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CHARACTERIZATION, SPECTRAL INVARIANCE AND THE

FREDHOLM PROPERTY OF MULTI-QUASI-ELLIPTIC

OPERATORS

Abstract. The class L0
ρ,P

(Rn) of pseudodifferential operators of zero
order, modelled on a multi-quasi-elliptic weight, is shownto be a
9∗−algebra in the algebraB(L2(Rn)) of all bounded operators on
L2(Rn). Moreover, the Fredholm property is proven to characterizethe
elliptic elements in this algebra. This is achieved througha characteri-
zation of these operators in terms of the mapping propertiesbetween the
Sobolev spacesH s

P
(Rn) of their iterated commutators with multiplication

operators and vector fields. We also prove and make use of the fact that
order reduction holds in the scale of theH s

P
(Rn)-Sobolev spaces, that is

everyH s
P

(Rn) is homeomorphic toL2(Rn) through a suitable multi-quasi-
elliptic operator of orders.

1. Introduction. Statement of the results.

Multi-quasi-elliptic polynomials were introduced in the seventies as a natural general-
ization of elliptic and quasi-elliptic polynomials. They are an important subclass of the
hypoelliptic polynomials of Hörmander [15] and were studied by many authors, among
them Friberg [9], Cattabriga [8], Zanghirati [24], Pini [17] and Volevic-Gindikin [23].

In [5] this theory is used to develop a pseudodifferential calculus for a class of
operators on weighted Sobolev spaces inR

2n based on the concept of a “Newton poly-
hedron”.

DEFINITION 1. A complete Newton polyhedronP is a polyhedron of dimension
d in R

d
+ = {r ∈ R

d : r j ≥ 0, j = 1, . . . , d} with integer vertices and the following
properties:

(i) If v(k), k = 1, . . . , N are the vertices ofP , then{r ∈ R
d
+ : r j ≤ v

(k)
j , j =

1, . . . , d} ⊆ P .

(ii) There are finitely many elements a(l), l = 1, . . . , M, with a(l)
j > 0 for j =

1, . . . , d, such that

P = {r ∈ R
d
+ : 〈a(l), r 〉 ≤ 1, l = 1, . . . , M}.
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In other words,P may contain only points with non-negative coordinates and must
have one face on each coordinate hyperplane, while the otherfaces must have nor-
mal vectors with all components strictly positive; in particular these faces must not be
parallel to the coordinate hyperplanes.

Given a polynomialp =
∑

cγ zγ in d complex variables, we associate with it the
polyhedronP consisting of the convex hull of allγ ∈ N

d
0 with cγ 6= 0. It is called

multi-quasi-ellipticif the associated polyhedron is a complete Newton polyhedron and
there exist constantsC, R, such that:

∑

γ∈P

|zγ | ≤ C|p(z)| for |z| ≥ R.

Here and in the following the notation
∑

γ∈P indicates that we sum over all multi-
indicesγ ∈ N

n
0 ∩ P , so that the sum is clearly finite.

The corresponding operatorsP(Dz) =
∑

γ∈P cγ Dγ
z are also said to be multi-quasi-

elliptic.

We now consider the case of even dimensiond = 2n, n ≥ 1, and splitz ∈ R
2n into

z = (x, ξ), wherex ∈ R
n, ξ ∈ R

n. Giving toξ the role of a covariable, we recover the
case of operators with polynomial cefficients:

p(x, D) =
∑

(α,β)∈P

xα Dβ
x .

Easy but significant examples are the operators onR of the form:

P = x2h1 + x2h0 D2k0 + D2k1 .

If h0, h1, k0, k1 ∈ N satisfy the conditions:

0 < h0 < h1, 0 < k0 < k1,
h0

h1
+

k0

k1
> 1,

then to P is associated the complete polyhedronP with vertices{(0, 0), (2h1, 0),

(2h0, 2k0), (0, k1)}, andP is multi-quasi-elliptic with respect toP .

The symbolsσ(P) = x2h1 + x2h0ξ2k0 + ξ2k1 associated with these operators were
originally considered by Gorcakov [10] and Pini [17] and later studied by Friberg in
connection with differential operators with constants coefficients.

As an example of multi-quasi-elliptic operators in dimension n let us consider the
operators of the form

1k
x +

∑

|α+β|<k

x2αD2β
x + |x|2k.

They are multi-quasi-elliptic. The associated polyhedronis P = {z ∈ R
n
+ × R

n
+ :∑2n

j =1 z j ≤ 2k}. Unlike the class of quasi-elliptic operators, the space of multi-quasi-
elliptic operators is closed under composition: IfA1 and A2 are multi-quasi-elliptic
with respect towP1 andwP2, then the operatorA1 ◦ A2 is multi-quasi-elliptic with re-
spect towP1+P2 (whereP1+P2 = {z ∈ R

2n : z = z1+z2 for somez1 ∈ P1; z2 ∈ P2}).
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In particular, any product of quasi-elliptic operators is multi-quasi-elliptic although it
is, in general, no more quasi-elliptic. On the other hand there are multi-quasi-elliptic
operators that are not product of quasi-elliptic operators(see Friberg [9]).

More generally, for a fixed complete polyhedronP , one can introduce pseudodif-
ferential operators in classes suitably modelled on the polyhedronP . Before stating
our results we summarize here some facts about this theory following [5], [3].

DEFINITION 2. Let wP (z) = (
∑

γ∈P z2γ )1/2, z = (x, ξ) ∈ R
2n, be the standard

weight function associated toP . For m ∈ R, ρ ∈]0, 1], we define the symbol classes:

3m
ρ,P (R2n) = {a ∈ C∞(R2n) : |∂

γ
z a(z)| ≤ Cγ w

m−ρ|γ |
P

(z)}.

The choice of the best constants defines a Fréchet topology for3m
ρ,P

(R2n).

For technical reasons we will also assume thatρ does not exceed a certain value
1/µ < 1, whereµ is the “formal order” ofp(z), depending on the polyhedronP .
This is of no importance for our purposes, see [3] for more details. The corresponding
classes of operators are:

Lm
ρ,P

= {A = Op(a) : a ∈ 3m
ρ,P

(R2n)}.

Here [Op(a)u](x) = (2π)−n
∫
Rn eixξ a(x, ξ)û(ξ)dξ , while û(ξ) =

∫
e−ixξ u(x)dx for

u ∈ S(Rn), the Schwartz space of all rapidly decreasing functions.

DEFINITION 3. E3m
ρ,P

is the space of all a∈ 3m
ρ,P

(R2n) such that, with suitable
constants C, R > 0,

wm
P

(z) ≤ C|a(z)|, |z| ≥ R.

The elements of E3m
ρ,P

are called multi-quasi-elliptic symbols, the corresponding
classes of operators are denoted with

ELm
ρ,P

= {A = Op(a) : a ∈ E3m
ρ,P

}.

Being a natural generalization of the classes considered byFriberg and Cattabriga,
we call these operators multi-quasi-elliptic of order m.

Form = 0, multi-quasi-ellipticity of a symbola requires that|a(x, ξ)| ≥ c > 0, so
multi-quasi-ellipticity then coincides with uniform ellipticity.

In caseP is the simplex with vertices the origin and the points{e(k)}2n
k=1 of the

canonical basis ofR2n, we are reduced to Shubin’s classes0m
ρ (R2n), see Shubin [21],

Chapter IV; Helffer [14], Chapter I.

DEFINITION 4. Let3s = Op(ws
P

). For s ∈ R we define the Sobolev spaces

H s
P

(Rn) = {u ∈ S′(Rn) : 3su ∈ L2(Rn)}.
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The pseudodifferential operators with symbols in3m
ρ,P

(R2n) act continuously on these

spaces: For a∈ 3m
ρ,P

(R2n) and s∈ R,

Op(a) : H s
P

(Rn) → H s−m
P

(Rn)

is bounded and the operator norm can be estimated in terms of the symbol semi-norms
of a.

The first result we present is that the pseudodifferential operators in L0
ρ,P

can be
characterized by commutators, in fact we have

THEOREM 1. A linear operator A: S(Rn) → S′(Rn) belongs toL0
ρ,P

if and only

if, for all multi-indices,α, β ∈ N
n
0, the iterated commutatorsadα(x)adβ(Dx)A have

bounded extensions

adα(x)adβ(Dx)A : L2(Rn) → H ρ|α+β|
P

(Rn).

Theorem 1 is the key tool in the proof of the spectral invariance result for L0
ρ,P

:

THEOREM 2. Let A∈ L0
ρ,P

, and suppose that A is invertible inB(L2(Rn)). Then

A−1 ∈ L0
ρ,P

.

The idea of characterizing pseudodifferential operators by commutators and using
this for showing the spectral invariance goes back to R. Beals. In [1], Beals had in-
troduced a calculus with pseudodifferential operators having symbols in very general
classesSλ

8,ϕ . In [1] he stated the analogs of Theorems 1 and 2 under the restriction
ϕ = 8. Since the proof was not generally accepted, Ueberberg in 1988 published an
article where he showed corresponding versions of Theorems1 and 2 for the operators
with symbols in Hörmander’s classesS0

ρ,δ , 0 ≤ δ ≤ ρ ≤ 1, δ < 1. Let us point out,
however, that the symbols we are considering are not contained in the class introduced
by Beals, since our case corresponds to the choice

ϕ(x, ξ) = 8(x, ξ) = ω
ρ

P
(x, ξ),

which does not satisfy Beals’ conditionϕ ≤const. In 1994, Bony and Chemin [6]
proved analogous of the above theorems for a large class of symbols using the Hörman-
der-Weyl quantization:

[Opwa]u(x) = (2π)−n
∫ ∫

ei (x−y)ξa(
x + y

2
, ξ)u(y)dydξ.

Multi-quasi-elliptic operators can be naturally re-considered in the frame of the
Weyl-calculus, see [4], so that if one can show that the metric

gx,ξ = ω
ρ

P
(x, ξ)(|dx|2 + |dξ |2)
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satisfies the conditions ”Lenteur”, ”Principe d’Incertitude” (which are actually obvi-
ous), and ”Tempérence (Forte)” (not evident in our case) of[6], then Theorems 1 and 2
could be deduced from [6], Théorèmes 5.5 and 7.6. It seems however that the present
direct proof, which relies on the spectral invariance result for S0

0,0(R
n × R

n), shows an
easier, alternative technique.

From Theorems 1 and 2 we will obtain

THEOREM 3. L0
ρ,P

is a submultiplicative9∗ -subalgebra ofL(L2(Rn)).

9∗ algebras were introduced by Gramsch [11], Definition 5.1: A subalgebraA of
L(H ), H a Hilbert, space is called a9∗-subalgebra, if

(i) it carries a Fréchet topology which is stronger than thenorm topology ofL(H ),

(ii) it is symmetric, i.e.,A∗ = A, and

(iii) it is spectrally invariant, i.e.,A ∩ L(H )−1 = A−1.

Here,A−1 andL(H )−1 denote the groups of invertible elements in the respective
algebras.9∗-algebras have many important features: in9∗-algebras there is a holo-
morphic functional calculus in several complex variables,there are results in Fredholm
and perturtation theory [11] as well as for periodic geodesics. Concerning decom-
positions of inverses to analytic Fredholm functionals andthe division problem for
operator-valued distributions, see [12]. For further results on the9∗-property see also
[13], [14], [18], [19], [20].

The Fréchet topology on L0
ρ,P

is the one induced from30
ρ,P

(R2n) via the injective
mappingOp. A Fréchet algebraA is called submultiplicative if there is a system of
semi-norms{q j : j ∈ N} which defines the topology and satisfies

q j (ab) ≤ q j (a)q j (b), a, b ∈ A.

We next show the existence of order reduction within this calculus, see Lemma 2.
This allows us to extend the results on the characterizationby commutators and spectral
invariance to the case of arbitrary order.

Finally we characterize the Fredholm property by multi-quasi-ellipticity.

THEOREM 4. Let A ∈ Lm
ρ,P

, s ∈ R. Then A : H s
P

(Rn) → H s−m
P

(Rn) is a
Fredholm operator if and only if it is multi-quasi-ellipticof order m.

Let A ∈ Lm
ρ,P

, s ∈ R. ThenA : H s
P

(Rn) → H s−m
P

(Rn) is a Fredholm operator if
and only if it is multi-quasi-elliptic of orderm.

The links between pseudodifferential calculus and quantization are pointed out in
Berezin-Shubin [7]. Before going on to the technical part ofthe paper let us recall two
basic examples of multi-quasi-elliptic operators that come up in quantum mechanics.
For a more detailed exposition, as well as for further examples and motivations, we
refer to [5], [3], [4].
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Let p(x) be a positive multi-quasi-elliptic polynomial in the variables x ∈ R
n.

Then the Schrödinger operatorP = −1x + p(x), a generalization of the harmonic
oscillator of quantum mechanics, is multi-quasi-ellipticin the sense of our previous
definition.

A slight modification of the above operatorsP = x2h1 + x2h0 D2k0 + D2k1 yields
self-adjoint multi-quasi-elliptic operators of the form:

P = x2h1 + Dk0

(
x2h0 Dk0

)
+ D2k1 .

In both cases one would like to have spectral asymptotic estimates for these operators,
in particular for the functionN(λ) =

∑
λ j ≤λ 1 counting the number of the eigenvalues

λ j not exceedingλ ([3] can be considered a first step in this direction). The idea is
to follow the approach taken by Helffer in [14] which is basedon a thorough analysis
of Shubin’s classes, and this makes the results of spectral invariance and their conse-
quences particularly interesting.

2. Pseudodifferential operators inLm
ρ,P

We now review the main properties of the multi-quasi-elliptic calculus assuming famil-
iarity with the standard pseudodifferential calculus, cf.[16].

PROPOSITION1. Let m, m1, m2 ∈ R.

(a) 3m
ρ,P

(Rd) is a vector space.

(b) If a1 ∈ 3
m1
ρ1,P

(Rd), a2 ∈ 3
m2
ρ2,P

(Rd), then a1a2 ∈ 3
m1+m2
min(ρ1,ρ2),P

(Rd).

(c) For every multi-indexα ∈ N
d we have ∂α

ζ a ∈ 3
m−ρ|α|
ρ,P

(Rd).

(d)
⋂

m∈R
3m

ρ,P
(Rd) = S(Rd), the Schwartz space of rapidly decreasing functions.

DEFINITION 5. Let aj ∈ 3
m j

ρ,P
(Rd) and mj → −∞ for j → +∞. We write

a ∼
∑∞

j =1 a j if a ∈ C∞(Rd) and a−
∑r−1

j =1 a j ∈ 3
m̃r
ρ,P

(Rd) wherem̃r = maxj ≥r m j .

We then have a∈ 3m
ρ,P

(Rd), m = maxj ≥1 m j .

PROPOSITION 2. Given aj ∈ 3
m j

ρ,P
(Rd) with mj → −∞ as j → +∞ there

exists a∈ C∞(Rd) such that a∼
∑∞

j =1 a j . Furthermore, if b is another function such

that b∼
∑∞

j =1 a j , then a− b ∈ S(Rd).

PROPOSITION3. Let A1 = Opa1 ∈ Lm1
ρ,P

and A2 = Opa2 ∈ Lm2
ρ,P

. Then A1A2 ∈

Lm1+m2
ρ,P

, and the symbolσ(A1A2) of A1A2 has the asymptotic expansionσ(A1A2) ∼
∑

α
1
α! ∂

α
ξ a1(x, ξ)Dα

x a2(x, ξ).
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PROPOSITION4. (a) If a ∈ E3m
ρ,P

then a−1 ∈ E3−m
ρ,P

and a−1∂αa ∈

E3
−ρ|α|
ρ,P

for all α (possibly after a modification of a(ζ ) on a compact set).

(b) If a1 ∈ E3
m1
ρ,P

and a2 ∈ E3
m2
ρ,P

then a1a2 ∈ E3
m1+m2
ρ,P

.

(c) If A1 ∈ ELm1
ρ,P

and A2 ∈ ELm2
ρ,P

then A1A2 ∈ ELm1+m2
ρ,P

.

DEFINITION 6. An operator R∈
⋂

m∈R
Lm

ρ,P
is called regularizingor smooth-

ing. Regularizing operators define continuous maps R: S′(Rn) → S(Rn). They have
integral kernels R= R(x, y) ∈ S(Rn

x × R
n
y).

PROPOSITION5 (EXISTENCE OF THEPARAMETRIX ). Let A∈ ELm
ρ,P

; then there

exists an operator B∈ EL−m
ρ,P

such that the operators R1 = AB− I and R2 = B A− I
both are regularizing. B is said to be aparametrixto A. If B′ is another parametrix to
the same operator A, then B− B′ is a regularizing operator.

PROPOSITION6 (ELLIPTIC REGULARITY). Let A ∈ ELm
ρ,P

. If Au ∈ S(Rn) for
some u∈ S′(Rn) then necessarily u∈ S(Rn).

Definition 4 of the Sobolev spacesH m
P

(Rn) can be rephrased.

PROPOSITION 7. Let P be a fixed complete Newton polyhedron and let Am ∈

E Lm
ρ,P

be a multi-quasi-elliptic operator; then

H m
P

(Rn) = A−1
m (L2(Rn)).

Note that Hm
P

(Rn) depends neither onρ nor on the particular operator Am, but only
on m andP .

The main features of these spaces are the following.

PROPOSITION8. H m
P

(Rn) has a Hilbert space structure given by the inner prod-
uct (u, v)P = (Amu, Amv)L2 + (Ru, Rv)L2 . Here Am is an elliptic operator defining
the space Hm

P
(Rn) according to Proposition 7, and R= I − ÃmAm, with a parametrix

Ãm of Am. We denote by||u||m the norm of an element u in the space Hm
P

(Rn). Equiv-
alently, we could define

H 1
P

(Rn) = {u ∈ S′(Rn) : xα Dβu ∈ L2(Rn) for (α, β) ∈ P}.

with the inner product(u, v)3P
=

∑
(α,β)∈P(xα Dβu, xα Dβv)L2.

PROPOSITION9. (a) The topological dual Hm
′

P
(Rn) of Hm

P
(Rn) is H−m

P
(Rn) .

(b) We have continuous imbeddings S(Rn) ↪→ H m
P

(Rn) ↪→ S′(Rn).

(c) We have compact imbeddings Ht
P

(Rn) ↪→ H s
P

(Rn) if t > s.

(d) proj− limm∈RH m
P

(Rn) = S(Rn), ind − limm∈RH m
P

(Rn) = S′(Rn).
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3. Abstract characterization, order reduction, spectral invariance and the Fred-
hold property

We now adress the central questions of this paper. We begin byproving that the opera-
tors of order zero can be characterized via iterated commutators.

DEFINITION 7. Let A : S(Rn) → S′(Rn) be a linear operator. For j= 1, . . . , n,
we setad0(Dx j )A = A; ad0(x j )A = A; adk(Dx j )A = [Dx j , adk−1(Dx j )A];

adk(x j )A = [x j , adk−1(x j )A]. For multi-indicesα, β we let

Bα
β A = adα(x)adβ(Dx)A = adα1(x1) . . . adαn(xn)adβ1(Dx1) . . . adβn(Dxn)A

THEOREM 5 (ABSTRACT CHARACTERIZATION). A linear operator A :
S(Rn) → S′(Rn) belongs toL0

ρ,P
if and only if, for all multi-indicesα, β, the iter-

ated commutators Bαβ A have continuous extensions to linear maps: Bα
β A : L2(Rn) →

H ρ|α+β|
P

(Rn).

Proof. If A ∈ L0
ρ,P

then the symbol ofBα
β A is ∂α

ξ ∂
β
x a ∈ 3

−ρ|α+β|
ρ,P

(R2n), so that

clearly the commutators extend to continuous maps:Bα
β A : L2(Rn) → H ρ|α+β|

P
(Rn).

Conversely assume thatA admits the required continuous extensions:Bα
β A :

L2(Rn) → H ρ|α+β|
P

(Rn).

Let α0, β0 be arbitrary multi-indices and let3ρ|α0+β0| = Op(wρ(|α0+β0|)
P

) be as in
Definition 4. For all multi-indicesα, β, we then have continuous maps:

(1) Bα
β [3ρ|α0+β0| ◦ Bα0

β0
A] : L2(Rn) → L2(Rn).

This follows from Leibniz’ rule:

Bα
β [3ρ|α0+β0| ◦ Bα0

β0
A] =

∑

α1+α2=α

β1+β2=β

cα1,α2,β1,β2 Bα2
β2

3ρ|α0+β0| ◦ Bα1
β1

Bα0
β0

A

and the continuity of the operators:

Bα1
β1

Bα0
β0

A : L2(Rn) → H ρ(|α1+α0+β1+β0|)
P

(Rn);

id : H ρ(|α1+α0+β1+β0|)
P

(Rn) ↪→ H ρ(|α0|−|α2|+|β0|−|β2|)
P

(Rn) ;

Bα2
β2

3ρ|α0+β0| : H ρ(|α0|−|α2|+|β0|−|β2|)
P

(Rn) → L2(Rn).

The continuity of the first operator is due to the hypothesis and the equalityBα1
β1

Bα0
β0

A

= Bα1+α0
β1+β0

A which is easily checked.

According to the characterization of the Hörmander classS0
0,0(R

2n), see Beals [2],
Ueberberg [22], (1) implies that3ρ|α0+β0| ◦ Bα0

β0
A is a pseudodifferential operator with
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the symbol

(2) bα0,β0 = σ(3ρ|α0+β0| ◦ Bα0
β0

A) ∈ S0
0,0(R

2n).

In particular, choosingα0 = β0 = 0, we see thatA is a pseudodifferential operator and
b0,0 = σ(A) = a ∈ S0

0,0(R
2n).

Since w2
P

(x, ξ) is a polynomial, there existm ∈ R and ρ′ > 0 such that
3ρ|α0+β0| ∈ Lm

ρ′,0. For the symbolb we therefore have the asympotic expansion:

bα0,β0 ∼
∑

α

i |α|

α!
∂α
ξ σ(3ρ|α0+β0|) ∂α

x σ(Bα0
β0

A),

where∂α
x σ(Bα0

β0
A) = ∂

α0+α
x ∂

β0
ξ a ∈ S0

0,0(R
2n) and∂α

ξ σ(3ρ|α0+β0|) = ∂α
ξ (w

ρ|α0+β0|
P

) ∈

Sm−ρ′ |α|
ρ′,0 (R2n).

Next let us assume that|α0+β0| = 1, i.e.,∂α0
ξ ∂

β0
x a(x, ξ) = ∂z j a(z) with z = (x, ξ)

and suitablej ∈ {1, . . . , 2n}. Using the asymptotic expansion ofbα0,β0 we have, for
sufficiently largek ∈ N,

(3) bα0,β0 −
∑

|α|≤k

i |α|

α!
∂α
ξ σ(3ρ|α0+β0|)∂

α
x σ(Bα0

β0
A) ∈ S0

0,0(R
2n).

In particular, the difference is a bounded function.

For 1 ≤ |α| ≤ k the terms under the summation in (3) are products of derivatives
of a ∈ S0

0,0(R
2n) and ofwρ

P
∈ 3

ρ

ρ,P
(R2n). They are therefore bounded. By (2),bα0,β0

is also bounded, hence so is the term forα = 0, namely∂z j a(z) w
ρ

P
(z). So we have

the estimate|∂α0
ξ ∂

β0
x a(z)| = |∂z j a(z)| ≤ Cw

−ρ

P
(z), for |α0 + β0| = 1, with a suitable

constantC ≥ 0.

We may now repeat the argument witha(z) replaced by∂zka(z), k = 1, . . . , 2n.
The operator with the symbol∂zkα also satisfies the assymption of the theorem. Just as
before, we see that∂2

z j zk
a(z)wρ

P
(z) for all j ∈ {1, . . . , 2n} is bounded. By iteration we

conclude that∂γ
z a(z)wρ

P
(z) is bounded for every multi-indexγ . This shows that

(4) ∂z j a(z) ∈ 3
−ρ

0,P
(R2n).

Notice that we still have the subscript “0” instead of the desired “ρ”. Let us now
suppose|α0 + β0| = 2. The terms of (3) with 1≤ |α| ≤ k are now products of
derivatives ofa(z) and ofw2ρ

P
(z) ∈ 3

2ρ

ρ,P
(R2n), so that, thanks to (4), they are still

bounded. Proceeding as before, we conclude that the second derivatives ofa(z) belong
to 3

−2ρ

0,P
(R2n). Iteration of the argument shows that∂

γ
z a(z) ∈ 3

−|γ |ρ
0,P

(R2n) for all γ ,

which impliesa ∈ 30
ρ,P

(R2n).

The following corollary is an immediate consequence of Theorem 5.
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COROLLARY 1. A linear operator A: S(Rn) → S′(Rn) belongs toL0
ρ,P

if and
only if, for all multi-indicesα, β and for all s ∈ R , the iterated commutators Bαβ A

have continuous extensions to linear maps: Bα
β A : H s

P
(Rn) → H s+ρ|α+β|

P
(Rn).

As a preparation for the proof of the spectral invariance we need the following
lemma. The proof is just as in the standard case. The crucial identity one has to verify
is that

[ A−1,3ε] = −A−1[ A,3ε] A−1.

for all A ∈ L0
ρ,P

and a suitableε > 0. As before,3ε = Op(ωε
P

). Equality holds,

becauseA ∈ S0
0,0(R

2n) andωP ∈ Sm
ρ′,0(R

2n) for suitablem, ρ′ > 0. For details see
[22] or [21], Section I.6.

LEMMA 1. Let A ∈ L0
ρ,P

be invertible in the classB(L2(Rn)) of bounded opera-

tors on L2(Rn). Then A is invertible inB(H s
P

(Rn)) for all s ∈ R.

THEOREM 6 (SPECTRAL INVARIANCE AND SUBMULTIPLICATIVITY )). Let A∈

L0
ρ,P

, and suppose that A is invertible inB(L2(Rn)). Then A−1 ∈ L0
ρ,P

. Moreover,

L0
ρ,P

is a submultiplicative9∗-subalgebra ofB(L2(Rn)).

Proof. L0
ρ,P

is a symmetric Fréchet subalgebra ofB(L2(Rn)) with a stronger topology.
In order to show it is a9∗-subalgebra, we only have to check spectral invariance. Since
S0

0,0(R
2n) is a9∗−algebra,A−1 necessarily belongs toS0

0,0(R
2n), hence

[x j , A−1] = −A−1[x j , A] A−1,

[D j , A−1] = −A−1[D j , A] A−1,(5)

cf. [20], Appendix. Using Leibniz’ rule and Lemma 1, these identities show that

Bα
β A−1 : L2(Rn) → H ρ|α+β|

P
(Rn)

is bounded. HenceA−1 ∈ L0
ρ,P

by Theorem 5.

Finally let us check submultiplicativity. Corollary 1 suggests the following system
of semi-norms{pα,β,s : α, β ∈ N

n
0, s ∈ N} for the topology of L0

ρ,P
:

pα,β,s(A) = ‖Bα
β A‖

L(Hs
P

(Rn),Hs+ρ|α+β|
P

(Rn))
.

A priori, this topology is weaker than the topology induced from30
ρ,P

(R2n), since the
operator norm can be estimated in terms of the symbol semi-norms. The open mapping
theorem yields that both are equivalent. The construction in [13], 3.4 ff, eventually
shows how to derive submultiplicative semi-norms from the system{pα,β,s}.

We proceed by constructing order reducing operators. They will be used in Corol-
lary 2.
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LEMMA 2 (ORDER REDUCTION). For all s ∈ R there exists an operator T∈
ELs

ρ,P
such that T: H s

P
(Rn) → L2(Rn) is a bicontinuous bijection.

Proof. Let us setA = Op(ws/2
P

) ∈ ELs/2
ρ,P

. If A∗ is its L2-formal adjoint, then

AA∗ ∈ ELs
ρ,P

and AA∗ : H s
P

(Rn) → L2(Rn) is Fredholm. It can be shown easily

that KerAA∗ = AA∗(H s
P

(Rn))⊥, where⊥ means orthocomplementation inL2(Rn).
In fact, KerAA∗ ⊆ S(Rn), is independent ofs, and f ∈ KerAA∗ is equivalent to
f ⊥AA∗(S(Rn)) which in turn is equivalent tof ⊥AA∗(H s

P
(Rn)) as AA∗(S(Rn)) is

dense inAA∗(H s
P

(Rn)). Suppose now that{ f1, .., fk} is an orthonormal basis of the
finite dimensional vector space KerAA∗ = AA∗(H s

P
(Rn))⊥, viewed now as imbedded

in both H s
P

(Rn) and L2(Rn). We consider the operatorB = AA∗ + P where P

is the continuous extension toH s
P

(Rn) of P f =
∑k

j =1( f, f j )L2 f j , f ∈ S(Rn). P
is compact as it has finite rank and is smoothing since it has anintegral kernel in
S(Rn × R

n). ThenB is a Fredholm operator inELs
ρ,P

and index(B) = 0. It can be

easily checked thatB : H s
P

(Rn) → L2(Rn) is injective so that it is a bijection. The
continuity of B−1 follows from the open mapping theorem and the continuity ofB.

COROLLARY 2. Let A ∈ L0
ρ,P

be invertible inB(H s
P

(Rn)) for some s∈ R, then

A−1 ∈ L0
ρ,P

.

Proof. If T : H s
P

(Rn) → L2(Rn) is the order reduction, we know thatB = T AT−1 ∈

L0
ρ,P

is invertible onL2(Rn). By Theorem 6B−1 ∈ L0
ρ,P

, so A−1 = T B−1T−1 ∈

L0
ρ,P

.

REMARK 1. A consequence of Corollary 2 is that the spectrum of an operator
A ∈ L0

ρ,P
is independent of the spaceH s

P
(Rn). This is particularly relevant in view of

the developement of a spectral theory for multi-quasi-elliptic operators.

The fact that multi-quasi-elliptic operators have the Fredholm property was proven
in [5]; we show here that the converse holds.

THEOREM 7. Let A∈ Lm
ρ,P

, m ∈ R. Then the following are equivalent:

(a) A ∈ ELm
ρ,P

.

(b) A : H s
P

(Rn) → H s−m
P

(Rn) is a Fredholm operator for all s∈ R.

(c) A : H s0
P

(Rn) → H s0−m
P

(Rn) is a Fredholm operator for some s0 ∈ R.

Proof. By [5], (a) implies (b), (b) trivially implies (c). In order to show that (c) implies
(a), we can apply order reduction and assume thatm = s0 = 0. Next we observe that,
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for suitableε > 0, Cε > 0,

ω
ρ

P
(x, ξ) ≥ Cε〈x〉ε〈ξ〉ε .

This implies that30
ρ,P

(R2n) is embedded in the class̃S0
ε,0(R

n ×R
n) of slowly varying

symbols, cf. Kumano-go [16], Chapter III, Definition 5.11. For these symbols it has
been shown in [18], Theorem 1.8 that the Fredholm property onL2(Rn) implies uni-
form ellipticity. This concludes the proof, forH 0

P
(Rn) = L2(Rn), and the notion of

uniform ellipticity coincides with that of multi-quasi-ellipticity of order zero.
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