1, 2, ...
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To estimate E(xm,Mn)∞ we first calculate

E(f,Mn)2 = min
p∈Mn

‖f − p‖2,

where ‖ · ‖2 is the L2[0, 1] norm. It is well known that

E2(f,Mn)2 =
G(xλ0 , . . . , xλn , f)

G(xλ0 , . . . , xλn)

where G(f1, . . . , fk) is the Gramian of f1, . . . , fk, i.e.,

G(f1, . . . , fk) = det (〈fi , fj〉)k
i,j=1 .

As

〈xp , xq〉 =

∫ 1

0

xpxq dx =
1

p+ q + 1

and

det

(
1

ai + bj

)r

i,j=1

=

∏
1≤j<i≤r(ai − aj)(bi − bj)∏r

i,j=1(ai + bj)
,

a simple calculation leads to

E2(xm,Mn)2 =

∏n
k=0(m− λk)2

(2m+ 1)
∏n

k=0(m+ λk + 1)2
.

Thus, as is easily proven,

lim
n→∞

E(xm,Mn)2 = 0

if and only if

lim
n→∞

n∏

k=0

m− λk

m+ λk + 1
= 0,

i.e.,
∞∏

k=0

(
1 − 2m+ 1

m+ λk + 1

)
= 0.

Assuming m 6= λk for every k (otherwise there was no reason to do this calcu-
lation) we have 1 6= (2m+ 1)/(m+ λk + 1) > 0 and

lim
k→∞

2m+ 1

m+ λk + 1
= 0.

Thus
∞∏

k=0

(
1 − 2m+ 1

m+ λk + 1

)
= 0
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if and only if
∞∑

k=0

2m+ 1

m+ λk + 1
= ∞,

that in turn is equivalent to
∞∑

k=1

1

λk
= ∞,

independent of m. So a necessary and sufficient condition for density in the
L2[0, 1] norm is that (5.1) holds.

We now consider C[0, 1]. Assume

∞∑

k=1

1

λk
<∞.

Then E(xm,Mn)2 does not tend to zero as n→ ∞ for every m that is not one
of the λk. As

E(f,Mn)2 ≤ E(f,Mn)∞

for every f ∈ C[0, 1], we have that the system

xλ0 , xλ1 , xλ2 , . . .

is not fundamental in C[0, 1]. Furthermore, if λ0 > 0 then all the functions
xλ0 , xλ1 , xλ2 , . . . vanish at x = 0, and density cannot possibly hold.

Let us now assume that (5.1) holds, and λ0 = 0. We will show how to
uniformly approximate each xm, m ≥ 1. For x ∈ [0, 1]

|xm −
n∑

k=1

akx
λk | =

∣∣∣∣∣

∫ x

0

(
mtm−1 −

n∑

k=1

akλkt
λk−1

)
dt

∣∣∣∣∣

≤
∫ 1

0

∣∣∣∣∣mt
m−1 −

n∑

k=1

akλkt
λk−1

∣∣∣∣∣ dt

≤




∫ 1

0

∣∣∣∣∣mt
m−1 −

n∑

k=1

akλkt
λk−1

∣∣∣∣∣

2

dt




1/2

.

Thus we can approximate xm arbitrarily well in the uniform norm from the
system xλ1 , xλ2 , . . . if we can approximate xm−1 arbitrarily well in the L2[0, 1]
norm from the system xλ1−1, xλ2−1, . . .. We know that the latter holds if

∑

k≥k0

1

λk − 1
= ∞

where k0 is such that λk0
− 1 > 0. From (5.1) and since the λk are an increas-

ing sequence tending to ∞, this condition necessarily holds. This proves the
sufficiency.
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The above method of showing how the L2 result implies the C[0, 1] result
is due to Szász, and simplifies a more complicated argument due to Müntz that
uses Fejér’s proof of the Weierstrass theorem. An alternative method of proof of
Müntz’s theorem and its numerous generalizations is via the functional analytic
approach, and the possible sets of uniqueness for zeros of analytic functions, see
e. g. Schwartz [1943], Rudin [1966, p. 304–307], Luxemburg, Korevaar [1971],
Feinerman, Newman [1974, Chap. X], and Luxemburg [1976]. For some different
approaches see, for example, Rogers [1981], Burckel, Saeki [1983], and the very
elegant v. Golitschek [1983].

The above proof of Müntz and Szász as well as most of the functional
analytic proofs, that use analytic methods, first prove the L2 result. Rudin’s
approach is more direct, and we reproduce it here.

Rudin’s Proof: Assume 0 = λ0 < λ1 < · · ·. If (xλn) is not fundamental in
C[0, 1] then from the Hahn-Banach theorem and Riesz representation theorem
there exists a Borel measure µ of bounded total variation such that

∫ 1

0

xλn dµ(x) = 0,

n = 0, 1, 2, . . .. As λ0 = 0 and λn > 0 for all n > 1 we may assume the above
holds for n = 1, 2, . . . and µ has no mass concentrated at 0. Set

f(z) =

∫ 1

0

xz dµ(x).

For x ∈ (0, 1] and Re z > 0 we have that xz = ez ln x and |xz | = xRe z ≤ 1. It
therefore follows that f is analytic and bounded in the right half plane, and of
course satisfies

f(λn) = 0, n = 1, 2, . . .

Now set

g(z) = f

(
1 + z

1 − z

)
.

The transformation (1 + z)/(1 − z) maps the unit disc to the right half plane.
Thus g ∈ H∞, the space of bounded analytic functions in the unit disc, and
g(αn) = 0 where

αn =
λn − 1

λn + 1
.

Now it is a known result associated with Blaschke products that the (αn) are
the zeros, in the unit disc, of a nontrivial g ∈ H∞ if and only if

∞∑

n=1

(1 − |αn|) <∞.
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It is readily checked that
∑∞

n=1(1 − |αn|) < ∞ if and only if
∑∞

n=1 1/λn < ∞.
Thus if

∑∞
n=1 1/λn = ∞, then g = 0 which implies that f = 0. But then

0 = f(k) =

∫ 1

0

xk dµ(x)

for all k = 1, 2, . . . which implies by the Weierstrass theorem that µ = 0. Thus
if
∑∞

n=1 1/λn = ∞ then the (xλn)∞n=0 are fundamental in C[0, 1].
Assume that

∑∞
n=1 1/λn <∞. How can we construct the desired measure

µ? One way is as follows. Set

f(z) =
1

(z + 2)2

∞∏

n=0

λn − z

2 + λn + z
.

The function f is a meromorphic function with poles at −2 and −λn − 2, and
zeros at the λn. f is also bounded in Re z > −1 since each factor is less than 1
in absolute value thereon. For each z satisfying Re z > −1 we have by Cauchy’s
formula

f(z) =
1

2πi

∫

ΓR

f(w)

w − z
dw

where ΓR is the right semi-circle of radius R (> 1+|z|), centered at −1, together
with the line from −1−iR to −1+iR. Letting R → ∞, it may be readily shown
that the integral over the semi-circle tends to zero, and we obtain

f(z) =
1

2π

∫ ∞

−∞

f(−1 + is)

1 + z − is
ds.

As
1

1 + z − is
=

∫ 1

0

xz−is dx

for Re z > −1 we have

f(z) =

∫ 1

0

xz

(
1

2π

∫ ∞

−∞

f(−1 + is)e−is ln xds

)
dx.

Set

dµ(x) =
1

2π

∫ ∞

−∞

f(−1 + is)e−is ln x ds.

This is the Fourier transform of f(−1+is) at lnx and is bounded and continuous
on (0, 1], since the factor 1/(2+z)2 in the definition of f ensures that f(−1+is)
is a function in L1. Thus we have obtained our desired measure µ.
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Example 5.2. Combining the functional analytic approach with analytic meth-
ods has proven to be a very effective method of proving density results. As a
general example, assume g is in C(IR) and has an extension as an analytic func-
tion on all of |C. Let Λ be a subset of IR that contains a finite accumulation
point, i.e., there are distinct λn in Λ and a finite λ∗ such that limn→∞ λn = λ∗.
Set

MΛ = span{g(λx) : λ ∈ Λ}.
We wish to determine when MΛ is dense in C[a, b]. The following result holds.

Theorem 5.2. Let g, Λ and MΛ be as above. Set

Ng = {n : g(n)(0) 6= 0}.

Then MΛ is dense in C[a, b] if and only if:
i) for [a, b] ⊆ (0,∞) or [a, b] ⊆ (−∞, 0)

∑

n∈Ng\{0}

1

n
= ∞,

ii) if a = 0 or b = 0, then 0 ∈ Ng and

∑

n∈Ng\{0}

1

n
= ∞,

iii) if a < 0 < b, then 0 ∈ Ng and

∑

n∈Ng\{0}
n even

1

n
=
∑

n∈Ng

n odd

1

n
= ∞.

Proof: The conditions in (i), (ii) and (iii) are exactly those conditions that
determine when

span{xn : n ∈ Ng}
is dense in C[a, b]. This is the content of the Müntz theorem in case (ii), and
easily follows from the Müntz theorem in case (iii). In case (i) it follows from the
Müntz theorem that the condition therein is sufficient for density. The necessity
is also true, but needs an additional argument, see e.g., Schwartz [1943].

From the Hahn-Banach and Riesz representation theorems MΛ is not dense
in C[a, b] if and only if there exists a nontrivial measure µ of bounded total
variation on [a, b] satisfying

∫ b

a

g(λx) dµ(x) = 0
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for all λ ∈ Λ. Assume such a measure exists. As g is entire, it follows that

h(z) =

∫ b

a

g(zx) dµ(x)

is entire. Furthermore h(λ) = 0 for all λ ∈ Λ. By assumption Λ contains a
finite accumulation point. Thus by the uniqueness theorem for zeros of analytic
functions h = 0. However h being identically zero does not necessarily imply
that µ is the zero measure. It only proves that

MΛ = span{g(λx) : λ ∈ IR}.
For example, if g is a polynomial of degree m, then MΛ is simply the space of
polynomials of degree m.

As ∫ b

a

g(zx) dµ(x) = 0

and g is entire it may be shown, differentiating by z, that
∫ b

a

xng(n)(zx) dµ(x) = 0

for every nonnegative integer n. Setting z = 0 gives us

g(n)(0)

∫ b

a

xn dµ(x) = 0, n = 0, 1, ...

Thus ∫ b

a

xn dµ(x) = 0,

for all n ∈ Ng. But span{xn : n ∈ Ng} is dense in C[a, b], so µ is the trivial
measure.

On the other hand, assume the conditions in (i), (ii) or (iii) do not hold.
Thus span{xn : n ∈ Ng} is not dense in C[a, b], and there exists a nontrivial
measure µ of bounded total variation satisfying

∫ b

a

xn dµ(x) = 0

for all n ∈ Ng. Since g is entire

g(x) =
∑

n∈Ng

g(n)(0)

n!
xn

and it follows that ∫ b

a

g(λx) dµ(x) = 0

for all λ ∈ IR. MΛ is not dense in C[a, b].
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For example, if g(x) = ex then Ng = ZZ+ so that (i), (ii) and (iii) always
hold. Thus

span{eλnx : λ ∈ Λ}

is always dense in C[a, b] assuming Λ is a subset of IR with a finite accumulation
point. A change of variable argument implies that under this same condition
on Λ the set

span{xλn : λ ∈ Λ}

is dense in C[α, β] for every 0 < α < β <∞.
A question related to Müntz type problems is that of the fundamentality

of the functions (eλnx), where (λn) is a sequence of complex numbers. This has
been considered in the space of complex-valued functions in C[a, b], C(IR+),
Lp[a, b] and Lp(IR+), 1 ≤ p < ∞. There has been a great deal of research
done in this area, see, for example, Paley, Wiener [1934, Chap. VI], Levinson
[1940, Chap. I and II], Schwartz [1943], Levin [1964, Appendix III], Levin [1996,
Lecture 18], and the many references therein.

Example 5.3. Akhiezer’s Theorem. Let Γ be a subset of IR\[−1, 1], and
consider the set

NΓ = span

{
1

t− γ
: γ ∈ Γ

}
.

When is NΓ dense in C[−1, 1]? One result is similar to Theorem 5.2. It may
be found in Feinerman-Newman [1974, p. 116–117], but the proof therein is
somewhat different.

Proposition 5.3. If Γ has either a finite accumulation point in IR\[−1, 1] or
∞ is an accumulation point, then NΓ is dense in C[−1, 1].

Proof: Assume NΓ 6= C[−1, 1]. Then there exists a Borel measure µ of bounded
total variation such that ∫ 1

−1

1

t− γ
dµ(t) = 0

for all γ ∈ Γ. Set

f(z) =

∫ 1

−1

1

t− z
dµ(t).

Note that f(γ) = for all γ ∈ Γ. It is readily verified that f is analytic on
|C\[−1, 1], and analytic also at infinity.

Thus if Γ has either a finite accumulation point in IR\[−1, 1] or ∞ is an
accumulation point, then f = 0. For |z| > 1 ≥ |t|

f(z) = −
∞∑

n=0

(
1

z

)n+1 ∫ 1

−1

tn dµ(t).
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As f = 0, this then implies that

∫ 1

−1

tn dµ(t) = 0

for all n, which from the Hahn-Banach and Weierstrass theorems implies that
µ is the trivial measure. This proves the proposition.

What can be said if the only accumulation points of Γ are 1 or −1 or both?
The result is known, contains the previous Proposition 5.3 as a special case,
and was proven by Akhiezer, see Achieser [1956, p. 254–256].

Akhiezer’s Theorem 5.4. Let (γn)∞n=1 be a sequence in IR\[−1, 1], and con-
sider the set

N = span

{
1

t− γn
: n = 1, 2, . . .

}
.

Then N is dense in C[−1, 1] if and only if

∞∑

n=1

1 − |γn −
√
γ2

n − 1| = ∞.

See also Borwein, Erdélyi [1995, p. 208] where a different method of proof
is used. They also give the above condition as

∞∑

n=1

√
γ2

n − 1 = ∞,

and these two conditions are in fact equivalent. Akhiezer’s proof of this theorem
is delicate and detailed, dependent on the construction of specific best approx-
imants. We will not reproduce it here. Michael Sodin has a proof which uses
complex variable theory.

Example 5.4. The analysis literature is replete with results concerning the
density of translates (and dilates) of a function in various spaces. These might
be arbitrary, integer, or sequence translates (or dilates). Many of these results
are generalizations, in a sense, of the Müntz and/or Paley-Wiener theorems.
See, for example, both Example 5.2 and 5.3.

There is a characterization of those f ∈ C(IR) for which

span{f(· − α) : α ∈ IR}

is not dense in C(IR) (in the topology of uniform convergence on compacta).
Such functions are called mean periodic, see Schwartz [1947].

Some functions in C(IR) have a further interesting property.
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Proposition 5.5. Assume f = ĝ (f is the Fourier transform of g) for some
nontrivial g ∈ L1(IR) with the support of g contained in an interval of length
at most 2π. Then

span{f(· − n) : n ∈ ZZ}
is dense in C(IR) (in the topology of uniform convergence on compacta).

Proof: Assume the above set is not dense in C(IR). There then exists a Borel
measure µ of bounded total variation and compact support E such that

∫

E

f(x− n) dµ(x) = 0

for all n ∈ ZZ. Assume f = ĝ, as above, and supp{g} ⊆ [a, a + 2π]. Thus for
each n ∈ ZZ

0 =

∫

E

f(x− n) dµ(x) =

∫

E

ĝ(x− n) dµ(x)

=
1

2π

∫

E

(∫ a+2π

a

g(t)e−i(x−n)t dt

)
dµ(x)

=

∫ a+2π

a

(
1

2π

∫

E

e−ixt dµ(x)

)
eintg(t) dt =

∫ a+2π

a

eintg(t)µ̂(t) dt

where µ̂ is the Fourier transform of the measure µ. It is well known that µ̂ is
an entire function.

As all the Fourier coefficients of g µ̂ on [a, a+ 2π] vanish we have that g µ̂
is identically zero thereon. This implies that g must vanish where µ̂ 6= 0. As µ̂
is entire this implies that g = 0, a contradiction.

The above is a simple example within a general theory. The interested
reader should consult Atzmon, Olevskii [1996], Nikolski [1999], and references
therein. Note that there is no function whose integer translates are dense in
L2(IR).

Example 5.5. The Bernstein Approximation Problem. Assume ω is a weight
on IR by which we will mean a non-negative, measurable, bounded function.
For each f in C(IR) satisfying

lim
|x|→∞

ω(x)f(x) = 0

set
‖f‖ω = sup

x∈IR
ω(x)|f(x)|,

and let Cω(IR) denote the real normed linear space of those f as above with
‖f‖ω < ∞. The Bernstein approximation problem was first formulated in
Bernstein [1924]. It asks for necessary and sufficient conditions on a weight ω
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such that (algebraic) polynomials are dense in Cω(IR). That is, for each f in
Cω(IR) and ε > 0 there exists a polynomial p for which ‖f − p‖ω < ε. This
immediately implies that ω must satisfy

lim
|x|→∞

ω(x)p(x) = 0

for every polynomial p.
In Bernstein [1924] can be found the following result. Assume ω(x) =

1/q(x), where

q(x) =

∞∑

n=0

anx
2n

with a0 > 0, an ≥ 0 for all n, and q not the constant function. Then a necessary
and sufficient for polynomials to be dense in Cω(IR) is that

∫ ∞

1

ln q(x)

1 + x2
dx = ∞.

In general a condition of this form is necessary, but not sufficient. It is often
sufficient for “reasonable” weights.

The literature on this problem is rather extensive including the review
articles Ahiezer [1956] and Mergelyan [1956], see also Lorentz, v. Golitschek
and Makovoz [1996, p. 28-33], and Timan [1963, p. 16–19]. The article of
Mergelyan, as well as Prolla [1977], includes a proof of this next result. Let Mω

denote the set of polynomials p satisfying ω(x)|p(x)| ≤ 1 + |x| for all x ∈ IR,
and set

Mω(z) = sup{|p(z)| : p ∈ Mω}.

Mergelyan’s Theorem 5.6. Let ω be as above. Then a necessary and suffi-
cient for polynomials to be dense in Cω(IR) is that

Mω(z) = ∞

for every z ∈ |C\IR.

Unfortunately this condition is not easy to check.
Here is a condition that is easier to check, but which only holds for certain

weights. Assume ω = exp{−Q}, ω is even, and Q is a convex function of lnx
on (0,∞). Then ∫ ∞

0

lnω(x)

1 + x2
dx = −∞

is both necessary and sufficient for polynomials to be dense in Cω(IR), see
Mhaskar [1996, p. 331].
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Example 5.6. Markov Systems. Assume we are given a sequence of functions
(um)∞m=0 in C[a, b]. What we have been asking is when this sequence is funda-
mental, i.e., linear combinations are dense. That is when, for each f in C[a, b]
and ε > 0, there exists a finite linear combination u of the (um)∞m=0 such that

‖f − u‖∞ < ε.

The only general result characterizing the density of such sequences is the some-
what tautological Theorem 3.6. However, when the sequence (um)∞m=0 has a
particular type of Chebyshev property, then P. Borwein proved a surprisingly
interesting condition equivalent to density.

To explain his result we first need some definitions. Given the sequence
(um)∞m=0 in C[a, b] we set

Un = span{u0, u1, . . . , un}
for each n ∈ ZZ+. We say that Un is a Chebyshev space if no u ∈ Un, u 6= 0,
has more than n distinct zeros in [a, b]. We say that the sequence (um)∞m=0 is a
Markov sequence if Un is a Chebyshev space for n = 0, 1 . . .. There are numerous
examples of Markov sequences. For example, (xλm )∞m=0 is a Markov sequence
on [a, b] where a > 0 and the (λm)∞m=0 are arbitrary distinct real values, while
(1/(x − cm))∞m=0 is a Markov sequence on any [a, b] where the (cm)∞m=0 are
distinct values in IR\[a, b].

In what follows we assume that the (um)∞m=0 is a Markov sequence. Let
tn ∈ Un be of the form tn = un − vn with vn ∈ Un−1, satisfying

‖tn‖∞ = min
v∈Un−1

‖un − v‖∞.

It is well known, from the Chebyshev and Markov properties, that tn is uniquely
defined and has n zeros in (a, b). Let x1 < · · · < xn denote these n zeros and
set x0 = a, xn+1 = b. The mesh of tn is defined by

mn = max
i=1,...,n+1

(xi − xi−1).

It is readily proven that for any k < n the function tk has at most one zero
between any two consecutive zeros of tn. From this it follows that

lim
n→∞

mn = 0

if and only if
lim inf
n→∞

mn = 0.

The following result may be found in Borwein [1990], and also in Borwein,
Erdélyi [1995, p. 155–158].

Borwein’s Theorem 5.7. Assume (um)∞m=0 is a Markov sequence in C1[a, b]
and u0 = 1. Then the sequence (um)∞m=0 is dense in C[a, b] if and only if

lim
n→∞

mn = 0.
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A similar result relating density to Bernstein-type inequalities is in Borwein,
Erdélyi [1995b], and Borwein, Erdélyi [1995, p. 206–211].

Example 5.7. The following result is a special case of a general theorem of
Schwartz [1944] (see also Pinkus [1996] and references therein). Here we again
consider C(IR), with the topology of uniform convergence on compacta. We are
interested in determining the set of functions in C(IR) that are both translation
and dilation invariant.

Proposition 5.8. If σ ∈ C(IR), σ 6= 0, then

C(IR) = span{σ(α · +β) : α, β ∈ IR}

if and only if σ is not a polynomial.

Proof: Let
Mσ = span{σ(α · +β) : α, β ∈ IR}.

If Mσ 6= C(IR) then there exists a nontrivial Borel measure µ of bounded total
variation and compact support such that

∫

IR

σ(αx + β) dµ(x) = 0

for all α, β ∈ IR. Since µ is nontrivial and polynomials are dense in C(IR) in the
topology of uniform convergence on compact subsets, there must exist a k ≥ 0
such that ∫

IR

xk dµ(x) 6= 0.

It is relatively simple to show that for each φ ∈ C∞
0 (IR), (infinitely differen-

tiable and having compact support) the convolution (σ ∗φ) is contained in Mσ.
Since both σ and φ are in C(IR), and φ has compact support, this can be proven
by taking limits of Riemann sums of the convolution integral. We also consider
taking derivatives as a limiting operation in taking divided differences. Since
(σ ∗ φ) ∈ C∞(IR), and thus it and all its derivatives are uniformly continuous
on every compact set, it follows that for each α, β ∈ IR

∂n

∂αn
(σ ∗ φ)(αx + β) = xn(σ ∗ φ)(n)(αx + β) ∈ Mg.

Thus ∫

IR

xn(σ ∗ φ)(n)(αx+ β) dµ(x) = 0,

for all α, β ∈ IR and n ∈ ZZ+. Setting α = 0, we see that

(σ ∗ φ)(n)(β)

∫

IR

xn dµ(x) = 0
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for each choice of β ∈ IR, n ∈ ZZ+ and φ ∈ C∞
0 (IR). This implies, since∫

IR x
k dµ(x) 6= 0, that

(σ ∗ φ)(k) = 0

for all φ ∈ C∞
0 (IR). That is, σ(k) = 0 in the weak sense. However, as is well-

known, this implies that σ(k) = 0 in the strong (usual) sense. That is, σ is a
polynomial of degree at most k − 1.

The converse direction is simple. If σ is a polynomial of degree m, then
Mσ is exactly the space of polynomials of degree m, and is therefore not dense
in C(IR).

Example 5.8. Splines are piecewise polynomials with a high order of continu-
ity. For a = ξ0 < ξ1 < · · · < ξk < ξk+1 = b we set

Sn(ξ1, . . . , ξk) = {s ∈ C(n−1)[a, b] : s ∈ Πn|(ξi−1,ξi), i = 1, . . . , k + 1}.

Hence a function s belongs to Sn(ξ1, . . . , ξk) if it is a C(n−1) function, i.e., has
a certain global level of smoothness, and is a polynomial of degree at most n on
each of the intervals (ξi−1, ξi). We say that Sn(ξ1, . . . , ξk) is the space of splines
of degree n with the simple knots (ξ1, . . . , ξk). When using splines one fixes the
degree and permits the number (and placement) of the knots to vary. From the
perspective of numerical computations, approximation by splines enjoys many
advantages over approximation by algebraic and trigonometric polynomials. As
the number of knots increases the corresponding space of splines may or may
not “become dense” in C[a, b]. Whether it does or not simply depends upon if
the knots become dense in [a, b].

To be more exact, for each k = 1, 2, ... let

Sk = Sn(ξk
1 , . . . , ξ

k
k )

for some set of k knots as above, where ξk
0 = a and ξk

k+1 = b. For each such k,
let

mk = max
i=0,...,k

(ξk
i+1 − ξk

i ),

denote the maximum mesh length. Then we have, see for example, de Boor
[1968],

Proposition 5.9. For each f ∈ C[a, b] there exist sk ∈ Sk such that

lim
k→∞

‖f − sk‖∞ = 0

if and only if limk→∞mk = 0.

Proof: We first assume that limk→∞mk = 0. The set

(1, x, . . . , xn, (x− ξk
1 )n

+, . . . , (x− ξk
k )n

+),
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where xn
+ equals xn for x ≥ 0 and 0 for x < 0, is a basis for Sk. However there

are also ‘better’ bases. They are given by B-splines

(Bk
1 , . . . , B

k
n+k+1).

Each Bk
i is nonnegative,

∑n+k+1
i=1 Bk

i = 1 on [a, b], and suppBk
i = [ξk

i−n−1, ξ
k
i ]

where ξk
−n ≤ · · · ≤ ξk

−1 ≤ a, and b ≤ ξk
k+2 ≤ · · · ≤ ξk

n+k+1.
For each δ > 0, let

ω(f ; δ) = max
|x−y|≤δ

|f(x) − f(y)|

denote the usual modulus of continuity of f . As f is continuous on [a, b] it is
also uniformly continuous thereon and thus

lim
δ→0+

ω(f ; δ) = 0.

Now choose tki ∈ suppBk
i ∩ [a, b], i = 1, . . . , n+ k + 1, and set

sk(x) =

n+k+1∑

i=1

f(tki )Bk
i (x).

(sk is called a quasi-interpolant.) Then for x ∈ [ξk
j , ξ

k
j+1], j ∈ {0, 1, . . . , k} we

have

|f(x) − sk(x)| = |f(x) −
n+k+1∑

i=1

f(tki )Bk
i (x)|

≤
n+k+1∑

i=1

|f(x) − f(tki )|Bk
i (x)

=

n+j+2∑

i=j

|f(x) − f(tki )|Bk
i (x)

since Bk
i (x) = 0 for i /∈ {j, . . . , n+ j + 2}. Thus

|f(x) − sk(x)| ≤ max
i=j,...,n+j+2

|f(x) − f(ti)| ≤ ω(f ; (n+ 2)mk),

and
‖f − sk‖ ≤ ω(f ; (n+ 2)mk),

from which we obtain
lim

k→∞
‖f − sk‖ = 0.

If the mk do not tend to zero, then there is a subinterval [c, d] of [a, b] of
positive length, and a subsequence (km) of (k) such that Skm

has no knots in
[c, d]. That is, each function in Skm

is a polynomial of degree at most n on [c, d].
If f ∈ C[a, b] is not a polynomial of degree at most n on [c, d], then there exists
a C > 0 such that

‖f − s‖ ≥ C

for all s ∈ Skm
.
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Each Sn(ξ1, . . . , ξk) is a linear space of splines of degree n with k fixed
knots. One can also consider the nonlinear set Sn,k of splines of degree n with
k free knots, i.e.,

Sn,k = {s(x) =

n∑

i=0

cix
i +

k∑

i=1

di(x− ξ)n
+ : ci, di ∈ IR, a < ξ1 < · · · < ξk < b}.

(Note that the set Sn,k is not closed.)
The following is a consequence of our previous density result.

Proposition 5.10. Let p ∈ (1,∞). Assume f ∈ Lp[a, b]\Sn,k and s∗ ∈ Sn,k

satisfies
‖f − s∗‖p ≤ ‖f − s‖p

for all s ∈ Sn,k. Then s∗ /∈ Sn,k−1.

Proof: Let F be a continuous linear functional on Lp[a, b] that satisfies

‖F‖ = 1

and
F (f − s∗) = ‖f − s∗‖ .

As f − s∗ 6= 0 and p ∈ (1,∞), such an F exists and is unique.
Our proof is by contradiction. If s∗ ∈ Sn,k−1, then for each d ∈ IR and

ξ ∈ [a, b] we have
‖f − s∗‖p ≤ ‖f − s∗ − d(x − ξ)n

+‖p.

Thus from Theorem 3.5 we have

F ((x− ξ)n
+) = 0

for each ξ ∈ [a, b]. In addition, as

‖f − s∗‖p ≤ ‖f − s∗ − p‖p

for every p ∈ Πn, we have

F (xk) = 0, k = 0, . . . , n.

From Proposition 5.9

span{1, x, . . . , xn, (x− ξ)n
+ : ξ ∈ [a, b]}

is dense in C[a, b] and thus in Lp[a, b]. From Theorem 3.6 this implies that
F = 0. A contradiction.
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The exact same argument proves, for example, that if

Pk = {
k∑

j=1

ajx
mj : aj ∈ IR,mj ∈ ZZ+, j = 1, . . . , k},

then in Lp[a, b], 1 < p < ∞, any best approximation to f from Pk is never
contained in Pk−1.

The key ingredients of the above argument are the density of the set under
consideration (in the above examples, splines and algebraic polynomials) in the
normed linear space E, and the fact that E is smooth. That is, to each nonzero
element of the space E there is a unique continuous linear functional of norm
one that attains its norm on the given element.

Example 5.9. Here are two examples where we consider the density of positive
cones. That is, we present some applications of Theorem 3.8.

Let Π denote the space of all algebraic polynomials and Π+ the positive
cone of all algebraic polynomials with nonnegative coefficients. We first prove
the following result due to Bonsall [1958].

Theorem 5.11. The uniform closure of Π+ on [−1, 0] is exactly the set of f
in C[−1, 0] for which f(0) ≥ 0.

Proof: Let gn(x) = (1+x)n and φn(x) = xn for all n ∈ ZZ+. Note that gn and
φn are in Π+, and

gn =

n∑

k=0

(
n

k

)
φk.

Assume F is a continuous linear functional on C[−1, 0] satisfying F (φn) ≥ 0 for
every n ∈ ZZ+. Then

F (gn) ≥
(
n

k

)
F (φk).

Now ‖gn‖ = ‖φn‖ = 1 for all n. Thus

‖F‖ ≥
(
n

k

)
F (φk),

for each n ≥ k. Fix k ≥ 1 and let n → ∞. This implies that F (φk) = 0 for all
k = 1, 2, .... Thus each ±φk, k ≥ 1, is in the uniform closure of Π+ on [−1, 0].
As every f ∈ C[−1, 0] satisfying f(0) = 0 is in the uniform closure of the space
generated by the ±φk, k ≥ 1, the result now easily follows.

Bonsall actually proves that each F as above is necessarily of the exact
form F (f) = cf(0) where c = F (1) ≥ 0. This he proves as follows. For each
f ∈ C[−1, 0] and ε > 0, let p ∈ Π satisfy

‖f − p‖ < ε
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Thus we have |f(0) − p(0)| < ε. Since F (φk) = 0, k ≥ 1, we obtain

|F (f) − F (1)p(0)| = |F (f − p(0))| = |F (f − p)| < ε‖F‖.

Furthermore

|F (f) − F (1)f(0)| = |F (f) − F (1)p(0) + F (1)p(0) − F (1)f(0)| < 2ε‖F‖.

As this is valid for each ε > 0 we obtain

F (f) = F (1)f(0).

There is an alternative method of proving this result via a slight gener-
alization of the Stone-Weierstrass theorem. Consider the set of f in C[−1, 0]
satisfying f(0) = 0. Now eαx − 1 is in the uniform closure of Π+ on [−1, 0] for
α > 0. (Truncate the power series expansion about 0.) Furthermore if f and g
are in this closure then so is fg. As eαx − 1 approaches −1 uniformly on [−1, δ]
for any δ < 0 as α → ∞, and is bounded on [δ, 0], it follows that for f in the
uniform closure of Π+ on [−1, 0] and satisfying f(0) = 0 we also have −f in this
same closure. In addition p(x) = x is nonzero for all x 6= 0 and separates points.
Thus from an elementary generalization of the Stone-Weierstrass theorem the
uniform closure of Π+ on [−1, 0] contains the set of all f in C[−1, 0] satisfying
f(0) = 0. The result now follows.

Thus for any a < b < 0 the uniform closure of Π+ on [a, b] is exactly all of
C[a, b]. What happens if [a, b] ⊆ [0,∞)? It is well known that in this case the
uniform closure of Π+ is simply the set of analytic functions in [a, b] given by a
power series about 0 with nonnegative coefficients which converges in [a, b].

There are also somewhat surprising results due to Nussbaum, Walsh [1998],
generalizing work of Toland [1996]. These results are used to investigate when
the spectral radius of a positive, bounded linear operator belong to its spectrum.
A special case of what they prove is the following:

Theorem 5.12. For any a < −1 the uniform closure of Π+ on [a, 1] contains
the set of all f in C[a, 1] that vanishes identically on [−1, 1].

Proof: We present two proofs of this result. The first proof uses the Hahn-
Banach theorem and is that found in Nussbaum, Walsh [1998]. The second
proof is constructive.

Assume we are given any continuous linear functional F on C[a, 1] satisfying
F (xn) ≥ 0 for all n ∈ ZZ+. From the Riesz representation theorem, this implies
the existence of a Borel measure µ of bounded total variation satisfying

∫ 1

a

xn dµ(x) ≥ 0



Density in Approximation Theory 33

for all n ∈ ZZ+. We will prove that supp{µ} ⊆ [−1, 1]. As this is true then

∫ 1

a

f(x) dµ(x) = 0

for every f in C[a, 1] that vanishes identically on [−1, 1], proving our theorem.
To this end, consider

G(z) =

∫ 1

a

1

z − x
dµ(x).

G is analytic in |C\[a, 1], and vanishes at ∞. For |z| > λ = sup{|x| : x ∈
supp{µ}} we have

G(z) =

∞∑

n=1

cn−1

zn

where

cn =

∫ 1

a

xn dµ(x) ≥ 0.

Note that H(z) = G(1/z) is analytic in |C\{(−∞, 1/a]
⋃

[1,∞)} and has about
the origin a power series expansion with nonnegative coefficients. From a the-
orem of Pringsheim, if the radius of convergence of the power series is ρ > 0
then the point z = ρ is a singular point of the analytic function represented by
the power series. As the power series converges on [0, 1) the radius of conver-
gence is at least 1, and therefore H is analytic in |C\{(−∞,−1]

⋃
[1,∞)} and

G analytic in |C\[−1, 1]. That is, G is in fact analytic in [a,−1). This implies,
see Nussbaum, Walsh [1998, p. 2371], that the measure dµ has no support in
[a,−1).

The following constructive proof of this result is based on a variation of a
proof to be found in Orlicz [1992, p. 99]. For n ∈ IN , odd, consider the function

gn(x) =

∫ x

0

etn/n − 1 dt.

Note that the integrand is uniformly bounded on [a, 1] and

lim
n→∞

etn/n − 1 =

{
0, −1 ≤ t ≤ 1
−1, a ≤ t < −1 .

As

etn/n − 1 =

∞∑

k=1

(
tn

n

)k
1

k!

this function is in the uniform closure of Π+. Thus, so is gn . Set

G(x) =

{
−(x+ 1), a ≤ x ≤ −1
0, −1 ≤ x ≤ 1 .
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Then
lim

n→∞
(G(x) − gn(x)) = 0

uniformly on [a, 1]. That is, for all x ∈ [−1, 1]

∣∣∣∣
∫ x

0

etn/n − 1 dt

∣∣∣∣ ≤ e1/n − 1,

while for x ∈ [a,−1]

∣∣∣∣−(x+ 1) −
∫ x

0

(
etn/n − 1

)
dt

∣∣∣∣

=

∣∣∣∣−(x+ 1) −
∫ x

−1

(
etn/n − 1

)
dt+

∫ 0

−1

(
etn/n − 1

)
dt

∣∣∣∣

≤
∫ −1

x

etn/n dt+

∫ 0

−1

(
1 − etn/n

)
dt ≤

∫ −1

a

etn/n dt+ (1 − e−1/n).

Thus G is in the uniform closure of Π+ on [a, 1].
Moreover, as seen above, the function etn/n − 1 is uniformly bounded and

approaches

H(x) =

{
0, −1 ≤ x ≤ 1
−1, a ≤ x < −1.

The convergence to H is uniform in [a, 1], away from any neighbourhood of −1.
Thus GH = −G is also in the uniform closure of Π+ on [a, 1], and therefore
the uniform closure of Π+ on [a, 1] contains the algebra generated by G. An
elementary generalization of the Stone-Weierstrass theorem implies that the
uniform closure of Π+ on [a, 1] contains the set of all f in C[a, 1] which vanish
identically on [−1, 1].

The above result is an extension of Theorem II′ in Orlicz [1999, p. 96].
Orlicz proved that for every f ∈ C[a,−1] satisfying f(−1) = 0 and for each
ε > 0, there exists a p ∈ Π of the form

p(x) =

n∑

k=0

akx
k

simultaneously satisfying
‖f − p‖[a,−1] < ε

and
n∑

k=0

|ak| < ε.
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6 Some Multivariate Density Results

In the section we consider applications of the results of the previous sections to
multivariate functions.

Example 6.1. We start with an application of the Stone-Weierstrass theorem.
Let h1, . . . , hm be any m fixed real-valued continuous functions defined on X ,
a compact set. Let

M = span{g
( m∑

i=1

aihi

)
: a = (a1, . . . , am) ∈ IRm, g ∈ C(IR)}.

When is M dense in C(X)?

Proposition 6.1. M = C(X) if and only if for each x, y ∈ X , x 6= y, there
exists i ∈ {1, . . . ,m} such that hi(x) 6= hi(y).

Proof: If there exists an x 6= y for which hi(x) = hi(y), i = 1, ...,m, then for
every f ∈ M we have f(x) = f(y) and obviously M 6= C(X). On the other
hand, assume that for each x, y ∈ X , x 6= y, there exists i ∈ {1, . . . ,m} such
that hi(x) 6= hi(y). Consider the linear span of the set

( m∑

i=1

aihi

)k

as we vary over all a ∈ IRm and k = 0, 1, 2, . . .. This is an algebra generated by

hℓ1
1 · · ·hℓm

m

where the ℓi are non-negative integers. Furthermore this algebra contains the
constant function and separates points. Thus the density follows from the
Stone–Weierstrass theorem.

Example 6.2. Is it true that for arbitrary compact sets X and Y we always
have that span{C(X)×C(Y )} is dense in C(X×Y )? If X and Y are compact
subsets of IR this follows from the fact that algebraic polynomials are dense in
C(X×Y ), and each algebraic polynomial is a linear combination of products of
monomials in X and monomials in Y . Similarly to Example 6.1 we have:

Dieudonné Theorem 6.2. If X and Y are compact, then the linear space
span{C(X)×C(Y )} is dense in C(X×Y ).

Proof: For f ∈ C(X) and g ∈ C(Y ) the function (f×g)(x, y) = f(x)g(y) is
in C(X×Y ). Furthermore all finite sums of the form f1×g1 + · · · + fm×gm

clearly form a subalgebra of C(X×Y ) that contains the constant function and
separates points. Thus by the Stone-Weierstrass theorem span{C(X)×C(Y )}
is dense in C(X×Y ).
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This theorem, originally proven in Dieudonné [1937] by other methods,
easily extends to a product of any finite number of compact spaces. It may also
be found in Nachbin [1967] and Prolla [1977].

Example 6.3. Here is a simple application of the functional analytic approach
to density. We consider C(IRn) with the topology of uniform convergence on
compacta. As we recall, the set of functions for which the span of all their
translates are not dense in C(IRn) are called mean-periodic functions. There
is no known characterization of mean-periodic functions in C(IRn) for n ≥ 2.
However not many functions can be mean-periodic. For example

Proposition 6.3. If g ∈ C(IRn) ∩ L1(IRn), g 6= 0, then

C(IRn) = span{g(· − a) : a ∈ IRn}.

Proof: The continuous linear functionals on C(IRn) are represented by Borel
measures of bounded total variation and compact support. If the above space
is not dense in C(IRn), then there exists such a nontrivial measure µ satisfying

∫

IRn

g(x− a) dµ(x) = 0,

for all a ∈ IRn. Both g and µ have “nice” Fourier transforms. Since the above
is a convolution we must have

ĝ(w)µ̂(w) = 0.

Now µ̂ is an entire function, while ĝ is continuous. Since ĝ must vanish where
µ̂ 6= 0, it follows that ĝ = 0 and thus g = 0, a contradiction.

Example 6.4. Let 〈· , ·〉 denote the usual inner (scalar) product on IRn. Ap-
plying Propositions 6.1 and 5.8 we prove the following result.

Proposition 6.4. For each σ ∈ C(IR)

span{σ(〈a , ·〉 + b) : a ∈ IRn, b ∈ IR}

is dense in C(IRn) (uniform convergence on compacta) if and only if σ is not a
polynomial.

Proof: If σ is a polynomial of degree m, then each σ(〈a , ·〉+ b) is contained in
the space of polynomials of total degree at most m on IRn, and thus the above
span is certainly not dense in C(IRn).

Assume σ is not a polynomial. Choose an f in C(IRn), X any compact
subset of IRn, and ε > 0. From an application of Proposition 6.1 we have the
existence of gk ∈ C(IR) and ak ∈ IRn, k = 1, . . . ,m, such that

∣∣∣∣∣f(x) −
m∑

k=1

gk(〈ak ,x〉)
∣∣∣∣∣ < ε
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for all x ∈ X . Let [c, d] be a finite interval of IR containing all values 〈ak ,x〉
for x ∈ X and k = 1, . . . ,m, i.e.,

m⋃

k=1

{〈ak ,x〉 : x ∈ X} ⊆ [c, d].

From Proposition 5.8 we have the existence of cik, αik, βik ∈ IR, i = 1, . . . , nk,
k = 1, . . . ,m, for which

∣∣∣∣∣gk(t) −
nk∑

i=1

cikσ(αikt+ βik)

∣∣∣∣∣ <
ε

m

for all t ∈ [c, d] and k = 1, . . . ,m. Thus for all x ∈ X
∣∣∣∣∣f(x) −

m∑

k=1

nk∑

i=1

cikσ(αik〈ak ,x〉 + βik)

∣∣∣∣∣ < 2ε,

which proves the density.

Proposition 6.4 is a basic result in one of the models of neural network
theory, see Leshno, Lin, Pinkus, Schocken [1993] and Pinkus [1999].

Example 6.5. Ridge Functions. Ridge functions were considered in the previ-
ous example. They are functions of the form g(〈a , ·〉) for some fixed ‘direction’
a and some function g ∈ C(IR). They are functions constant on the hyperplanes
{〈a ,x〉 = t} for every t ∈ IR.

Let Ω be a subset of IRn. In what follows we assume that Ω is a subset
of Sn−1, i.e., all elements of Ω are of norm 1. (This is simply a convenient
normalization.) The question we ask is: What are necessary and sufficient
conditions on Ω such that the set of all ridge functions with directions from Ω
are dense in C(IRn). The result we prove is due to Vostrecov, Kreines [1961],
see also Lin, Pinkus [1993]. We will apply both the Weierstrass theorem and
the Riesz representation theorem in obtaining these conditions.

Let
M(Ω) = span{g(〈a , ·〉) : a ∈ Ω, g ∈ C(IR)}.

Note that we vary over all a ∈ Ω and all g ∈ C(IR).

Theorem 6.5. The linear space M(Ω) is dense in C(IRn) in the topology of
uniform convergence on compacta if and only if the only homogeneous polyno-
mial (of n variables) that vanishes identically on Ω is the zero polynomial.

Proof: (⇒). Assume there exists a nontrivial homogeneous polynomial p of
degree k that vanishes on Ω. Let

p(y) =
∑

|m|=k

bmym,
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where m = (m1, . . . ,mn) ∈ ZZn
+, |m| = m1 + · · · +mn and ym = ym1

1 · · · ymn
n .

Choose any φ ∈ C∞
0 (IRn), φ 6= 0. For each m ∈ ZZn

+, |m| = k, set

Dm =
∂k

∂xm1

1 · · · ∂xmn
n

,

and define
ψ(x) =

∑

|m|=k

bmD
mφ(x).

Note that ψ ∈ C∞
0 (IRn), ψ 6= 0, (suppψ ⊆ suppφ), and

ψ̂ = ikφ̂p

where ·̂ denotes the Fourier transform. As p is homogeneous, p(λa) = ψ̂(λa) =
0 for all a ∈ Ω and λ ∈ IR.

We claim that ∫

IRn

g(〈a ,x〉)ψ(x) dx = 0

for all a ∈ Ω and g ∈ C(IR), i.e., the nontrivial linear functional defined by
integrating against ψ annihilates M(Ω). From the Riesz representation theorem
this implies that M(Ω) is not dense in C(IRn).

We prove this as follows. For a ∈ Ω we write

0 = ψ̂(λa) =
1

(2π)n/2

∫

IRn

ψ(x)e−iλ〈a ,x〉 dx

=
1

(2π)n/2

∫ ∞

−∞

[ ∫

〈a ,x〉=t

ψ(x)dx
]
e−iλt dt.

Since this holds for all λ ∈ IR, we have that

∫

〈a ,x〉=t

ψ(x) dx = 0

for all t. Thus for any g ∈ C(IR),

∫

IRn

g(〈a ,x〉)ψ(x) dx =

∫ ∞

−∞

[ ∫

〈a ,x〉=t

ψ(x)dx
]
g(t) dt = 0.

(⇐). Assume that for a given k ∈ IN no nontrivial homogeneous polynomial
p of degree k vanishes identically on Ω. We will prove that M(Ω) includes all
homogeneous polynomials of degree k (and thus all polynomials of degree at
most k). If the above holds for all k ∈ ZZ+ it then follows that M(Ω) contains
all polynomials and therefore M(Ω) = C(IRn).
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Let a ∈ Ω and set g(〈a ,x〉) = (〈a ,x〉)k , whence (〈a ,x〉)k ∈ M(Ω). Since
Dm1xm2 = δm1,m2

k!, for m1,m2 ∈ ZZn
+, |m1| = |m2| = k, it easily follows that

every linear functional ℓ on the finite dimensional linear space of homogeneous
polynomials Hn

k of degree k may be represented by some q ∈ Hn
k via

ℓ(p) = q(D)p

for each p ∈ Hn
k .

For any given q ∈ Hn
k ,

q(D) (〈a ,x〉)k = k! q(a).

If the linear functional ℓ annihilates (〈a ,x〉)k for all a ∈ Ω, then its representor
q ∈ Hn

k vanishes on Ω. By assumption this implies that q = 0. The fact that
no nontrivial linear functional on Hn

k annihilates (〈a ,x〉)k for all a ∈ Ω implies

Hn
k = span{(〈a ,x〉)k : a ∈ Ω}.

Thus Hn
k ⊆ M(Ω).

Example 6.6. There are other results of the same general flavor as that found
in Example 6.4. For example, assume ‖ · ‖ is the usual Euclidean norm on IRn.
Then we have from Pinkus [1996] the following two results.

Proposition 6.6. For each σ ∈ C(IR+)

span{σ(ρ‖ · −a‖) : ρ > 0, a ∈ IRn}

is dense in C(IRn) (uniform convergence on compacta) if and only if σ is not an
even polynomial.

Proposition 6.7. For each σ ∈ C(IR)

span{σ
(
a

n∏

i=1

(· − bi)

)
: a, b1, . . . , bn ∈ IR}

is dense in C(IRn) (uniform convergence on compacta) if and only if σ is not of
the form

σ(t) =
r∑

j=0

c0jt
j +

r∑

j=1

n−1∑

i=1

cijt
j(ln |t|)i

for some finite r and coefficients (cij).
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Example 6.7. A very interesting result, with applications in Radon transform
theory, is that conjectured by Lin and Pinkus and proved by Agranovsky, Quinto
[1996]. It characterizes the set of centers of radial functions needed for density.
The complete answer is only known in IR2.

Theorem 6.8. Let A ⊆ IR2. Then

span{g(‖ · −a‖) : g ∈ C(IR), a ∈ A}

is not dense in C(IR2) (uniform convergence on compacta) if and only if A is
composed of a finite number of points together with a subset of a set of straight
lines having a common intersection point and where the angles between each of
the lines is a rational multiple of π (a Coxeter system of lines).

Example 6.8. The functions ‖ · −a‖2 are shifts of the polynomial q(x) =∑n
i=1 x

2
i . Assume we are given an arbitrary polynomial p. Under what exact

conditions do we have that

span{g(p( · − a)) : g ∈ C(IR), a ∈ IRn}

is dense in C(IRn)? This next result, as well as variations thereof, can be found
in Pinkus, Wajnryb [1995].

Theorem 6.9. Let p be an arbitrary polynomial in IRn. Then for n = 1, 2, 3,

span{g(p( · − a)) : g ∈ C(IR), a ∈ IRn}

is dense in C(IRn) (uniform convergence on compacta) if and only if

span{p( · − a) : a ∈ IRn}

separates points.

By “separates points” we mean that for any given x,y ∈ IRn, x 6= y, there
exists a a ∈ IRn for which

p(x − a) 6= p(y − a).

This condition is obviously necessary. The sufficiency is far from trivial. For
n = 4 it is also sufficient if p is a homogeneous polynomial. However for n ≥ 4
this condition is not always sufficient.

Example 6.9. Müntz’s Theorem. The Müntz problem in the multivariate set-
ting is significantly more difficult than in the univariate setting. Some sufficient
conditions have been given, but the problem still remains very much open. The
interested reader is urged to look at Bloom [1992] and Kroó [1994] and references
therein.
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223–239.
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Phil. Soc. 90, 1–3.

Rudin, W. [1966] “Real and Complex Analysis”, McGraw-Hill, New York.
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