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SCATTERED DATA APPROXIMATION WITH A HYBRID

SCHEME

Abstract. A local hybrid radial–polynomial approximation scheme is in-
troduced here to modify the scattered data fitting method presented in [6],
generating C1 or C2 approximating spline surfaces. As for the original
method, neither triangulation nor derivative estimate is needed, and the
computational complexity is linear. The reported numerical experiments
relate to two well known test functions and confirm both the accuracy and
the shape recovery capability of the proposed hybrid scheme.

1. Introduction

In this paper we investigate the benefit obtainable using local hybrid radial–polynomial
approximations to modify the scattered data fitting method introduced in [6] which is
based on direct extension of local polynomials to bivariate splines. The hybrid ap-
proach here considered is motivated by the well known excellent quality of scattered
data radial basis function approximation [2]. Polynomial terms are also admitted in
order to improve the approximation in the subdomains with polynomial-like behaviour
of the data (e.g. almost flat areas).

Both the original and our hybrid scheme do not need data triangulation because
the standard four directional mesh covering the domain is used. In addition, they do
not require derivative estimates because only functional values are required. Clearly,
the hybrid approximations must be converted in local polynomials for making possible
their extension to splines. However, the additional computational cost of the conversion
phase is negligible with respect to the whole cost of the method. In addition, as well
as for the original method, the computational complexity of the scheme is linear, and
this is obviously a very important feature particularly when large data sets have to be
handled. A C1 cubic or a C2 sextic final spline approximation is produced, which is
advantageous for CAGD applications since splines are a standard tool for that purpose
[7].

In our modified approach, thanks to the usage of radial terms only in the local set-
ting, the related local hybrid approximations can be computed without using special
numerical techniques because the subset of data used for each of them is small and its
size is assumed a priori bounded, which results in avoiding large matrices completely.
In addition, for the same reason a simple and no–cost adaptation of the scaling param-
eter characterizing the radial terms of the hybrid approximations is possible. We note
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that local scaling adaptation is a nice feature of the scheme because, as proved by the
researches reported by various authors (e.g. [1, 13, 14]), the use of different scaling
parameters can be very proficuous in particular relating to shape recovery, but it is not
easy when global radial schemes are used.

In this paper, in order to investigate the accuracy and the shape recovery capabil-
ity of the method, we have experimented its performances by means of two reference
mathematical test functions, that is the well known Franke [9] and Nielson [15] func-
tions. For both the reported test functions the results highlight the good behaviour of
the proposed hybrid scheme.

The paper is organized as follows. In Section 2 the original bivariate spline approx-
imation method is summarized and in Section 3 the local hybrid approximation scheme
is introduced. Finally in Section 4 the numerical results related to the two considered
test functions are presented.

2. The original method

In this section we give some basic information about the original scattered data ap-
proximation scheme introduced in [6, 12] which is a two-stage method extending local
approximations to the final global spline approximating surface. In fact, our scheme
is obtained acting on the first stage of the original method, that is modifying the local
approximations. On the other hand, the philosophy of the method and its second stage,
devoted to the spline computation, are unchanged.

First, let us introduce some fundamental definitions (see for details [8]).

The Bernstein-Bézier representation of a bivariate polynomial p of total degree ≤ d
is

(1) p =
∑

i+ j+k=d

ci j k Bd
i jk ,

where Bd
i jk, i + j + k = d, i, j, k ∈ N are the Bernstein polynomials of degree d

related to the reference triangle T with vertices a , b , c.

Each coefficient ci j k , i + j + k = d in (1) is associated with the domain point
ηi j k ∈ T ,

ηi j k := i

d
a + j

d
b + k

d
c.

The set of all the domain points associated with T is denoted by Dd,T and the set of all
the domain points related to the triangles of the considered triangulation1 is denoted
by Dd,1.

A set M ⊂ Dd,1 is called a minimal determining set for the linear subspace
S of the spline space S0

d (1) if, setting the coefficients of s ∈ S associated with the
domain points in M to zero implies that all the coefficients of s vanish and no proper
subset of M exists with the same property.

We now summarize the original method we refer to, relating to [6] for a complete
description. In this approach local polynomials are extended to bivariate splines pro-
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ducing a C1 or C2 approximating surface using cubic or sextic splines respectively.
The extension to bivariate splines is done in the second stage by using the smoothness
conditions between adjacent Bézier triangular patches [8]. A uniform four directional
mesh 1 covering the domain � ⊂ R2 is used and local polynomials are computed by
discrete least squares using the stable Bernstein-Bézier representation form. The com-
putational complexity of the method grows linearly with the number N of data points
{ (Xi , fi ), i = 1, . . . , N ,Xi ∈ � ⊂ R

2 }. Thus, large data and many different data
distributions can be efficiently handled, as shown in [6]. The efficiency of the method
mainly depends on the theoretical determination of minimal determining sets M for
the spline approximating spaces which consist of all domain points belonging to a set
T of uniformly distributed triangles of 1. In fact, using this result, local polynomial
Bèzier patches can be separately computed for each triangle belonging to T and then
univocally extended to the final spline approximation.

Concerning the local polynomial approximations, it is clear that their accuracy and
shape quality heavily influences the corresponding attributes of the spline approxima-
tion. As a consequence, an important point is the selection of the data used for defining
through the least squares procedure each local polynomial pT of total degree ≤ d
(d = 3 for cubics and 6 for sextics) on each triangle T ∈ T . So, they initially cor-
respond to locations Xi inside a circle �T centered at the barycenter of T and with
radius equal to the grid size. However, if they are few, the radius is suitably increased
and if they are too many, in order to accelerate the computational process, their number
NT is decreased using a grid-type thinning algorithm. A lower and an upper bound
MMin and MMax for NT are assumed as input parameters provided by the user. An-
other important input parameter of the method is the tolerance κP used to control the
inverse of the minimal singular value σmin,d,T of the collocation matrix Md,T related
to the least-squares local polynomial approximation defined on each T ∈ T . In fact,
as proved in [4], imposing an upper bound for σ−1

min,d,T allows a direct control on the
approximation power of the least-squares scheme, besides guaranteeing its numerical
stability. An adaptive degree reduction procedure for guaranteeing this bound is used,
producing constant approximations in the worst case.

3. The local hybrid scheme

As we already said in the introduction, the idea of our hybrid method is to enhance
the approximation quality of the local approximations by using linear combinations
of polynomials and radial basis functions. Once a local hybrid approximation gT is
computed on a triangle T ∈ T , it is trasformed into a polynomial approximation of
degree d computing the discrete least squares polynomial approximation of degree d

with respect to the evaluations of gT at all the
( D + 2

2

)
domain points on T , where

it is assumed D = 2d. On this concern, we remark that the additional cost related to
this conversion phase is negligible with respect to the whole cost of the method mainly
for two reasons. First, the collocation matrix associated with each local conversion
hybrid–to–polynomial is the same for all triangles T ∈ T . Second, it has a small
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σ−1
min,d,T (2.87 for D = 6 and 21.74 for D = 12), so guaranteeing that the least squares

polynomial of degree d is a good approximation of gT [4].

Let 4T = {X1, . . . ,XNT } denote the set of locations related to the triangle T (its
definition is based on the same strategy used in the original method described in the
previous section). The local mixed approximation gT has the form

(2) gT (·) =
m∑

j=1

aT
j pT

j (·) +
nT∑

j=1

bT
j φT (‖ · −YT

j ‖2)

where span {pT
1 , . . . , pT

m} is the space 52
q of bivariate polynomials of degree q ≥ 0

and m =
( q + 2

2

)
≤ NT . The function φT : R≥0 → R can be any suitably smooth

positive definite function or a conditionally positive definite function of order at most
q + 1 on R2 (see [2]). The approximation gT is constructed minimizing the `2-norm
of the residual on 4T ,

(3)
( NT∑

i=1

( fi − gT (Xi))
2
)1/2

,

where 0 ≤ nT ≤ NT − m, and the set of knots YT = {Y j , j = 1, . . . , nT } is a subset
of 4T .

We do not consider the additional orthogonality constraints

(4)
nT∑

j=1

bT
j p(YT

j ) = 0, all p ∈ 52
q,

usually required in radial approximation ([2]), because we want to exploit in full the
approximation power of the linear space

HT := span
{

pT
1 , . . . , pT

m, φT (‖ · −YT
1 ‖2), . . . , φT (‖ · −YT

nT
‖2)
}
.

So we have to check the uniqueness of the solution of our least squares problem and
this is done requiring that

(5) σ−1
min(CT ) ≤ κH ,

where κH is a user specified tolerance and σmin(CT ) is the minimal singular value of
the collocation matrix CT defined by



pT
1 (X1) . . . pT

m(X1) φT (‖X1 − YT
1 ‖2) . . . φT (‖X1 − YT

nT
‖2

...
...

...
...

pT
1 (XNT ) . . . pT

m(XNT ) φT (‖XNT − YT
1 ‖2) . . . φT (‖XNT − YT

nT
‖2


 .

An adaptive ascending iterative strategy is used for defining nT and the related set of
knots YT . For the description of the details of such a strategy, the reader is referred to
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the forthcoming paper [5]. However here we just mention that this strategy is based on
the inequality (5). The reason why we control the unique solvability of our least squares
problem using (5) instead of a cheaper criterion avoiding the computation of σmin(CT )

([16]) is because it allows us to control also the approximation error ‖ f − gT ‖C(T ),
where we are here assuming that fi = f (Xi), i = 1, . . . , NT , being f a continuous
function. In fact, if (5) holds and NT is upper bounded, assuming that the polynomial
basis {pT

1 , . . . , pT
m} and φT are properly scaled, it can be proved that ([4, 5]) there

exists a constant cT such that

(6) ‖ f − gT ‖C(T ) ≤ cT E( f,HT )C(T ),

where E( f,HT )C(T ) is the error of the best approximation of f from HT ,

E( f,HT )C(T ) := inf
g∈HT

‖ f − g‖C(T ).

4. Numerical results

The features of our local hybrid approximation scheme are investigated incorporating
it into the two-stage scattered data fitting algorithm of [6]. More precisely, the method
RQav

2 of [6, Section 5] has been always used in the reported experiments, producing
a C2 piecewise polynomial spline of degree d = 6 with respect to the four-directional
mesh. For our experiments in (2) we have always considered

(7) φT (r) = −δdT φM Q

(
r
δdT

)
=
√
(δdT )2 + r2,

where
dT := max

1≤i, j≤NT

‖Xi − X j ‖2

is the diameter of 4T and δ is a scaling parameter. As this radial basis function is
conditionally positive definite of order 1, we take q = 0, and thus the polynomial part
in (2) is just a constant.

The input parameters to the method are the grid size nx × ny on a rectangular
domain, the inverse minimal singular value tolerance κH , the minimum and maximum
numbers Mmin ,Mmax of data points belonging to each 4T , the scaling coefficient δ
used in (7), the upper bound nmax on the knot number nT used in (2).

We consider here two tests, relating to the Franke (Test 1) and Nielson (Test 2)
reference functions reported in Figure 1. Each displayed approximation is depicted
together with the related data sample. For both considered tests a uniform 101 × 101
grid is used for the visualization and for the computation of the maximum (maxg) and

root mean square (rmsg) errors. In all experiments below nmax = 2
( d + 2

2

)
− 1

and no upper bound for NT is assigned, that is Mmax = N . The lower bound Mmin is
always 20 and the scaling parameter δ in (7) is 0.4. The tolerance κH in (5) is taken to
be equal to 105.
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Figure 1: Franke and Nielson parent surfaces on the left and on the right, respectively.
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Figure 2: On the left the locations of the 100 data points for Test 1. On the rigth the
related approximation.

In our first test, related to the Franke function, a small set of N = 100 data points
is used. It is available from [10] as ds3 and is shown on the left of Figure 2. The
approximation depicted on the right of Figure 2 has been obtained using a uniform
grid of size nx = ny = 5. The average number of knots used for the local hybrid
approximations is 23.9. The related grid errors are maxg = 1.5 · 10−2 and rmsg =
2.7 · 10−3. For comparison, using the same grid size the errors obtained with the
original method and reported in [6] are maxg = 3.8 · 10−2 and rmsg = 7.6 · 10−3 (see
Table 3 of that paper). In addition, we found in the literature the following errors for
the interpolation of this data with the global multiquadric method: maxg = 2.3 · 10−2

and rmsg = 3.6 · 10−3 in the famous Franke’s report [9], and rmsg = 2.6 · 10−3 in
[3]. (In both cases a uniform 33×33 grid was used to compute the error.) Note that the
above error from [3] corresponds to the case when a parameter value for multiquadric
was found by optimization.

Our second test relates to the Nielson function. First we have considered a small
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Figure 3: On the left the locations of the 200 data points for Test 2. On the rigth the
related approximation.
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Figure 4: On the left the locations of the 1500 data points for Test 2. On the rigth the
related approximation.
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set of 200 data points obtained evaluating this function on the locations corresponding
to the data points available from [10] as ds4. These locations are shown on the left
of Figure 3. Again a uniform grid of size nx = ny = 5 is used. In this case the
approximation shown on the right of Figure 3 is obtained using an average knot number
equal to 22 and the related grid errors are maxg = 6.9 · 10−2 and rmsg = 1.4 · 10−2.
For comparison, we mention that the same data set is used in [11] to test a least squares
approximation method based on multiquadrics and parameter domain distortion. The
best root mean square error (computed using a uniform 33×33 grid) reported in [11] is
1.3 ·10−2 (see Table 1 and Figure 6 of that paper). Even if Figure 3 clearly shows some
artifacts, we evaluate positively the results related to this first experiment for Test 2. In
fact the accuracy and the shape recovery capability of our scheme are both comparable
with those obtained in the best case reported in [11]. We would like also to say on
this concern that, even if the results given in [11] have been obtained with remarkably
few degrees of freedom, it should be taken into account that the parametric domain
distortion method may encounter difficulties when applied to real data, as the authors
admit [11, Section 4]. Finally, we get full shape recovery also for this challenging
test function when we consider a denser set of 1500 scattered data depicted on the left
of Figure 4 and use a finer spline grid by taking nx = ny = 8. The shape of the
corresponding approximation depicted on the right of Figure 4 is almost perfect now
and the related grid errors are maxg = 3.8 · 10−2 and rmsg = 1.3 · 10−3. The mean
number of knots used in this case is 22.4.
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