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AN EXTENSION TO THE NON-METRIC CASE OF A

THEOREM OF GLASNER

Abstract. In [1] the Furstenberg Structure Theorem for flows was ex-
tended from the metric to the non-metric case by means of a special
construction of minimal flows. We are able to use this construction to
generalize another theorem from the metric to the non-metric case: Glas-
ner proved in [4] that if the space of regular Borel probability measures
of a flow is distal, then it is equicontinuous, provided the flow is a metric
minimal flow. We are able here to remove the metric condition.

Let X be a compact Hausdorff space, and let M(X) be the set of regular Borel
probability measures on X.
M(X) will always be assumed to have the weak-* topology induced as a subset of
the dual of C(X), that is, µi → µ ⇐⇒

∫
f dµi →

∫
f dµ ∀ f ∈ C(X). With this

topology, M(X) is compact Hausdorff. Moreover, if X is metric, then so is M(X).
A Dirac measure is a measure of the form δx, where δx is defined to be

∫
f dδx = f(x).

The function δ : X 7→ M(X) that sends x to δx is a homeomorphism onto its image.
We’ll sometimes identify X with δ(X).
If π : X 7→ Y is continuous, we define π̂ : M(X) 7→ M(Y ) by

∫
f dπ̂(µ) =

∫
(f ◦ π)dµ.

Assume now that (X, T ) is a flow. The action of T on X induces an action of T
on M(X) in the following way: first, if f is a measurable function, define tf to be
tf(x) = f(xt). Then, define µt as the measure given by

∫
f d(µt) =

∫
(tf) dµ. This is

an action and (M(X), T ) is a flow.

Definition 1. A (not-necessarily minimal) flow (X, T ) is called strongly distal
(or sd for short) if (M(X), T ) is distal.

Remark 1. Strongly distal implies distal since X is a closed T -invariant subset
of M(X) (by means of the identification X = δX = {δx : x ∈ X})).

Lemma 1. If π : X 7→ Y is an epimorphism of T -flows and (X, T ) is strongly
distal, then so is (Y, T ).

Proof. If π : X → Y is a homomorphism onto, then so is π̂ : M(X) 7→ M(Y ). Thus,
M(X) distal implies that M(Y ) is distal.

Definition 2. Let S := {H : H is a countable subgroup of T}. Let ρ be a
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continuous pseudometric on X. Define, for H ∈ S

R(H) = R(ρ,H) = {(x, y) ∈ X × X : ρ(xh, yh) = 0∀h ∈ H}

XH = X/R(H)

and πH : X 7→ XH the canonical projection. This construction is called the Ellis’
Construction

Lemma 2. Let H ∈ S. Then:
i) XH is compact Hausdorff and XH is metrizable.
In fact, ρ induces a metric ρH on XH by ρH(πH(x), πH(y)) =

∑∞

i=0
2−iρ(xhi, yhi),

where H = {hi}
∞
i=0.

ii) H acts on XH and πH is an H-homomorphism.
iii) If (X, T ) is minimal, then ∃ K ∈ S : H ⊂ K and (XK , K) is minimal.

Proof. Lemma 1.2 and Proposition 1.6 of [1].

Remark 2. For technical reasons , we’ll assume that the elements of H are num-
bered such that h0 = e. This gives the property ρ(x, y) ≤ ρH(πH(x), πH(y)), since :
ρ(x, y) = ρ(xe, ye) = 2−0ρ(xh0, yh0) ≤

∑∞

i=0
2−iρ(xhi, yhi) = ρH(πH(x), πH(y)).

Remark 3. The following theorem was proved in the metric case by Glasner. (see
either Theorem 1.1 or 5.2 of [4]). Here we prove it in the non-metric case.

Theorem 1. Every strongly distal minimal flow is equicontinuous.

Proof. Suppose that X is not metric, not equicontinuous and strongly distal. Then
T is not totally bounded in C(X, X) and so there exists a pseudometric ρ on X and
r > 0 such that

(1) ∀{t1, t2, . . . , tn} ⊂ T, T 6= ∪n

i=1ρ̂(ti, r)

where ρ̂(f, r) = {g ∈ C(X, X) : ρ̂(f, g) < r} and ρ̂(f, g) = sup
x∈X

ρ(f(x), g(x)).
Now, choose any element t1 ∈ T . By (1), T 6= ρ̂(t1, r), so ∃ t2 ∈ T with t2 6∈ ρ̂(t1, r).
Again by (1), ρ̂(t1, r) ∪ ρ̂(t2, r) 6= T and thus ∃ t3 ∈ T : t3 6∈ ρ̂(t1, r) ∪ ρ̂(t2, r).
Continuing in this way we find that

(2) ∃{ti} i ⊂ T with tn 6∈ ∪n−1

i=1 ρ̂(ti, r)

Let H0 be the subgroup of T generated by {tn}n≥1.
H0 is countable and thus by Lemma 2 there exists H ∈ S with (XH , H) minimal and
H0 ⊆ H , where (XH , H) and πH : X → XH are as in Definition 2 . Now (M(X), T )
is distal since (X, T ) is strongly distal, hence (M(X), H) is also distal, that is (X, H)
is strongly distal. Thus by Lemmas 2 ii) and 1 , we have that (XH , H) is also strongly
distal. Since XH is metric (by Lemma 2 i) ), then (XH , H) is equicontinuous, since the
theorem is true in the metric case. (Theorem 1.1 or 5.2 of [4]). Let ρH be the metric
on XH induced by ρ, and ρ̂H the metric on C(XH , XH) induced by ρH . H is totally
bounded in C(XH , XH) since (XH , H) is equicontinuous. So, ∃ h1, h2, . . . , hk ∈ H
with H = ∪k

i=1ρ̂H(hi, r/2). Since H0 ⊆ H , we have by the previous that



An Extension of a Theorem of Glasner 39

(3) ∀ n ∃ in ∈ {1, . . . , k} : tn ∈ ρ̂H(hin
, r/2)

Since the number of tn’s is infinite ∃ n > m : in = im Denote i = in. By (3)
we have that tn, tm ∈ ρ̂H(hi, r/2) and so tn ∈ ρ̂H(tm, r). However tn 6∈ ρ̂(tm, r) by
(2). So ∃ x ∈ X : ρ(xtn, xtm) ≥ r. But ρ(xtn, xtm) ≤ ρH(πH(x)tn, πH(x)tm) (by
Remark 2) and ρH(πH(x)tn, πH(x)tm) ≤ ρ̂H(tn, tm) < r. Thus r < r.

An important consequence of the generalization to the non-metric case is that we
can then apply the theorem to the enveloping semigroup of X, (which need not be
metric even if X is), obtaining the following:

Corollary 1. (X, T ) is equicontinuous iff (E(X), T ) is strongly distal. (no min-
imality or point-transitivity assumption)

Proof. Let E = E(X). If (E, T ) is strongly distal, then it is distal (by Remark
1), hence it is minimal (if p, q ∈ E, then take {ti}i ⊂ T : ti → p−1q. Then,
pti → pp−1q = q and q ∈ pT ). But, then, (E, T ) is strongly distal and minimal,
so by Theorem 1 we have that (E, T ) is equicontinuous, hence so is (X, T ). (e.g.,
because E(E,T ) ' E). On the other hand, if X is equicontinuous, then so is E, and
thus, since (E, T ) is point-transitive, then it is minimal. Thus, (E, T ) is minimal and
equicontinuous, hence, (M(E), T ) is equicontinuous, in particular, it is distal, and so
(E, T ) is strongly distal.

Although the previous work applies to non-metric flows, the following proves that
we can’t have X metric and E(X) non-metric in some cases:

Corollary 2. Let X be metric with E(X) strongly distal. Then E(X) is metric.

Proof. By the previous corollary, if E(X) is strongly distal, then X is equicontinuous.
In particular, every element of E(X) is continuous. Thus, since X is metric, E(X) is
also metric.

Note that the proof of the main theorem goes along these lines: first, from the
fact that (X, T ) is not equicontinuous, we construct a certain subgroup H of T , which
gives us in turn XH . Then we prove that (X, H) is strongly distal, and hence that
(XH , H) is strongly distal, applying then the theorem for the metric case, obtaining
that (XH , H) is equicontinuous, a contradiction because of how H was constructed.
This means that the only properties of “strongly distal” that we used in the previous
theorem were that :
I) If a flow is strongly distal, any factor of it is strongly distal;
and:
II) If (X, T ) is strongly distal and H is a subgroup of T , then (X, H) is strongly distal.
(and of course, the fact that every strongly distal metric minimal flow is equicontinu-
ous).

Hence, we can state:
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Proposition 1. If a property P of a flow satisfies I) and II) above, that is, if
a flow (X, T ) has property P then any factor of it has property P , and if H is a
subgroup of T then (X, H) has property P ; then every metric flow with property P is
equicontinuous if and only if every flow with property P is equicontinuous.

Properties satisfying similar conditions to I) and II) have appeared in the litera-
ture. In particular, in [5] a property P of flows is called transferable if:
(1) P is preserved by tranformation group homomorphisms onto minimal sets, and
(2) if (X, T ) has property P and S is a subgroup of T then there is a point x∗ ∈ X
such that (x∗S, S) has property P .

Theorem 2. If all metric flows with property P are equicontinuous and P is
transferable, then all flows with property P are equicontinuous.

Proof. We proceed as in the proof of the main theorem, constructing H from X, and
hence XH . Now, we cannot conclude that (X, H) has property H , only that there is a
point x∗ such that (x∗H, H) has property P . But since x∗H is H-invariant and closed,
its image on XH under the map π|

x∗H
is also H-invariant and closed (the spaces are

compact Hausdorff). Since XH is H-minimal, we conclude π(x∗H) = XH , i.e., π|
x∗H

is an epimorphism. The rest of the proof is the same.

Glasner proved another theorem in [4], namely, that if M(X) is semisimple (point-
wise almost periodic) and X is metric minimal, then X is equicontinuous. (see Theo-
rem 5.1, page 120 of [4]). We cannot generalize this theorem, but we can obtain:

Theorem 3. If X is a minimal flow such that M(X) is H-semisimple for all
subgroups H of T , then X is equicontinuous.

Proof. The property thus defined clearly satisfies II), and if X 7→ Y is an extension,
and M(X) is H-semisimple, then so is M(Y ). Clearly, if a metric flow satifies this
property, it satisfies the condition of Theorem 5.1 of [4], thus it is equicontinuous.

An important property is whether the minimal subflows of a flow are distal. (We’ll
call this property “f-distal”). The property P0: “every minimal flow of M(X) is distal”
(that is, M(X) is f-distal, or, we may say, X is strongly f-distal) is conjectured by
Glasner to be equivalent to distal. It is clear that it is a property “between” distal and
equicontinuity. We wil strenghten this property as we did with semisimple, requiring:
P1: “for every subgroup H of T , every H-minimal flow of M(X) is H-distal”. In this
case, we have:

Proposition 2. If every metric minimal flow having property P1 above is equi-
continuous, then P1 is “equicontinuity” for minimal flows.

Proof. As said above, every equicontinuous flow satisfies P0, hence P1 since “equicon-
tinuous” is group-hereditary. Hence we need to show only that every flow with P1

is equicontinuous, assuming that this is true for metric flows. We will show that P1

satisfies properties I) and II), so by Proposition 1 we will be done. Clearly, by our
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definition, P1 satisfies II). Let’s see that it satisfies I.
Let π : X → Y be an epimorphism, X satisfying P1. Hence π̂ is onto. Let H subgroup
of T and N ⊆ M(Y ) be a H-minimal. Let P = co(N). Then ex(P ) is a closed
H-invariant subset of N (Milman), and since N is an H-minimal flow, we have that
ex(P ) = N , hence P is a minimally generated affine flow. Hence, there exists a P -
irreducible subflow MN(X) of M(X). (2.1 of [2]). Let XN = ex(MN(X)). Then,
also by 2.1 of [2], XN is minimal, and π̂(XN ) = N . Since XN is H-minimal and X
satisfies P1, XN is H-distal. Thus, so is N and we are done.
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