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TOWARDS AN ANALYTICAL MECHANICS OF DISSIPATIVE

MATERIALS

Abstract. A Lagrangian-Hamiltonian variational formulation is proposed for the
thermoelasticity of heat conductors and its generalization to anelasticity - described
by means of internal-state variables- by using a gauge-theoretical technique (intro-
duction of an additional variable of state - the gradient of thermacy - that ren-
ders the system apparently Hamiltonian). Projecting the equations resulting from
the Euler-Lagrange equations and the equations deduced from the application of
Noether’s theorem back on the original space provides all local balance equations
of the dissipative theory, including the entropy equation and the equation of canoni-
cal momentum in material space (which are not strict conservation laws). A canon-
ical structure clearly emerges for the anelasticity of conductors in finite strains.

1. Introduction

A recurrent dream of many mathematical physicists is to construct a variational formulation for
all field equations of continuum physicsincluding in the presence of dissipative effects.We all
know that this is not possible unless one uses special trickssuch as introducing complex-valued
functions and adjoint fields (e.g., for heat conduction). But we do present here a variational and
canonical formulation for the nonlinear continuum theory of thermoelastic conductorsand then
generalize this to the case of anelastic conductors of heat.This is made possible through the
introduction of a rather old notion, clearly insufficientlyexploited, that ofthermacyintroduced
by Van Danzig (cf. [9]), a field of which the time derivative isthe thermodynamical temperature.
It happens that we used such a notion in relativistic studiesin the late 60s-early 70s, (Pre-general
exam Seminar at Princeton University, Spring 1969; [10], [11]), a time at which we found that
thermacy is nothing but theLagrange multiplierintroduced to account forisentropyin a La-
grangian variational formulation. But , completely independently and much later, Green and
Naghdi ([4]) formulated a strange “thermoelasticity without dissipation”. Dascalu and I ([1])
identified thermacy as the unknowingly used notion by Green and Naghi (unaware of works in
relativistic variational formulations), and we formulated the correspondingcanonical balance
laws of momentum and energy- of interest in the design of fracture criteria - which, contrary
to the expressions of the classical theory, indeed presentno source of dissipation and canonical
momentum, e.g., no thermal source of quasi-inhomogeneities (cf. [2]). In recent works ([14],
[21]), we have shown the consistency between the expressions of intrinsic dissipation and source
of canonical momentum in dissipative continua. This is developed within the framework of so-
calledmaterialor configurational forces, “Eshelbian mechanics”, that world of forces which, for
instance, drive structural rearrangements and material defects of different types on the material
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manifold (for these notions see [12], [13], [5] and [7]). Theroad to the analytical continuum
mechanics was explored in particular by P.Germain (1992) in[3], but not in a variational frame-
work.

Herebelow we first present a consistent variational formulation for thermoelastic conductors
of heat, which, with the use of Noether’s theorem, delivers all equations of interest, that is,
the balance of linear momentum, the equation of entropy, thebalance of canonical momentum,
and the energy equation, all in the apparently“dissipationless form”. But these equations can
be transformed to those of the classical theory of (obviously thermally dissipative) nonlinear
elastic conductors (cf. [20]). Therefore, we have a good starting point for a true canonical
formulation of dissipative continuum mechanics. The possible extension of the formulation
to anelastic conductors of heat is also presented when the anelastic behavior is accounted for
through the introduction of internal variables of state. Elements of the present work were given
in a paper by Kalpakides and Maugin ([6]).

2. Direct Variational formulation and its results.

We use classical elements of field theory as enunciated in several books (e.g. [12], [14], [21]).
The reader is referred to these works for the abstract equations.

Consider Hamiltonian-Lagrangian densities (per unit volume of the undeformed configura-
tion KR of nonlinear continuum mechanics given by the following general expression:

(1) L = L̄ (v, F, θ, β; X) = K (v; X) − W (F, θ, β; X) ,

where

K (v; X) =
1

2
ρ0 (X) v2, θ = γ̇ , β = ∇Rγ.

Here,K is the kinetic energy,W is the free energy density,ρ0 is the mass density at the reference
configuration, a superimposed dot denotes time differentiation at constant fixed material point
X, ∇R denotes the material gradient, the scalar functionβ is called thethermacy, andv andF
are the physical velocity and direct deformation gradient such that

v =
∂ χ

∂ t

∣

∣

∣

∣

X
, F =

∂ χ

∂ X

∣

∣

∣

∣

t
≡ ∇Rχ,

if
x = χ (X, t ) , detF > 0,

is the smooth placement ofX at Newtonian timet . The explicit dependence ofρ0 andW on X
indicates material inhomogeneity (direct smooth dependence on the material pointX).

In the Lagrangian density (1), thebasic fieldsare theplacementx and the thermacyγ ,
both being assumed sufficiently smooth functions of thespace-time parametrization(X, t) ,
which is the one favored in the Piola-Kirchhoff formulationof nonlinear continuum mechanics
(cf.Truesdell and Noll, 1965). Notice thatL is not an explicit function ofx by virtue of Galilean
invariance (translations in physical space of placements). Neither is it an explicit function of
γ itself, this implying a sort ofgauge invariancevery similar to that of electrostatic for the
electric potential. Since the focus is on field equations rather than on boundary conditions and
initial conditions, the density (1) may be integrated over aNewtonian space-time volume of
infinite extent with proper limit behavior of the various involved functions at infinity in space
and at time limits. According to the general field theory, in the absence of external sources
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(these would be explicit functions of the fields themselves), thefield equations, i.e, the Euler-
Lagrange equations (cf. eqns. (A.7) in Maugin, 1999a) associated withχ andγ , are immediately
given by

∂ p
∂ t

∣

∣

∣

∣

X
− divRT = 0,(2)

∂ S

∂ t

∣

∣

∣

∣

X
+ ∇R.S = 0,(3)

wherein

p := ρ0v =
∂ L

∂ χ̇
, T :=

∂ W

∂ F
= −

∂ L

∂ (∇Rχ)
,

S := −
∂ W

∂ θ
=

∂ L

∂γ̇
, S := −

∂ W

∂ β
=

∂ L

∂ (∇Rγ )
,(4)

are, respectively, thelinear momentum vectorin physical space, thefirst Piola-Kirchhoff stress,
theentropy density(by appealing to the axiom of local state and assuming that entropy density
has the same general functional definition as in thermostatics), and, accordingly, theentropy flux
in material form.

Invoking now Noether’s theorem (cf. eqns. (A.11) in Maugin,1999a) for the Lagrangian (1)
with respect to the space-time parametrization(X, t), we obtain the following two, respectively
co-vectorial and scalar, equations:

(5)
∂ Pth

L
∂ t

∣

∣

∣

∣

∣

X

−
(

divRbth
)

L
=
(

f inh
)

L
,

and

(6)
∂ H

∂ t

∣

∣

∣

∣

X
− ∇R. U = 0,

where we have defined thecanonical momentum(material-covariant) vectorPth of the present
approach, the correspondingcanonical material stresstensorbth, the material forceof true
inhomogeneitiesf inh, theHamiltonian density(total energy density)H , and the material Umov-
Poynting energy-flux vectorU by [15] (compare the general definitions given in eqns. (A.16),
(A.17), (A.14) and (A.15)).

(7) Pth = −∇Rχ.
∂L

∂ v
− ∇Rγ

∂ L

∂γ̇
= −p.F − Sβ = Pmech− Sβ,

bth : =

{

bK
.L := −

(

LδK
L −

(

γ,L
∂ L

∂ γ,K
+ χ,L

∂ L

∂ χ,K
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(9) H = γ̇
∂L

∂γ̇
+ v.

∂ L

∂ v
− L = Sθ + 2K − L = K + E,

U K = −

(

γ̇
∂L

∂ γ,K
+ vi ∂ L

∂χ i
.K

)

= T K
.i vi − SK θ,

where we have defined themechanical canonical(material) momentumPmechand theinternal
energyper unit reference volume by

Pmech= −p.F,

E = W + Sθ.(10)

For the first of these sometimes referred to as thepseudomomentum,see, for instance [12], [13],
eq. (10) is the usual Legendre transformation of thermodynamics between internal and free
energies. As a matter of fact, the definition (9) contains twoLegendre transformations, one
related to mechanical fields, and the other to thermal ones.

If we assume, as in standard continuum thermodynamics, thatentropy and heat flux are
related by the usual relation

(11) S = Q/θ,

we have

(12) Q = − θ
∂ W

∂ β
,

and eqn. (6 takes on the classical form of the energy-conservation equation (cf. Maugin and
Berezovski, 1999)

(13)
∂ H

∂ t

∣

∣

∣

∣

X
− ∇R. (T.v − Q) = 0.

Summing up, we have deduced from the Hamiltonian-Lagrangian density (1) all field equations,
balance laws and constitutive relations for the theory of materially inhomogeneous, finitely de-
formable, thermoelastic conductors of heat. As a matter of fact, eqns. (2) and (13) are the
local balance equations of linear momentum (in physical space) and energy, respectively. This is
completed by the balance equation of mass which here trivially reads

(14)
∂ ρ0

∂ t

∣

∣

∣

∣

X
= 0.

These are all formally identical to those of the classical thermoelasticity of conductors (e.g., as
recalled in [18]). Another balance law if that ofmoment of momentum(in physical space). This
is deduced from (1) by considering the action of the infinitesimal rotational component of the
connected group SO(3) in physical space. A classical derivation yields then (in components in
order to avoid any confusion in notation)

(15)
∂ W

∂ F [ i
.K

F j ]
.L = 0 or T K

.[ i F j ]
.L = 0,
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as the action of this group is inoperative on the material vector β. Apart from the functional
dependence ofW, eqn. (15) is also formally identical to the classical counterpart. Only the
equation of canonical momentum (5) differs from the one originally obtained in [2] material
thermoelasticity. But, abstraction being made of materialinhomogeneities, it is the same as
the one obtained by direct algebraic manipulations in [1] inthe “dissipationless” formulation of
thermoelasticity. Indeed, canonical momentum (7) is made of two parts, a strictly mechanical
part - which is none other than the pull back, changed of sign,of the physical momentum -
and a purely thermal part given by the constitutive behavior. In addition, the canonical stress
tensor (8) - also calledEshelby stress tensorby the present author - contains a contribution of
β because, from its very definition, its captures material gradients of all fields. One should note
that the source term in eqn. (5) has no energetic contents. Furthermore, contrary to common
use, even the entropy equation (3) is source free so that, surprisingly, in the absence of material
inhomogeneities, all equations obtained here arestrict conservation laws, hence the qualification
of “dissipationless theory”. In this rather strange -we admit it - approach, the entropyflux and
heat flux are derived from the free energy, on the same footingas entropy density , and stress
(eqns. (4) and (12)).

3. Correspondence with the classical theory

Since eqns. (2), (13), (14) and (15) are formally the same as in the classical theory, the limit
whereW does not depend onβ is trivial for these. What about eqns. (3) and (5) which are of
utmost importance for crack and phase-transition front studies (cf. [18]). We need to isolate the
contributions ofβ in order to get some “classical” limit (this meansprojectingonto the classical
state space of the thermoelasticity of conductors). First we expand eqn. (5) by accounting for
the expressions (7) and (8). After some rearrangements, we obtain the following equation (note
thatcurlRβ = 0; T =transposed)

(16)
∂ Pmech

∂ t

∣

∣

∣

∣

∣

X

− divRb̄mech= S∇Rθ + S. (∇Rβ)T + f inh,

whereb̄mech = b̄th − S⊗ β. But this is not all becauseL in bth still depends onβ. We must
isolate this dependency by writing

(17)
∂ W

∂ X
=

∂ Wmech

∂ X
+

∂ W

∂ β
. (∇Rβ)T =

∂ Wmech

∂ X
− S. (∇Rβ)T ,

where, in essence,Wmech = W(F, θ , β = 0; X). On substituting (17) into the material
divergence ofbmech, we finally transform (16) to

(18)
∂ Pmech

∂ t

∣

∣

∣

∣

∣

X

− divRbmech= f inh + fth,

where
bmech= −(L1R + T.F), L = K − Wmech(F, θ; X), fth := S∇Rθ.

The last introduced quantity is the materialthermal force of quasi-inhomogeneityclearly defined
by Epstein and Maugin [2] in their general theory ofmaterial uniformity and inhomogeneity.
Thus equation (18) has recovered its “classical” form, the quotation marks here emphasizing
that, in fact , while “classical” from our viewpoint, this equation is practically unknown to most
people, although it is the one on which thermoelastic generalizations of theJ-integral of fracture
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must be based (cf. [18], [21]). As to eqn. (3) we use the following trick. Multiplying (3) by
θ 6= 0 and accounting for (11) we obtain the “heat-propagation” equation in the form

(19) θ
∂ S

∂ t
+ ∇R.Q = S.β̇,

or else, by integration by parts,

(20)
∂ (θ S)

∂ t

∣

∣

∣

∣

X
+ ∇R.Q = Sθ̇ + S.β̇.

This equation is interesting by itself because of its structure - especially the right-hand side -
which is similar to that of eqn. (16), time derivatives replacing material space derivatives. The
“classical” limit is obtained in (19) or (20) by ignoring theβ term, i.e., restrictingW to Wmech.
The other terms then acquire their usual significance withQ andS no longer derivable from a
potential. Working then in reverse, one recovers in this approximation the equations

θ
∂ S

∂ t
+ ∇R.Q = 0,

∂ S

∂ t
+ ∇R.S = σ th,

whereσ th = −S. ∇R (ln θ) is thethermal entropy source. S andQ = S/θ are now given by
a constitutive equation obtained by invoking the noncontradiction of the formulation with the
second law of thermodynamics, which here locally readsσ th ≥ 0. This yields, for instance,
Fourier’s law of heat conduction.

4. Accounting for anelasticity

At this point we have effectively formulated a canonical theory of the thermoelasticity of con-
ductors. All field equations, balance laws , and constitutive equations follow from it. The rela-
tionship with the “classical” formulation was established. To proceed further, one must envisage
the case where nonthermaldissipative processes(e.g., anelasticity) are present. Considering the
theory of internal variables of stateto describe these phenomena is a sufficiently general ap-
proach as demonstrated in a recent book [15]. The onlya priori change should be accounting
for the dependency of the free energyW on a new set of variables collectively represented by the
symbolα The corresponding equation of state reads

A + (∂ W/∂α) = 0.

The main problem, however, remains to build the evolution equation ofα, normally a relationship
betweenα̇ and the thermodynamical forceA constrained by the second law of thermodynamics.
Thus the very presence ofα is related todissipative processesand a priori not amenable by means
of a canonical variationalformulation; α(X, t) is not a classical field; neither does it possess
inertia, nor is its gradient introduced to account for some nonlocality). But it was recently shown
how variablesα and θ could play parallel roles in a certain reformulation of the anelasticity
of thermoconductors ([14] , [17] (2000)). This is the trend to be followed. In effect, now we
propose the following variational formulation in symbolicform:

(21) lim
β→0

δ

∫

E3
×T

L (v, F, α, θ = γ̇ , β = ∇Rγ ; X) d4X = 0

whereL is the Hamiltonian-Lagrangian density per unit reference volume. Thelimit symbolism
used in eqn. (21) means that the limit asβ goes to zero must be takenin the equationsresulting
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from the variational formulation, this applying to both field equations and other consequences
of the principle such as the results of the application of Noether’s theorem. We claim that in
this limit all equations of the “classical” theory of anelastic conductors of heatare obtained,
including the entropy equation and heat-propagation equation in this quite general case, a rather
surprising result, we admit it. The only change compared to (1) is that the free energyW now
depends onα, i.e., we have the following general expression

L = L̄ (v, F, α, θ, β; X) = K (v; X) − W (F, α, θ, β; X) .

Equations (2), (3), (5) and (6) hold true but for the additional dependence ofW onα. The intrinsic
dissipation necessary for the expression of the dissipative nature of this variable becomes visible
only after performing manipulations of the type of those made in Section 3. We need to isolate the
contributions due to the “dissipative” variables in eqns. (3) and (15). Equation (17) is modified
due to the dependence onα:

∂ W

∂ X
=

∂ Wmech

∂ X
+

∂ W

∂α
(∇Rα)T +

∂ W

∂ β
(∇Rβ)T(22)

=
∂ Wmech

∂ X
− A. (∇Rα)T − S. (∇Rβ)T

where, in essence,Wmech = W(F, θ, α = const., β = 0; X). The equation of canonical
momentum first yields

∂ Pmech

∂ t

∣

∣

∣

∣

∣

X

− divRb̄mech= S∇Rθ + S. (∇Rβ)T + f inh.

But on substituting from (22) into this equation, it comes

(23)
∂ Pmech

∂ t

∣

∣

∣

∣

∣

X

− divRbmech= f inh + fth + f intr

where

bmech = − (L1R + T.F)

L = K − Wmech(F, θ, α = const.; X) ,

fth : = S∇Rθ,

f intr : = A (∇Rα)T ,

The last two introduced quantities are materialforces of quasi-inhomogeneitydue to a nonuni-
form temperature field (cf. [2]) and to a nonuniformα field, respectively ([14]). The presence
of those terms on an equal footing withf inh means that, insofar as the material manifold is
concerned, spatially nonuniform fields ofα or θ are equivalent to distributed material inho-
mogeneities (also continuously distributed defects such as dislocations) ; they arequasi-plastic
effects(cf. [13]). As to eqn. (3), accounting for the kinetic-energy theorem (obtained by mul-
tiplying scalarly eqn. (2) byv after multiplication byθ 6= 0 and accounting for (6) and finally
makingβ = const. (this is equivalent to discardingβ in the resulting equation and loosing the
connection ofSandQ with β) we arrive at the “heat-propagation” equationin the form

(24)
∂ (Sθ)

∂ t

∣

∣

∣

∣

X
+ ∇ R.Q = Sθ̇ + A.α̇ ≡ 8̄th + 8intr .
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Then working in reverse, in this approximation one recoversthe equations (compare to [14])

θ
∂ S

∂ t
+ ∇R.Q = 8intr ,

∂ S

∂ t
+ ∇R.S = σ th + σ intr ,

whereσ th = −S∇R(ln θ) is thethermal entropy sourceand

σ intr = θ−1A.α̇,

8intr = θ σ intr

are theintrinsic entropy source and theintrinsic dissipation , respectively. In the present classical
limit, b f Sandbf S= bf Sθ are now given by a constitutive equation obtained by invoking the
noncontradiction with the second law of thermodynamics which here locally reads

σ = σ th + σ intr ≥ 0.

We have recovered all equations or constraints of the “classical theory” by applying the scheme
proposed in eqn. (21).

5. Canonical four-dimensional space-time formulation

Equations (23) and (24) present an obvious space-time symmetry (see the two right-hand sides).
This obviously suggest considering these two equations as space and time-like components of a
uniquefour-dimensional equationin the appropriate space and the canonical momentumPmech

and the quantityθS (an energy which is the difference between internal and freeenergies) as
dual space-time quantities, i.e., they together form a four-dimensional canonical momentum

P(4) =
(

Pmech, P4 = θ S
)

.

We let the reader check that eqns. (23) and (24) can in fact be rewritten in the following pure
4-dimensional or 4× 4 formalism in an Euclidean 4-dim space (compare to World-invariant
kinematics in [20])

(25)
∂

∂ Xβ
Bβ

.α = fα ≡ Ā.
∂

∂ Xα
µ −

∂ W

∂ Xα

∣

∣

∣

∣

expl
=

∂ L

∂ Xα

∣

∣

∣

∣

(F,v f ixed)

Ā = (A, S) µ = (α, θ),

Xα(α = 1, 2, 3, 4) =
{

XK (K = 1, 2, 3) , X4 = t
}

Bβ
.α =

{

BK
.L = −bK

.L B4
.L = Pmech

L
BK

.4 = QK B4
.4 = θ S

}

, P(4) =
(

B4
.L , B4

.4

)

or, introducing intrinsically four-dimensional gradients and divergence inE4 for eqn. (25),

(26) divE4 Bmech= ∇E4 L |mech

where the right-hand side means the gradient computed keeping the “mechanical” fields (F,v)
fixed.Equation (26) represents the canonical form of the balance of canonical momentum and the
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heat-propagation equation for anelastic, anisotropic, finitely deformable solid heat conductors.
The 4-dimensional formalism introduced is somewhat different from that used by Maugin ([17])
or Herrmann and Kienzler ([7]). However, in the absence of intrinsic dissipative processes and
for isothermal processes, eqns. (23) and (24) - or eqn. (26) reduce to those of Kijowski and
Magli ([8]) in isothermal thermoelasticity, the second equation reducing obviously to the simple
equation

∂(θ S)/∂ t = 0.

This shows the closedness of the present approach with the general relativistic Hamiltonian
scheme.

6. Conclusion

The procedure used in this paper is essentially that of agauge theoryas practiced in modern
physics. We have artificially enlarged the state space of thetheory by adding one coordinate (the
material gradient of the “potential”γ ) to this space and then projected the resulting equations
back onto the original state space. The latter could not accommodate dissipative processes,
but the enlarged one does. Recurring to the classical dissipative formulation then requires this
projection or “return to reality”. In the mean time, a variational formulation has indeed been
proposed.
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