
Rend. Sem. Mat. Univ. Pol. Torino
Vol. 60, 2 (2002)

E. Bonetti

SOME RESULTS ON THE WELL-POSEDNESS OF AN

INTEGRO-DIFFERENTIAL FR ÉMOND MODEL FOR SHAPE

MEMORY ALLOYS

Abstract. This note deals with the nonlinear three-dimensional Frémond
model for shape memory alloys in the case when the heat flux lawcon-
tains a thermal memory term. The abstract formulation of theinitial and
boundary value problem for the resulting system of PDE’s is considered.
Existence and uniqueness of the solutions can be proved by exploiting a
time discretization semi-implicit scheme, combined with an a priori esti-
mate - passage to the limit procedure, as well as by performing suitable
contracting estimates on the solutions.

1. Introduction

This note is concerned with a mathematical model describingthe thermo-mechanical
evolution of a class of shape memory alloys (metallic alloyscharacterized by the pos-
sibility of recovering, after deformations, their original shape just by thermal means),
in the case one takes into account some memory term in the heatflux law. We consider
a three-dimensional initial-boundary value problem related to the thermo-mechanical
model introduced by Frémond to describe the martensite-austenite phase transition in
shape memory alloys (cf. [12, 13, 14, 15]). The difference between the problem we are
investigating and the classical Frémond model is given by the fact that we do not refer
to the standard Fourier law for the heat flux and, consequently, we deal with a different
equation describing the energy balance.

The shape memory effect can be ascribed to a phase transitionbetween two differ-
ent configurations of the metallic lattice (martensite and austenite) and it results from
the occurrence of an hysteretic behavior, shown as to a strong dependence of the load-
deformation diagrams on temperature. The model proposed byFrémond describes the
phenomenon from a macroscopic point of view and it can be applied to any dimension
of space. Concerning the two phases, we recall that only two variants of martensite
and one variant of austenite are considered and it is supposed they may coexist at each
point. Hence, on account of the expression of the free-energy and by applying the
conservation laws for energy and momentum (in the quasi-stationary case), one can
deduce the constitutive equations of the model in accordance with the second principle
of thermodynamics (cf. e.g. [4, 14]).
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The unknowns of the resulting PDE’s system are the absolute temperatureθ , the
vector of displacementsu, and two phase variables(χ1, χ2) that are linearly related
to the volume fractions of martensite and austenite. Indeed, as it is assumed that no
void nor overlapping can occur between the phases, denotingby (β1, β2) the volume
fractions of martensitic variants and byβ3 the volumic fraction of austenite, it turns out
physically consistent to require that

(1) 0 ≤ βi ≤ 1, i = 1, 2, 3 and
3∑

i=1

βi = 1.

Thus, we can fix as state variables (note thatβ3 = 1 − β1 − β2)

(2) χ1 := β1 + β2 and χ2 = β2 − β1.

We refer to [4] and references therein for a detailed argumentation on the mathemat-
ical derivation of the model as well as for a discussion on themechanical aspects.
Moreover, in [14, 15] it is shown that the model by Frémond predicts a behavior of
the solutions which is in accordance with experimental results. Hence, we introduce a
positive, bounded, and Lipschitz continuous functionα, which vanishes over a critical
temperatureθc (the Curie temperature) withθc > θ∗, θ∗ denoting the equilibrium tem-
perature. Thus, by referring to a sample of shape memory isotropic material, located in
a bounded smooth domain� ⊂ R

3, and after fixing a final timeT , the system of PDE’s
describing the thermo-mechanical evolution, inQ := � × (0, T), reads as follows

(c0 − θα′′(θ)χ2 div u)∂tθ + div q = f + L∂tχ1

+(θα′(θ) − α(θ)) div u∂tχ2 + θα′(θ)χ2∂t (div u),(3)

div(−ν1(div u)1 + λ div u1 + 2µε(u) + α(θ)χ21) + s = 0,(4)

ζ ∂t

(
χ1
χ2

)
+

(
l (θ − θ∗)

α(θ) div u

)
+ ∂ IK(χ1, χ2) 3

(
0
0

)
,(5)

where1 denotes the identity matrix,ε(u) the linearized strain tensor,q the heat flux,
f stands for an external heat source,s for the vector of the volume forces, and∂ IK is
the subdifferential of the indicator functionIK of a suitable convex subsetK of R

2 (a
triangle with one of the vertices at the origin) and it accounts for the constraint on the
phases (1) to attain only physically meaningful values. We just point out thatc0, µ, ν,
λ, L, l , andζ are strictly positive constants (see e.g. [14] for the mechanical meanings
of the above constants). By virtue of (1) and (2),K can be taken i.e. as follows

(6) K := {(γ1, γ2) ∈ R
2 : 0 ≤ |γ2| ≤ γ1 ≤ 1}.

For the reader’s convenience, we also recall thatIK(y) = 0 if y ∈ K and IK(y) =

+∞ otherwise. Moreover, sinceK is a closed convex set,∂ IK turns out a maximal
monotone graph such that (cf. [5])

(y1, y2) ∈ ∂ IK(χ1, χ2) if and only if (χ1, χ2) ∈ K
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(7) and
2∑

i=1

yi (xi − χi ) ≤ 0, ∀(x1, x2) ∈ K.

In particular, we stress that if(χ1, χ2) 6∈ K then ∂ IK(χ1, χ2) is the empty set, if
(χ1, χ2) belongs to the interior ofK then∂ IK(χ1, χ2) = (0, 0), and if (χ1, χ2) lies
on the boundary ofK then∂ IK(χ1, χ2) coincides with the cone of normal vectors toK
at point(χ1, χ2). We should also remark that, under the small perturbations assump-
tion, equations (3) and (4) correspond to the balance laws for energy and momentum
(in the quasi-stationary case), respectively, while the evolution of the phases(χ1, χ2)

is governed by the inclusion (5) that could be rewritten as a pointwise variational in-
equality (cf. (7)). Finally, the system (3)-(5) has to be supplied by suitable initial and
boundary conditions. In particular, we prescribe (natural) Cauchy conditions forθ and
(χ1, χ2)

(8) θ(0) = θ0, χ1(0) = χ0
1 , χ2(0) = χ0

2 ,

and appropriate boundary conditions onθ andu. We consider the boundary0 of �

be partied in00 and01 and we require that they are (measurable) sets with positive
surface measures. Indicating byn the outer unit normal vector to the boundary0, we
state

q · n = −h on0 × (0, T),(9)

u = 0 on 00 × (0, T),(10)

((−ν1(div u) + λ div u + α(θ)χ2)1 + 2µε(u)) · n = g on01 × (0, T),(11)

∂n(div u) = 0 on0 × (0, T).(12)

The above conditions mean that the heat fluxh through the boundary (cf. (9)) and an
external tractiong (cf. (11)) are known, while neither displacements on00 (cf. (10))
nor double forces on0 (cf. (12)) occur.

As we have already stressed, the standard Frémond model is given by equations
(3)–(5) in which the heat fluxq is assumed to fulfil the classical Fourier heat flux law,
namely

(13) q(x, t) = −k0∇θ(x, t), (x, t) ∈ Q,

with k0 > 0. Here, we would like to discuss other possible different choices for the
form of the heat fluxq to combine with the energy balance (3). Indeed, our work is
related to the problem of representing heat transported by conduction in which the heat
pulses are transmitted by waves at a finite but possibly high speeds (cf. [18, 19] for a
complete and detailed physical presentation of this subject). In the linearized theory,
the heat flux is determined by an integral over the history of the temperature gradient
weighted against a relaxation functioñk calledheat flux kernel. More precisely, the
heat fluxq is assumed to be governed by the following relation

(14) q(x, t) = −

∫ t

−∞
k̃(t − s)∇θ(x, s) ds.
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Let us point out that, in general, the thermal history of the material is assumed to be
known up to the timet = 0, i.e. the term

∫ 0
−∞ k̃(t − s)∇θ(x, s) ds is considered as a

datum. Thus, in the sequel, we will denote byf (cf. (3)) a heat source term, accounting
both for external thermal actions and for the past history ofthe temperature gradient.
Many different constitutive models arise from different choices of the kernel̃k in (14).
Note that if one considers̃k(s) = k0δ(s) (δ being the Dirac mass) one can recover
the classical Fourier law (13). The Frémond model coupled with the Fourier law has
been deeply investigated and existence as well as uniqueness of the solutions have been
proved (cf., among the others, [6, 8, 9, 10, 11]). A differentapproach consists in taking
into account a Jeffrey type kernel (formally derived from elasticity theory) that reads
(cf. [18])

(15) k̃(s) = k0δ(s) +
k1

τ
exp(−s/τ),

in which an effective Fourier conductivityk0 is explicitly acknowledged andk1 is a
positive constant. In particular, note that ifk0 = 0 then (15) reduces to the known
Cattaneo-Maxwell heat flux law (cf. [7] and a mathematical discussion in [3]). Thus,
in general, in (14) one could takẽk as follows

(16) k̃(s) = k0δ(s) + k(s),

wherek0 ≥ 0 andk, in general, denotes a positive type (cf. [16]) and sufficiently
smooth function. Observe that, in the case whenk0 is strictly positive andk is not
identically zero, (16) is known as the Coleman-Gurtin heat flux law. In [2] we have
investigated the thermo-mechanical Frémond model for shape memory alloys in the
framework of Gurtin and Pipkin’s theory (cf. [17]), which ischaracterized by the fact
that no Dirac mass is considered in the kernelk̃ (k0 = 0 in (16)). In particular, by use
of a fixed point argument and contracting estimates on the solutions, we have proved
well-posedness of the initial and boundary value problem related to a slightly modi-
fied version of the PDE’s system (3)-(5) , which is obtained bytaking the equilibrium
equation (4) , by linearizing the energy balance (3) (cf. [9]for a similar approximation)

(17) c0∂tθ − k ∗ 1θ = f + L∂tχ1,

∗ denoting the usual convolution product over(0, t), and by adding a diffusive term in
the variational inclusion describing the phases dynamics (cf. (5))

(18) ζ ∂t

(
χ1
χ2

)
− η

(
1χ1
1χ2

)
+

(
l (θ − θ∗)

α(θ) div u

)
+ ∂ IK(χ1, χ2) 3

(
0
0

)
,

η being a strictly positive parameter. The reader can easily observe that (17) is obtained
by neglecting the nonlinear terms in (3)and substitutingq by (14) and (16) withk0 = 0.
In addition, we stress that, as it is assumedk(0) > 0, (17) turns out to be of hyperbolic
type. On a second step, in [3] we have discussed the model in which the Cattaneo-
Maxwell heat flux law is assumed, which corresponds to specify k(s) = k1

τ
exp(−s/τ)

in (17). By letting diffusive dynamics for the phases (18), the resulting model turns
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out to be a singular perturbation of the standard Frémond’sone, in which the heat flux
is governed by the Fourier law and no diffusion for the phasesis considered. Indeed,
by performing a rigorous asymptotic analysis as the relaxation parameterτ and the
diffusion parameterη tend to zero, we have proved that the resulting model converges
to the classical Frémond model. This way of proceeding can be formally justified
after observing that the Cattaneo-Maxwell relaxation kernel k(s) = k1

τ
exp(−s/τ) ap-

proximates, in some suitable sense, the measurek1δ(s). Moreover, meaningful error
estimates are established under some compatibility assumptions on the rates of conver-
gence of the two parametersτ andη. Nonetheless, the presence of thermal memory
forces us to deal with some mathematical difficulties strictly connected with this as-
sumption and an existence result for the complete problem (cf. (3)-(5)) seems very
hard to be proved. For this reason, in order to include thermal memory effects in the
complete energy balance, we restrict ourselves to the case of the Coleman-Gurtin heat
flux law, namely we consider the heat flux kernelk as in (16), but we assume that
k0 > 0. Thus, the resulting energy balance retains its parabolicbehavior even if it ac-
counts for thermal memory. As a consequence, we do not need tomollify the dynamics
of the phases by introducing a diffusive term (cf. (5)and (18)). In this note an existence
result is established for an abstract version of the resulting initial and boundary value
problem by use of a semi-implicit time discretization scheme combined with an a pri-
ori estimate-passage to the limit procedure. In particular, let us stress the presence of
a convolution product in the energy balance, following from(14) and (16), as one can
easily check by specifying the term(div q in (3), as follows

(19) divq(x, t) = −k01θ(x, t) − k ∗ 1θ(x, t) −

∫ 0

−∞

k(t − s)1θ(x, s) ds,

for (x, t) ∈ Q; we recall that the term−
∫ 0
−∞ k(t −s)1θ(x, s) dshas to be included in

the energy balance as a datum in a given heat sourcef . Concerning the discretization
procedure we have to point out that we treat convolution as anexplicit term (cf. [1]).
Finally, an uniqueness result is proved by use of suitable contracting estimates on the
solutions of the problem, exploiting a similar argument as that introduced by Chemetov
in [6].

2. Main results

We can now specify the abstract version of the problem we are dealing with and state
the related main existence and uniqueness result. To this purpose, letV ↪→ H ↪→ V ′

be an Hilbert triplet, with

H := L2(�), V := H 1(�),

and identify, as usual,H with its dual spaceH ′. Moreover, to write the variational
formulation of (4), we introduce an appropriate Hilbert spaceW specified by

W := {v ∈ (H 1(�))3 : v|00
= 0, div v ∈ H 1(�)},
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endowed with the norm (cf. [8])

‖v‖W :=

(
ν

∫

�

|∇(div v)|2 +

3∑

i=1

∫

�

|∇vi |
2

)1/2

, v = (v1, v2, v3) ∈ W.

Hence, we define a bilinear symmetric continuous form inW × W as follows: forv
andw in W, we set

a(v, w) :=
∫

�


ν∇(div v) · ∇(div w) + λ div v div w + 2µ

3∑

i, j =1

εi j (v)εi j (w)




with εi j (v) = 1
2(∂xi v j + ∂x j vi ). Let us note that, thanks to the Korn’s inequality,a

turns out to beW-coercive, namely there exists a positive constantC such that

a(v, v) ≥ C ‖v‖2
W , ∀ v ∈ W.

We also outline that we could takeK (cf. (6)) as any bounded, closed, and convex
subset ofR2 and then introduce the corresponding closed and convex subset of H 2

K := {(γ1, γ2) ∈ H 2 : (γ1, γ2) ∈ K a.e. in�}.

Note that, by construction, there exists a positive constant cK (depending onK) such
that if (γ1, γ2) ∈ K there holds

(20) (|γ1(x)|2 + |γ2(x)|2)1/2 ≤ cK , for a.e.x ∈ �.

In the following, we will denote by∂ IK the subdifferential of the indicator function
of the convexK , which turns out to be a maximal monotone operator inH , naturally
induced by∂ IK (cf. [5]). Hence, in order to write the abstract equivalent version of the
problem given by (3)-(5) and (8)-(12), we introduce the following operators (cf. [2])

A : V → V ′, V ′〈Av1, v2〉V =

∫

�

∇v1 · ∇v2, v1, v2 ∈ V,

H : W → W′, W′〈Hv1, v2〉W = a(v1, v2), v1, v2 ∈ W,

B : H → W′, W′〈Bv, v〉W =

∫

�

v div v, v ∈ H, v ∈ W.

Finally, concerning the data of the problem, we prescribe that

f ∈ L2(0, T; L2(�)),

h ∈ H 1(0, T; L2(0)),

g ∈ H 1(0, T; L2(01)
3),

s ∈ H 1(0, T; L2(�)3),

20 ∈ H 1(�),(21)

(χ0
1 , χ0

2) ∈ K ,(22)
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so that, in the abstract formulation, we can introduce the corresponding functions

F ∈ L2(0, T; H ), V ′〈F, v〉V =

∫

�

f v, v ∈ V(23)

H ∈ H 1(0, T; V ′), V ′〈H, v〉V =

∫

0

hv|0 , v ∈ V,(24)

G ∈ H 1(0, T; W′), W′〈G, v〉W =

∫

01

g · v|01
, v ∈ W,(25)

S ∈ H 1(0, T; H 3), W′〈S, v〉W =

∫

�

s · v, v ∈ W.(26)

Moreover, we have to precise the assumptions on the kernelk in (19) and the function
α. Precisely, we require that

(27) k ∈ W1,1(0, T),

andα fulfils

(28) α ∈ C2(R) and cα :=
∥∥α′′

∥∥
L∞(R)

is sufficiently small.

Hence, as at high temperatures shape memory alloys present mostly an elastic behavior,
α(θ) = 0 for θ ≥ θc and in addition we assume

(29) {γ ∈ R : α′(γ ) 6= 0} ⊂ [0, θc].

Note that, as a consequence, the functions of the variableθ in the nonlinear terms of
(3) turn out continuous and uniformly bounded. Indeed, we observe that (28) and (29)
imply

(30) |α′(γ )| ≤ θccα, |γα′(γ )| ≤ θ2
c cα, ∀γ ∈ R.

REMARK 1. As to concerns the constantcα and the second of (28), it turns out nec-
essary to assume some compatibility conditions (satisfied by physically realistic data)
between the quantities involved in the model and the heat capacity of the system. In-
deed, the coefficient of the temperature time derivative in the energy balance represents
the specific heat of the solid-solid phase transition and it seems physically consistent
to require it is positive everywhere. To this aim, later we will specify (28) by letting a
suitable bound forcα .

Now, we are in the position of stating the existence and uniqueness result referring
to (3)-(5) and (8)-(12) combined with (19).

THEOREM 1. Assume that (21)-(22), (23)-(26) and (27)-(29) hold. Then,there
exists a unique quadruplet(θ, χ1, χ2, u), with

θ ∈ H 1(0, T; H ) ∩ L∞(0, T; V),(31)

χ j ∈ W1,∞(0, T; H ) ∩ L∞(Q), j = 1, 2(32)

u ∈ H 1(0, T; W), div u ∈ L∞(Q),(33)
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fulfilling

θ(0) = 20,(34)

(χ1(0), χ2(0)) = (χ0
1 , χ0

2),(35)

and satisfying, almost everywhere in(0, T),

(c0 − θα′′(θ)χ2 div u)∂tθ + k0Aθ + k ∗ Aθ = F + H + L∂tχ1

+(θα′(θ) − α(θ)) div u∂tχ2 + θα′(θ)χ2∂t (div u) in V ′(36)

ζ ∂t

(
χ1
χ2

)
+ ∂ IK (χ1, χ2) 3

(
−l (θ − θ∗)

−α(θ) div u

)
in H 2(37)

Hu + B(α(θ)χ2) = S+ G in W′.(38)

In particular, the boundedness result in (33) for divu follows from the next lemma,
which can be proved by use of the Lax-Milgram theorem and exploiting standard esti-
mates and regularity results on elliptic equations (cf. [9]).

LEMMA 1. Let θ , χ2 belong to L2(Q) such that|χ2| ≤ cK a.e. in Q. Then, under
assumptions (25), (26), (28), and (29), there exists a unique solutionu ∈ L∞(0, T; W)

solving the resulting equation (38). Moreover, the following bound holds

(39) ‖div u‖L∞(Q) ≤ c1,

for a constant c1 depending only on�, C,‖α‖L∞(R) and the convexK.

In particular, the previous lemma allows us to specify hypothesis (28) (cf. Remark
1). Indeed, in order to get positivity of the coefficient of the temperature time derivative
in the energy balance (36), by virtue of (20), (28), (29), and(39), it is now clear that it
is sufficient to ask for a constantcα sufficiently small in the sense that there holds (cf.
[14, 15])

(40) (c0 − θα′′(θ)χ2 div u) ≥ c2 := c0 − θccαcK c1 > 0.

Let us in addition note that the specific heat turns out bounded

|c0 − θα′′(θ)χ2 div u| ≤ c0 + θccαcK c1.

Finally, we have also to introduce a technical assumption, we need to exploit basic a
priori estimates on the solutions of the problem (see, i.e.,[8] for similar proceeding).
Thus, we require that there holds

(41) (θc(θc + 1)cαcK )2 ≤ c2(λ + 2µ/3).

Let us note that both (40) and (41) are in accordance with experiments (see [20]).
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3. Proof of Theorem 1

Existence result stated by the Theorem 1 can be proved by applying a semi-implicit
time discretization scheme combined with an a priori estimate - passage to the limit
procedure. For the sake of synthesis we only outline the proof but omit the details for
which we refer to [4]. We first introduce the time step of our backward finite differences
schemeτ := T/N, N being a fixed positive integer. Hence, the time discrete scheme
for the problem (31)-(38) relies on the approximation of (36)-(38) by

(c0 − 2i−1α′′(2i−1)Xi−1
2 div Ui−1)

2i − 2i−1

τ
+ k0A2i + (k ∗ Iτ Aθτ )

i

= L
Xi

1 − Xi−1
1

τ
+ (2i−1α′(2i−1) − α(2i−1)) div Ui−1 Xi

2 − Xi−1
2

τ

+2i−1α′(2i−1)Xi−1
2

div Ui − div Ui−1

τ
+ F i + H i in V ′(42)

ζ




Xi
1−Xi−1

1
τ

Xi
2−Xi−1

2
τ


+ ∂ IK (Xi

1, Xi
2) 3

(
−l (2i − θ∗)

−α(2i ) div Ui−1

)
in H 2(43)

HU i + B(α(2i )Xi
2) = Gi + Si in W′,(44)

whereIτ in (42) denotes the one step backward translation operator (i.e.Iτ a(t) =

a(t − τ )) andθτ the piecewise constant function related to the vector of solutions2i

by

(45) θτ (t) = 2i , if t ∈ ((i − 1)τ, i τ ],

for i = 1, ..., N. Note that the term(k ∗ Iτ Aθτ )
i turns out to be explicit in the scheme

(see [1]). Finally,F i , H i , Gi , andSi stand for suitable time independent functions
discretizing the dataF , H , G, andS (i.e. F i = τ−1

∫ iτ
(i−1)τ

F(s) ds). Thus, if we let

20 = θ0, Xi0 = χ0
i for i = 1, 2, andU0 the corresponding unique solution of (44)

written for i = 0 (cf. Lemma 1), by use of a fixed point theorem we are able to prove
existence of a discrete solution for (42)-(44) for anyi ≥ 1, at least forτ sufficiently
small. Henceforth, we perform suitable estimates on the discrete solutions independent
of the parameterτ , in order to pass to the limit asτ ↘ 0 by use of weak and weak
star compactness arguments or by direct Cauchy proof. To this aim, let us introduce the
following notation: given aN+1-vector of time independent functions(a0, ..., aN) we
term byaτ the related piecewise constant functionaτ (cf. (45)) and bỹaτ the piecewise
linear in time interpolation function, namely

(46) ãτ (t) = ai +
ai − ai−1

τ
(t − i τ ), t ∈ [(i − 1)τ, τ ].
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Thus, if we use the above notation, it is straightforward to rewrite the discrete system
(42)-(44), as follows

(c0 − Iτ (θτα
′′(θτ )χ2τdivuτ ))∂t θ̃τ + k0Aθτ + (k ∗ Iτ (Aθτ ))τ =

Hτ + Fτ + L∂t χ̃1τ + Iτ ((θτα
′(θτ ) − α(θτ ))divuτ )∂t χ̃2τ

+Iτ (θτα
′(θτ )χ2τ )∂tdiṽuτ(47)

ζ

(
∂t χ̃1τ

∂t χ̃2τ

)
+ ∂ IK (χ1τ , χ2τ ) 3

(
−l (θτ − θ∗)

−α(θτ )Iτ divuτ

)
(48)

Huτ + B(α(θτ )χ2τ ) = Gτ + Sτ(49)

with

(50) θ̃τ (0) = θ0, χ̃iτ (0) = χ0
i i = 1, 2.

Hence, by exploiting suitable a priori estimates on the system (42)-(44), we can prove
that there existsσ > 0 such that forτ ≤ σ the following bounds hold independently
of τ

∥∥θ̃τ

∥∥
H1(0,T;H)∩L∞(0,T;V)

+ ‖θτ‖L∞(0,T;V) ≤ c(51)

2∑

i=1

‖χ̃iτ ‖H1(0,T;H)∩L∞(Q) + ‖χ̃iτ ‖L∞(Q) ≤ c(52)

‖̃uτ‖H1(0,T;W) + ‖uτ‖L∞(0,T;W) + ‖div uτ ‖L∞(Q) ≤ c.(53)

The reader can refer to [8] and [10] for a detailed presentation of an estimating pro-
cedure as that we have used to prove (51)-(53) and to [1] for a possible argument to
handle the convolution product(k ∗ Iτ (Aθτ ))τ . Thus, by use of compactness argu-
ments from (51)-(53), and (45), (46), we can deduce up to subsequences the following
convergence results, asτ ↘ 0

θ̃τ

∗
⇀θ in H 1(0, T; H ) ∩ L∞(0, T; V),

θ̃τ → θ in C0([0, T ]; H )(54)

θτ

∗
⇀θ in L∞(0, T; V), θτ → θ in L∞(0, T; H )(55)

χ̃ j τ
∗
⇀χ j in H 1(0, T; H ) ∩ L∞(Q), χ j τ

∗
⇀χ j in L∞(Q), j = 1, 2(56)

ũτ ⇀ u in H 1(0, T; W), uτ

∗
⇀u in L∞(0, T; W),

div uτ

∗
⇀ div u in L∞(Q).(57)

In addition, by direct Cauchy arguments, we are able to inferthat

(58) χ̃ j τ → χ j in C0([0, T ]; H ), χ j τ → χ j in L∞(0, T; H ).

Thus, by (54)-(58), and thanks to the Lebesgue dominated convergence theorem, we
are allowed to pass to the limit in (47)-(49) and get existence of a solution for the limit
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system of PDE’s (36)-(38). In particular, let us stress thatby the above argumentation
(cf. (54), (58)) the Cauchy conditions (34) and (35) are eventually satisfied by virtue of
(50). Henceforth, the regularity result (32) (cf. (56)) canbe proved thanks to the mono-
tonicity of ∂ IK and the regularity results (31) and (33). Finally, concerning uniqueness,
we base our proof on a contradiction argument which is similar as that introduced in
[6]. Now, we outline the proof and stress some mathematical devices we have used to
exploit the contracting estimates and get uniqueness. We first consider two solutions
S1 = (θ1, χ11, χ21, u1) andS2 = (θ2, χ12, χ22, u2), write the corresponding equations
(37) and (38), take the difference and test by(χ11 − χ11, χ21 − χ22) andu1 − u2,
respectively. After integrating in time, we perform standard estimates as that detailed
i.e. in [6, 9]. Hence, to deal with the energy balance, we haveto rewrite (36) in a more
convenient form

∂t (c0θ − Lχ1 + (α(θ) − θα′(θ))χ2 div u) + k0Aθ + k ∗ Aθ

= F + H + α(θ)χ2∂t (div u).(59)

Thus, we write (59) forS1 andS2, integrate in time, take the difference, and test it by
θ1 − θ2. After integrating once more over(0, t), and by use of some integration by
parts, due to (40) we get

c2‖θ1 − θ2‖
2
L2(0,t;H)

+
k0

2
‖1 ∗ ∇(θ1 − θ2)(t)‖

2
H

≤

∫ t

0

∫

�

(
L(χ11 − χ12) − (α(θ2) − θ2α

′(θ2)) div u1(χ21 − χ22)

−(α(θ2) − θ2α
′(θ2))χ22(div u1 − div u2)

)
(θ1 − θ2)

+

∫ t

0

∫

�

(1 ∗ (α(θ1)χ21 − α(θ2)χ22)∂t div u1

+1 ∗ α(θ2)χ22∂t (div u1 − div u2))(θ1 − θ2)

−

∫ t

0

∫

�

(1 ∗ (k ∗ ∇(θ1 − θ2))) · ∇(θ1 − θ2).(60)

We note that

−(α(θ2) − θ2α
′(θ2))χ22(div u1 − div u2) + 1 ∗ α(θ2)χ22∂t (div u1 − div u2)

= θ2α
′(θ2)χ22(div u1 − div u2) − 1 ∗ ∂t (α(θ2)χ22)(div u1 − div u2),(61)

and
∫ t

0

∫

�

1 ∗ (k ∗ ∇(θ1 − θ2)) · ∇(θ1 − θ2)

=

∫

�

(1 ∗ (k ∗ ∇(θ1 − θ2)))(t) · (1 ∗ ∇(θ1 − θ2))(t)(62)

−

∫ t

0

∫

�

(k ∗ ∇(θ1 − θ2)) · (1 ∗ ∇(θ1 − θ2)).
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Thus, thanks to the regularity of the solutions (cf. (31)-(33)), and (61)-(62), by use of
the Hölder’s inequality, well-known properties on convolution product, and exploiting
in particular (30) and (41), we finally can prove that there exists t̂ ∈ [0, T ] such that
the following inequality holds at least fort ∈ (0, t̂)

‖θ1 − θ2‖
2
L2(0,t;H)

+ ‖1 ∗ ∇(θ1 − θ2)(t)‖
2
H +

2∑

i=1

‖(χi1 − χi2)(t)‖
2
L2(0,t;H)

+ ‖u1 − u2‖
2
L2(0,t;W)

+ ‖div u1 − div u2‖
2
L2(0,t;V)

≤ c


1 + ‖1 ∗ ∇(θ1 − θ2)‖

2
L2(0,t;H)

+

2∑

j =1

∥∥χ j 1 − χ j 2
∥∥2

L2(0,t;H)


 .

Hence, it is straightforward to apply the Gronwall lemma to deduce

θ1 = θ2, χ11 = χ12, χ21 = χ22, u1 = u2,

a.e. in� × (0, t̂). Hence, since we can iterate our argument on the interval(t̂, 2t̂) and
so on, we get uniqueness on the whole interval(0, T), which concludes the proof of
the Theorem 1.
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[5] BRÉZIS H., Opérateurs maximaux monotones et semi-groupes de contractions
dans les espace de Hilbert, North-Holland Math. Studies5, North-Holland, Am-
sterdam 1973.

[6] CHEMETOV N., Uniqueness results for the full Frémond model of shape memory
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