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DESIGNING TEXTURED POLYCRYSTALS WITH SPECIFIC

ISOTROPIC MATERIAL TENSORS: THE ODF METHOD

Abstract. Herein we study the following problem: Suppose we are given asupply
of grains, which are of the same material and have equal volume. Given a finite
set of material tensors

� (i ), can we find an arrangement of grains in an aggregate
so that all the tensors

� (i ) pertaining to this aggregate are isotropic? In this paper
we examine the preceding problem within the special contextof physical theories
where material anisotropy of polycrystalline aggregates is determined by crystal-
lographic texture, and we restrict our attention to tensorswhose anisotropic part is
linear in the texture coefficients. A method is developed by which the preceding
problem is answered positively for tensors of various orders and grains of vari-
ous crystal symmetries. Our method uses the machinery developed in quantitative
texture analysis. It is based on the symmetry properties of the orientation distribu-
tion function (ODF) and appeals to some recent findings on howcrystallographic
texture affects material tensors of weakly textured polycrystals. As illustration,
explicit solutions are worked out for the fourth-order elasticity tensor and for the
sixth-order acoustoelastic tensor.

1. Introduction

Consider an aggregate� of N linearly elastic cubic crystallites�α , which are of the same
material and have equal volume. Let a reference crystallite�o be chosen, and let� o be its
elasticity tensor. For a rotationR and fourth-order tensor

�
, let R⊗4 be the linear transformation

on the space of fourth-order tensors such that
�̃

≡ R⊗4� has its Cartesian components given by

H̃i j kl = Rip Rj q Rkr Rls Hpqrs,

whereRi j andHpqrs denote the components ofR and of
�

, respectively, and repeated suffixes
mean summation from 1 to 3. Under the Voigt model, the effective elasticity tensor of the
aggregate� is given by

(1) � =
1

N

N∑

α=1

R⊗4
α � o,

where the rotationRα defines the orientation of�α with respect to�o. Recently Bertram et al.
[1, 2], in the course of their work on texture-induced elastic anisotropy that results from finite
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plastic deformations of polycrystals, raised and answeredthe following question: What is the
smallest numberN of cubic grains required and how should they be arranged (i.e., determineRα

for α = 1,2, ..., N) so that� is isotropic? They proved that the smallestN is 4 and determined
R1, ..., R4 for � in Eq. (1) to be isotropic. In their papers Bertram et al. showed also that each
arrangementRα (α = 1, ..., N) which delivers an isotropic� under the Voigt model also renders
the effective elasticity tensor isotropic under the Reuss model and under the “geometric mean”
estimate [3, 4].

For broader applications, naturally one would ask analogous questions that pertain to ag-
gregates of grains of other crystalline symmetries and to other material tensors. For example,
the sixth-order acoustoelastic tensor [5, 6] figures prominently in problems that concern wave
propagation in prestressed solids; in some formulations [7], yield functions and flow rules in
plasticity involve not only fourth-order tensors but also sixth-order and even higher order ten-
sors. For definiteness, let us paraphrase the problem that weshall investigate in this paper as
follows: Suppose we are given an unlimited supply of grains�α , which are of the same mate-
rial, have equal volume, and have crystal symmetry characterized by the group�cr. We consider
aggregates� made up of a finite numberN of grains�α . Given a finite set of material tensors� (1), . . . ,

� (s), find a numberN and an arrangement of grains�α for which theN-grain aggre-
gate� has all its tensors

� (i ) (i = 1, . . . , s) isotropic. To reduce the foregoing to a manageable
mathematical problem, we shall restrict our discussion to aspecial class of physical theories
where material anisotropy of polycrystalline aggregates is determined by crystallographic tex-
ture (i.e., the preferred orientations of the constitutinggrains), and we shall only consider what
we call tensor functions of class (*) (see Definition 2 in Section 3 for a precise definition). Prime
examples are tensors of polycrystals defined by orientational averaging (e.g.,� in Eq. (1)) and
material tensors of “weakly textured” polycrystals [8, 9].

In their papers [1, 2], Bertram et al. restricted their attention to fourth-order tensors and to
aggregates of grains with cubic symmetry. As far as we can discern, the methods that they devel-
oped are applicable only for those special circumstances. To tackle our more general problem,
we shall appeal to the machinery developed in quantitative texture analysis [10, 11, 12], in par-
ticular the restrictions that crystal and texture symmetryimpose on the orientation distribution
function (ODF), and draw on some recent findings of Man [8, 13]with regard to how crystal-
lographic texture affects material tensors of weakly textured polycrystals. Since the expansion
coefficientscl

mn of the ODF (see Eq. (9) in Section 2.2) play a crucial role in the present work,
we call the approach developed in this paper for designing polycrystals with specific isotropic
material tensors theODF method.

As the reader will see in detail below, this method relies on finding suitable combina-
tions of crystal and texture symmetries which produce solvable systems of equations where
specific texture coefficientscl

mn of an aggregate are set equal to zero. In this paper we take
�cr to be a finite rotation group which satisfies the crystallographic restriction, i.e.,�cr =

C1,C2,C3,C4,C6, D2, D3, D4, D6, T , or O in the Schoenflies notation. Let� tex be a group
of texture symmetry. Unlike� cr, � tex need not observe the crystallographic restriction. The only
requirement on� tex is that it be a subgroup of the rotation group. Since we shall use various
� tex’s for building aggregates that consist of a finite number of crystallites, in this paper we use
only those� tex which are finite. In what follows, for a finite groupG, we write|G| for the order
of G.
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2. Preliminaries

In this section we recapitulate some facts about orientation measures and tensor representations
of the rotation group, which we shall use below. Throughout this paper, when we talk about
orientations of crystallites, it is understood that a reference crystallite has been chosen. The
orientation of a crystallite is then specified by a rotation with respect to the reference.

2.1. Tensor representations of the rotation group

Let V be the translation space of the three-dimensional Euclidean space, andV r ther -fold tensor
productV ⊗ V · · · ⊗ V . A rotationQ on V induces a linear transformationQ⊗r on Vr defined
by

(2) (Q⊗r � )i1···ir = Qi1 j1 Qi2 j2 · · · Qir jr H j1··· jr ,

where repeated suffixes mean summation from 1 to 3. The mapQ 7→ Q⊗r defines [14] a linear
representation of the rotation group SO(3) onVr . A subspaceZ ⊂ V r is said to be invariant
under the action of the rotation group if it remains invariant underQ⊗r for each rotationQ. Let
Q⊗r |Z be the restriction ofQ⊗r on Z. ThenQ 7→ Q⊗r |Z defines a linear representation of the
rotation group onZ. We refer to these representations of SO(3) on tensor spacesas tensor repre-
sentations. By formally introducing the complexificationVc of V andZc of Z (see Miller [14],
p. 105), we shall henceforth regard the tensor representations as complex representations. For
simplicity, we shall suppress the subscript “c” and continue to write the complex representations
asQ 7→ Q⊗r |Z.

In what follows we shall be concerned only with tensor spacesZ which remain invariant
under the action of the rotation group and, to specify the various types of tensors, we shall adopt
a system of notation advocated by Jahn [15] and Sirotin [16].In this notation,V2 stands for
the tensor productV ⊗ V , [V2] the space of symmetric second-order tensors,V [V2] the tensor
product ofV and [V2], [[ V2]2] the symmetric square of [V2] (i.e., the symmetrized tensor
product of [V2] and [V2]), [[ V2]3] the symmetric cube of [V2], [V2][[ V2]2] the tensor product
of [V2] and [[V2]2], ..., etc. For instance, the fourth-order elasticity tensor is of type [[V2]2],
and the sixth-order acoustoelastic tensor of type [V2][[ V2]2].

Following usual practice [16], we shall use the notation foreach type of tensor space (e.g.,
[[V2]2]) to denote also the corresponding tensor representation (e.g., Q 7→ Q⊗4|[[V2]2]).
Whether we really mean the tensor space or the correspondingtensor representation should be
clear from the context. The rotation group has a complete setof absolutely irreducible unitary
representations� l (l = 0,1, 2, ...) of dimension 2l + 1. Tensor representations of the rota-
tion group are, in general, not irreducible. Each tensor representationQ 7→ Q⊗r |Z can be
decomposed as a direct sum of subrepresentations, each of which is equivalent to some� l :

(3) Z = n0�0 + n1�1 + · · · + nr� r ,

wherenk is the multiplicity of� k in the decomposition. WhenZ = Vr , we always havenr = 1
in the decomposition formula. WhenZ is a proper subspace ofV r , somenk’s in Eq. (3) may be
equal to zero, but we must have dimZ =

∑r
k=0 nk(2k + 1). For example, we have

[[V2]2] = 2�0 + 2�2 + �4,(4)

[V2][[ V2]2] = 4�0 + 2�1 + 7�2 + 3�3 + 4�4 + �5 + � 6,(5)

and dim [[V2]2] = 21, dim [V2][[ V2]2] = 126. Here a term such as�6 in Eq. (5) denotes
a 2× 6 + 1 = 13 dimensional subspace of [V2][[ V2]2], over which the subrepresentation of
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Q 7→ Q⊗6 is equivalent to the irreducible representation�6. Decomposition formulae such as
Eqs. (4) and (5) above can be derived by computing the character of the tensor representation in
question [15, 17] or by other methods [16].

A tensor
�

∈ Z ⊂ Vr is isotropic if and only if it takes value in the subspacen0� 0, which
is a direct sum ofn0 1-dimensional subspaces invariant underQ⊗r . Thus we can read from Eqs.
(4) and (5) that isotropic elasticity and acoustoelastic tensors in [[V2]2] and [V2][[ V2]2] are
specified by two and four material constants, respectively.

In what follows we shall refer to formula (3) as the decomposition of the tensor spaceZ
into its irreducible parts.

2.2. Orientation measures

For brevity, henceforth we write� for the rotation group SO(3), which is a compact topological
group. LetC(� ) be the space of continuous complex functions on� . It is a Banach space under
the supremum norm. The elements ofC(� )∗, the dual space ofC(� ), are the Radon measures
on� . For f ∈ C(� ) andµ ∈ C(� )∗, we denote by〈µ, f 〉 the complex number that results when
µ is applied tof . Anticipating the applications that we shall investigate,we call positive Radon
measures℘ with ℘(� ) = 1 orientation measures, and we denote by� (� ) the set of orientation
measures on� . Under the weak∗ topology,� (� ) is compact inC(� )∗ (cf. [18], p. 19).

For Q ∈ � , the orientation measureδQ defined by

〈δQ, f 〉 = f (Q) for each f ∈ C(�)

is called the Dirac measure concentrated atQ. Discrete orientation measures are finite linear
combinations of Dirac measures

∑
i ai δQi , whereai > 0 for eachi and

∑
i ai = 1.

For orientation measures℘ and a fixed
� o ∈ Z ⊂ Vr , we consider (cf. Eq. (1))

(6)
�
(℘) =

∫
� R⊗r � od℘(R).

When the orientation measure℘ is absolutely continuous with respect to the Haar measure℘H
(with℘H (� ) = 1), the Radon-Nikodym derivatived℘/d℘H is well defined. Following common
practice, we call

(7) w =
1

8π2
d℘

d℘H

the orientation distribution function (ODF), and we may recast Eq. (6) in terms of the ODF as

(8)
�
(w) = 8π2

∫
� R⊗r � ow(R)d℘H (R).

If w is square integrable on� with respect to℘H , we may choose a spatial Cartesian coordinate
system and expandw in an infinite series as follows:

w(R(ψ, θ, φ)) =
1

8π2
+

∞∑

l=1

l∑

m=−l

l∑

n=−l

cl
mnDl

mn(R(ψ, θ, φ)),(9)

cl
mn = (−1)m+ncl

m̄n̄.(10)
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HereDl
mn are the WignerD-functions [19, 20];(ψ, θ, φ) are the Euler angles [11] corresponding

to the rotationR; z denotes the complex conjugate of the complex numberz, andm̄ = −m. We
call the expansion coefficients

(11) cl
mn =

2l + 1

8π2

∫
� Dl

mn(R)d℘(R)

the texture coefficients; they are related to Roe’s [11] coefficientsWlmn by the formula

Wlmn = (−1)m−n
√

2

2l + 1
cl
mn.

Let � 2(� ) be the set of orientation measures which are absolutely continuous and have their
corresponding ODF square integrable. Under the weak∗ topology,� 2(� ) is dense in� (� ),
because discrete orientation measures lie (see, e.g. [21])in the weak∗ closure of� 2(� ) and
they are dense in� (� ) (see [18], p. 27).

For any sequence(k)w of square-integrable ODF’s whose corresponding orientation mea-
sures(k)℘ converge weakly∗ to the Dirac measureδQ, by Eq. (11) their texture coefficients
(k)cl

mn converge to

(12) cl
mn =

2l + 1

8π2
Dl

mn(Q(ψ, θ, φ)).

We call thecl
mn’s given by Eq. (12) the texture coefficients pertaining to the Dirac measureδQ.

Likewise, we associate a unique set of texture coefficientscl
mn to each orientation measure℘.

Thus the texture coefficientscl
mn, originally defined on� 2(� ) by Eq. (11), are extended by

continuity to become weakly∗ continuous functions on� (� ).
Now consider an aggregate� which consists of a single crystallite� with crystal symmetry

specified by a point group�cr which is a subgroup of the rotation group� . Let Ncr be the order
of �cr, and letQ̌k (k = 1, ..., Ncr) be the elements of� cr. Suppose� assumes an orientation
specified by the rotationR0. The orientation measure of� is given by

℘ =
1

Ncr

Ncr∑

k=1

δk,

whereδk is the Dirac measure concentrated atR0Q̌k. The texture coefficients of� are then
given by

(13) cl
mn =

2l + 1

8π2
·

1

Ncr
·

Ncr∑

k=1

Dl
mn(R0Q̌k).

Let � (1) be a finite subgroup of� with elementsQ(1)
j , j = 1, ..., N1, whereN1 is the order

of � (1). Let � (1) be an aggregate ofN1 crystallites� j of equal volume, which have crystal

symmetry� cr and orientations specified byQ(1)
j R0. The texture coefficients of� (1) are:

(14) cl
mn =

2l + 1

8π2
·

1

N1
·

1

Ncr
·

N1∑

j =1

Ncr∑

k=1

Dl
mn(Q

(1)
j R0Q̌k).
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If the entire aggregate� (1) is rotated byR1, the rotated aggregate� (1)
R will have texture coeffi-

cients

(15) cl
mn =

2l + 1

8π2
·

1

N1
·

1

Ncr
·

N1∑

j =1

Ncr∑

k=1

Dl
mn(R1Q(1)

j R0Q̌k).

Let � (2) be a finite subgroup of� with elementsQ(2)
i , i = 1, ..., N2, whereN2 is the order

of � (2). Let � (2) be the aggregate ofN1 × N2 crystallites formed by replacing each crystallite

� j in the aggregate� (1)
R , whose orientation isR1Q(1)

j R0, with N2 copies whose orientations

areQ(2)
i R1Q(1)

j R0 (i = 1, ..., N2). The texture coefficients of aggregate� (2) are:

(16) cl
mn =

2l + 1

8π2
·

1

N2
·

1

N1
·

1

Ncr
·

N2∑

i=1

N1∑

j =1

Ncr∑

k=1

Dl
mn(Q

(2)
i R1Q(1)

j R0Q̌k).

Let � cr = � (0), where� (0) ⊂ � is a specific point group. We call� (1), and� (2) aggre-

gates of type� (1)R0� (0), and� (2)R1� (1)R0� (0), respectively. (We shall take aggregate� (1)
R to

be of the same type as that of� (1).) In general, forp ≥ 1, for a set of rotationsR0, ..., Rp−1, and

finite subgroups� (1), ..., � (p) of the rotation group� , we can easily write down the formula for
the texture coefficientscl

mn that pertain to the aggregate of type� (p)Rp−1� (p−1)...� (1)R0� (0),

which consists ofNp × Np−1 × · · · × N1 crystallites of equal volume and with�cr = � (0),
namely:

(17) cl
mn =

2l + 1

8π2
·

1

Np
· ... ·

1

N1
·

1

N0
·

Np∑

i p=1

...

N1∑

i1=1

N0∑

i0=1

Dl
mn(Q

(p)

i p
Rp−1 · · · Q(1)

i1
R0Q(0)

i0
),

where the order and elements of� (0) are denoted byN0 andQ(0)
i0

(i0 = 1, ..., N0), respectively.

3. The ODF method

Let wiso = 1/(8π2), the ODF when all texture coefficients are zero. Letm = 8π2℘H , and let
L2(� ,m) be the space of complex functions on� which are square integrable with respect to the
measurem. Let

�
0 = { f ∈ L2(� ,m) :

∫
� f dm = 0},(18)

�
= {w ∈ L2(� ,m) : w = wiso + f, where f ∈

�
0}.(19)

All orientation distribution functionsw fall in
�

.

Letw be the ODF which characterizes the crystallographic texture of a polycrystalline ag-
gregate� . After � undergoes a rotationQ, its texture is described by a new ODF�Qw, which
is related tow, the ODF before rotation, by the formula

(20) �Qw(R) = w(QT R)

for each rotationR.
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The tensor function
�

: � (� ) −→ Vr , as defined in Eq. (6) by orientational averaging,
is weakly∗ continuous. When restricted to� 2(� ), the function

�
(·) can be taken as a function

of the ODF. This function is defined by Eq. (8), which makes sense for any argumentf in
L2(� ,m). As is apparent from Eq. (8), the extended functionf 7→

�
( f ) is strongly continuous

on L2(� ,m). Substituting Eq. (9) into Eq. (8), we observe that

(21)
�
(w) =

�
iso +

� ′
[w − wiso],

where
�

iso =

∫
� R⊗r � od℘H (R)

is the isotropic part of
�

, and

� ′
[w − wiso] = 8π2

∞∑

l=1

l∑

m=−l

l∑

n=−l

cl
mn

∫
� R⊗r � oDl

mn(R)d℘H (R),

the anisotropic part, is linear and strongly continuous on
�

0. From the invariance of the Haar
measure℘H , we observe immediately that

� ′
satisfies the constraint

(22)
� ′

[�Qw − wiso] = Q⊗r
(� ′

[w − wiso]
)

for each rotationQ.

Tensor functions defined by orientational averaging are prime examples of the class (*) of
material tensors that we study in this paper. We formalize this class with a definition.

DEFINITION 2. Let Z be a subspace of Vr which is invariant under Q⊗r for each rotation
Q. We say that a tensor function� : � (� ) −→ Z is of class (*) if

(i) � is weakly∗ continuous;

(ii) when restricted to� 2(� ),

(23) � (w) = � iso + � ′[w − wiso],

where� iso is isotropic and� ′[·] is linear and strongly continuous on
�

0;

(iii) � [·] observes the constraint

(24) � ′[�Qw − wiso] = Q⊗r (
� ′[w − wiso]

)

for each rotation Q.

Besides tensors defined by orientational averaging, class (*) includes material tensors per-
taining to “weakly textured” polycrystals [8, 9]. Henceforth we shall consider only tensor func-
tions of class (*).

Let � : � (� ) −→ Z ⊂ Vr be a tensor function of class (*). In our method for designing
aggregates with an isotropic� , the following observation is instrumental:

(#) Let Z = n0� 0 + n1� 1 +· · ·+ nr � r be the decomposition of the tensor space
Z into its irreducible parts. Let� (℘) = � 0(℘)+ � 1(℘)+ � 2(℘)+ ...+ � r (℘),
where� k(·) (k = 0, 1, ..., r ) takes values in thenk×(2k+1) dimensional subspace
nk� k of Z. Fork ≥ 1, the components of� k(℘) are linear combinations of only
those texture coefficientscl

mn with l = k.
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Observation (#) is an immediate corollary of a theorem due toMan [13].

REMARK 1. The tensor� (℘) is isotropic if and only if� k(℘) = 0 for k = 1,2, ..., r .
Hence, to design an aggregate with an isotropic� , it suffices to find an orientation measure℘
which has itscl

mn = 0 for those 1≤ l ≤ r with nl 6= 0 in the decomposition formula forZ
above.

REMARK 2. Let � (0) and � (p) be finite rotation groups that satisfy the crystallographic
restriction, and let� (1), . . . , � (p−1) be finite rotation groups. Let� and �̂ be aggregates of
type � (p)Rp−1� (p−1)...� (1)R0� (0) and type� (0)RT

0 � (1)...� (p−1)RT
p−1� (p), respectively,

and letcl
mn and ĉl

mn be their texture coefficients. SinceDl
mn(R

T ) = Dl
nm(R) for each ro-

tation R, we see that̂cl
mn = cl

nm. Hence, if allcl
mn = 0 for a specific set ofl ’s, then all

ĉl
mn = 0 for the same set ofl ’s, and vice versa. Thus, if we can find an aggregate of type
� (p)Rp−1� (p−1)...� (1)R0 � (0) which has an isotropic� , we obtain at once another aggregate

of type� (0)RT
0 � (1)...� (p−1)RT

p−1� (p) which has an isotropic� .

By Remark 1, the problem of designing aggregates with their elasticity tensors isotropic
reduces to that of designing aggregates with all theirc2

mn’s andc4
mn’s zero. By the same token,

an aggregate with all itscl
mn = 0 for 1 ≤ l ≤ 6 has both its elasticity and acoustoelastic tensors

isotropic. In any case, to design an aggregate which has a finite set of specific material tensors
isotropic, we just need to determine an arrangements of grains so that the resulting aggregate has
all its cl

mn = 0 for an appropriate finite set ofl ’s. Let us now proceed to examine this problem.

With the original formulation of the problem of Bertram et al. [1, 2] in mind, here we seek
only aggregates whose constituting crystallites all have equal volume. For simplicity, whenever
no confusion should arise, we shall simply say “identical grains” or just “grains” when we really
mean crystallites of the same material that have equal volume. In fact, all solutions reported in
Sections 4 and 5 below are aggregates of “identical grains”.

Consider a polycrystalline aggregate� , which undergoes a rotationQ. Let cl
mn andc̃l

mn be
the texture coefficients of the aggregate before and after the rotation. These two sets of texture
coefficients are related by the formula [8, 11]

(25) c̃l
mn =

l∑

p=−l

cl
pnDl

pm(Q
−1).

For a fixedl and n, if cl
mn = 0 for all −l ≤ m ≤ l , then c̃l

mn = 0 for all −l ≤ m ≤

l , irrespective of the rotationQ. This observation suggests a procedure for constructing an
aggregate of crystallites with�cr = � (0) which has all itscl

mn = 0 for a specific finite set ofl ’s
(say, forl = l1, ..., la):

1. Forl = l1 and anni between−l1 andl1, find an aggregate� (1) of type� (1)R0� (0) (see

Section 2.2 above) which hascl1
mni = 0 for −l1 ≤ m ≤ l1. The job here is to seek an

appropriate rotationR0 and a finite rotation group� (1) which meet the requirement. The
aggregate� (1) has� (1) and� (0) as its group of texture symmetry and crystal symmetry,
respectively. This knowledge will facilitate the search for an appropriateR0 and� (1), as
we shall see from the specific examples in the next two sections.

2. Depending on the specificl1 and� (0), the aggregate� (1) may already have itscl1
mn =

0 for all −l1 ≤ m ≤ l1 and −l1 ≤ n ≤ l1. If that is the case, forl = l2 and an



Designing textured polycrystals 163

ni between−l2 and l2, find an aggregate� (2) of type � (2)R1� (1)R0� (0) which has

cl2
mni = 0 for −l2 ≤ m ≤ l2. SinceR0 and� (1) have already been determined, the task

here is to find an appropriate rotationR1 and a suitable finite rotation group� (2). The
aggregate� (2) has� (2) and� (0) as its group of texture symmetry and crystal symmetry,
respectively. Because of the transformation formula (25),aggregate� (2) still has its

cl1
mn = 0, irrespective of our choice ofR1 and� (2) which renders the texture coefficients

cl2
mni of � (2) null for all −l2 ≤ m ≤ l2. If there is ann j 6= ni such thatcl1

mnj 6= 0 for

somem, find an aggregate� (2) of type � (2)R1� (1)R0� (0) such thatcl1
mnj = 0 for all

−l1 ≤ m ≤ l1.

3. Repeat the preceding procedure iteratively to find an aggregate of type� (p)Rp−1� (p−1)

...� (1)R0� (0) which has all itscl
mn = 0 for l = l1, ..., la.

We shall work out a few concrete examples in the next two sections to illustrate the proce-
dure described above.

4. Example: elasticity tensor

As our first example, let us consider the elasticity tensor� . By decomposition formula (3) and
observation (#), if we wish to design an aggregate with an isotropic elasticity tensor of class
(*), we need only to find an aggregate whosec2

mn andc4
mn coefficients are zero. We begin our

discussion by revisiting the problem solved by Bertram et al. [1, 2], namely, that of cubic grains.

In what follows we always assume that a fixed spatial Cartesian coordinate system has been
chosen. We writee1, e2, ande3 for the orthonormal basis vectors that define this coordinate
system. For a unit vectore and an angleω ∈ [0, π ], we denote byR(e, ω) the rotation aboute
by angleω. All angles given below are in radians.

4.1. Cubic grains

Here�cr = O. We choose a reference crystallite which has its three four-fold axes of cubic sym-
metry in line with the three spatial coordinate axes. This istantamount to choosingR(e1, π/2),
R(e2, π/2), andR(e3, π/2) to be the generators of the groupO of crystal symmetry. With this
choice of reference, the texture coefficients of any aggregate of cubic grains satisfy [10, 11] the
equation

(26) cl
mn =

l∑

p=−l

cl
mpDl

np(Q),

for each of the 24 rotationsQ in the symmetry group of the reference crystallite. As a result,
any aggregate of cubic grains has [22] theirc2

mn coefficients all zero. Moreover, of thec4
mn

coefficients, only one coefficient is independent for each fixedm (−4 ≤ m ≤ 4), andc4
m0 (−4 ≤

m ≤ 4) may be chosen as the independent coefficients. An aggregate of cubic grains with
c4
m0 = 0 for eachm has all itsc2

mn andc4
mn coefficients vanish and thence has an isotropic� .

For an aggregate of one grain, there are nine equations (i.e., c4
4̄0
(R0) = 0, c4

3̄0
(R0) = 0,

c4
2̄0
(R0) = 0, . . ., c4

20(R0) = 0, c4
30(R0) = 0, c4

40(R0) = 0, where each texture coefficient is in
the form of Eq. (13)) to be solved for one orientationR0(ψ0, θ0, φ0). Clearly there need not be a
solution. In fact, thanks to the work of Bertram et al. [1], wealready know that this system of nine
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equations has no solution forR0. By adding additional identical grains in specific orientations
dictated by a group� (1) of texture symmetry, we can place additional restrictions on the texture
coefficients and reduce the number of equations which must besatisfied.

Suppose we add three identical cubic grains and arrange themso that the aggregate has
orthorhombic texture symmetry with the coordinate axes being the axes of two-fold rotational
symmetry (i.e.,� (1) = D2 with R(e2, π) andR(e3, π) as generators). The texture coefficients
must be calculated as in Eq. (14) but there are fewer independent coefficients. ForQ ∈ D2, Eq.
(25) implies that

(27) cl
mn =

l∑

p=−l

cl
mpDl

np(Q
−1)

holds. By consideringQ(ψ, θ, φ) = (0, π,0) and Q(ψ, θ, φ) = (0,0, π), we determine that
cl
mn = 0 if m is odd, andcl

m̄n = (−1)l cl
mn if m is even. Hence, under this texture symme-

try/crystal symmetry combination, the only independentc4
m0 coefficients can be chosen to be

c4
00, c

4
20, andc4

40, and by making these coefficients zero, allc4
mn vanish.

The result is a system of three equations:

(28) c4
00(R0) = 0, c4

20(R0) = 0, c4
40(R0) = 0,

where each texture coefficient is of the form given in Eq. (14). SinceR0 is parametrized by
Euler angles, the equations need only be solved for(ψ0, θ0, φ0). We used the computer algebra
system Maple to find solutions to the three simultaneous equations. Because of theD2 texture
symmetry andO crystal symmetry, two solutionsR0 and R#

0 of system (28) describe the same
arrangement of grains if

R#
0 = Q̃R0Q̌

for someQ̃ ∈ D2 and Q̌ ∈ O. Surely we should regard such anR0 and R#
0 as equivalent

solutions. Since|D2| = 4, |O| = 24, andD2 is a subgroup ofO, given a solutionR0 there
will be 96, 48, or 24 solutions equivalent to it ifR0 commutes with none, one, or both of the
generators ofD2. From our Maple solutions of (28), we identified the following four, which are
not equivalent in the preceding sense:

R(1)
0 (ψ0, θ0, φ0) = (0.59549275, 0.52174397, 0.59549275),(29)

R(2)

0 (ψ0, θ0, φ0) = (2.16628908, 0.52174397, 0.59549275),(30)

R(3)

0 (ψ0, θ0, φ0) = (0.97530358, 0.52174397, 0.97530358),(31)

R(4)

0 (ψ0, θ0, φ0) = (2.54609990, 0.52174397, 0.97530358),(32)

where the angles are given in radians. The preceding solutions are clearly related by the equations

(33) R(2)

0 = R(e3, π/2)R
(1)

0 , R(4)

0 = R(e3, π/2)R
(3)

0 .

SolutionR(1)

0 is none other than the 4-grain solution found by Bertram et al. [1, 2].

Let � i (i = 1,2, 3, 4) be the aggregate described by solutionR(i )
0 . Since

R(e3, π/2)D2 = D2R(e3, π/2),

we observe from (33) that�2 and�4 result if we rotate aggregates�1 and�3 by R(e3, π/2),
respectively. We take aggregates�2 and�4 to be of the same type as�1 and�3, respectively.
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For brevity, let us simply writeR0 for R(1)

0 . Then aggregate�1 is of type D2R0O. If we

write R0(ψ0, θ0, φ0) = (α, β, α), thenR(3)
0 (ψ0, θ0, φ0) = (π/2 − α, β, π/2 − α). Construct

an aggregatẽ� by rearranging the grains in�1 so thatR0 is replaced byRT
0 , which has Euler

angles(π−α, β, π−α) and is equivalent to(π−α, β, π/2−α) for a D2RT
0 O aggregate. If we

rotate�̃ by R(e3,−π/2), we obtain aggregate�3 becauseR(e3,−π/2)D2 = D2R(e3,−π/2).
Hence�3 is of typeD2RT

0 O.

4.2. Grains of other crystal symmetries

In Eq. (29) we obtain an aggregate� (1) of type D2R0O, which has its elasticity tensor�
isotropic. From this solution we can construct, for crystallites of any�cr ⊂ � , an aggregate with
an isotropic� .

The method is as follows: LetR1 be any rotation and� (2) be any finite subgroup of�
which satisfies the crystallographic restriction. If we rotate the aggregate� (1) by R1, the rotated

aggregate� (1)
R still has its� isotropic. Now append grains to� (1)

R to obtain an aggregate of type

� (2)R1D2R0O, which is simply an assembly ofN2 (the order of� (2)) rotated copies of� (1)
R .

Clearly the new assembly has an isotropic� . By Remark 2, we conclude that the aggregate
of type O RT

0 D2RT
1 � (2), which consists of 24× 4 = 96 grains with�cr = � (2), also has an

isotropic� . In other words, for crystallites with its�cr being a finite rotation group, including
triclinic crystallites with�cr = C1, we can always design an aggregate with 96 identical grains
which has an isotropic elasticity tensor.

The appearance of an arbitrary rotationR1 in the preceding scheme suggests that this recipe
generally will not lead to a solution with the least possiblenumber of grains. Indeed for many
crystal symmetries we can achieve our goal using less grains. Let us now present one other
solution for each�cr ⊂ � other thanC1.

�cr = D2, D4, D6

By Remark 2,O RT
0 D2 is a solution with 24 orthorhombic grains. Moreover, if� (1) con-

tainsD2 as a subgroup, then the 24-grain aggregate of typeO RT
0 � (1) also has an isotropic� .

Indeed, letq = |� (1)|/|D2| and

(34) � (1) =

q⋃

i=1

gi D2, (disjoint union)

where{gi : i = 1, ...,q} is a set of left coset representatives ofD2 in � (1). An aggregate of
type � (1)R0O can be taken as a “super-aggregate” ofq rotated copies of the aggregate of type
D2R0O, wheregi (i = 1, ...,q) describe the rotations in question. Since each rotated copy has
an isotropic� , so does the super-aggregate. It follows from Remark 2 that an aggregate of type
O RT

0 � (1) also has an isotropic� .

The same argument in fact proves a general assertion, which we put as the next remark.

REMARK 3. Let �a and �b be point groups such that�a ⊂ �b ⊂ � = SO(3). If an
aggregate of type� (p)Rp−1� (p−1)...� (1)R0�a has its material tensors

� (1), ...,
� (p) isotropic,

so does an aggregate of type� (p)Rp−1� (p−1)...� (1)R0�b.
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By the preceding remark, cubic aggregates of 24 tetragonal and hexagonal crystallites which
are of typeO RT

0 D4 andO RT
0 D6, respectively, have their elasticity tensor isotropic; here we take

rotationsR(e2, π) andR(e3, π/2) as the two generators of groupD4 and rotationsR(e2, π) and
R(e3, π/3) as the two generators of groupD6.

�cr = C2,C4,C6

Let C(1)
2 = {I , R(e3, π)} and C(2)

2 = {I , R(e2, π)}, where I is the identity in� . The

solution of typeD2R0O can be looked upon as of typeC(1)

2 IC(2)

2 R0O. By Remark 2, we

obtain a solution of typeO RT
0 C(2)

2 IC(1)

2 , which consists of 24× 2 = 48 C2-grains of equal
volume.

Let R(e3, π/2) and R(e3, π/3) be the generator of groupC4 andC6, respectively. Since

bothC4 andC6 includeC(1)

2 as a subgroup, by Remark 3 we conclude that aggregates of type

O RT
0 C(2)

2 IC4 and O RT
0 C(2)

2 IC6 are also solutions. These aggregates are made up of 48C4-
andC6-grains, respectively.

�cr = C3

First we present a solution of hexagonal grains which exhibitsC3 texture symmetry. To start
with, we arrange an aggregate of 8 identical hexagonal grains so that it has tetragonal texture
symmetry (i.e. � (1) = D4, whereR(e2, π) and R(e3, π/2) are taken as generators). Then,
by determining the independent coefficients forl = 4 and solving the resulting equations with
texture coefficients of form shown in Eq. (14), we find that theorientation

(35) R0(ψ0, θ0, φ0) = (0.39269908, 1.22389959, 0)

generates an aggregate of typeD4R0D6 which has all itsc4
mn coefficients zero.

By placing three copies of this aggregate in such a way that the super-aggregate hasC3
texture (i.e.� (2) = C3, with R(e3,2π/3) as generator), we are able to determine that among
thec2

mn coefficients of the super-aggregate only the coefficientc2
00 is independent, andc2

00 = 0

renders allc2
mn coefficients zero. Moreover, we find that

R1(ψ1, θ1, φ1) = (0,0.95531662, 0)

is a solution ofc2
00 = 0, where the texture coefficient is of form Eq. (16) withR0 given by

Eq. (35). Thus we obtain an aggregate of typeC3R1D4R0D6, which has an isotropic elasticity
tensor� .

By Remark 2, aggregates of typeD6RT
0 D4RT

1 C3, which consist of 12× 8 = 96C3-grains
of equal volume, have their elasticity tensor isotropic.

�cr = D3

We found an arrangement of 24D3-grains, for which the elasticity tensor� of the aggregate
is isotropic. The arrangement is of typeO R0D3, where

R0(ψ0, θ0, φ0) = (0.55357436, π/2,0).
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�cr = T

In paper [1] Bertram et al. have presented a solution of typeT R0O, where

(36) R0(ψ0, θ0, φ0) = (0.24002358, 2.67480609, 2.90156907).

Hence there is a solution of typeO RT
0 T with 24 tetrahedral grains. In fact,RT

0 = R0 in this
case.

In summary, we have presented at least one solution for each�cr which is a finite rotation
group that satisfies the crystallographic restriction. Foreach�cr, our best solution at present
(where using a smaller number of grains means better) requires 4 grains for�cr = O; 24 grains
for �cr = D2, D3, D4, D6, or T ; 48 grains for�cr = C2,C4, or C6; 96 grains for�cr = C1, or
C3. Except for the case of cubic grains, where a proof was given by Bertram et al. [1], it remains
unclear whether the solution we presented would be a minimalsolution, i.e., one with the least
possible number of identical grains for the�cr in question. In fact, we believe that many of our
present “best solutions” can be improved upon.

5. Example: acoustoelastic tensor

In a similar manner, it is possible to build textured aggregates which have isotropic tensors of
higher order. As an example, here we seek designs which render the sixth-order acoustoelastic
tensor� [5, 6] isotropic. A glance at decomposition formula (5) reveals that we should design
aggregates with theircl

mn coefficients all zero for 1≤ l ≤ 6. A solution in this regard will not
only have its acoustoelastic tensor� isotropic, but will also attain (cf. Section 2.1) isotropy for
all its material tensors of orderl ≤ 6, including the fourth-order elasticity tensor� .

For all the finite rotation groups that appear below, we have already specified their gener-
ators in the preceding section. For groups of crystal symmetry, the generators help specify the
orientation of the reference crystallite with respect to the chosen spatial Cartesian coordinate
system.

5.1. Cubic grains

With our choice of reference crystallite and spatial coordinate system, the restrictions imposed
by crystal symmetry (see Eq. (26)) dictate [10, 22] that any aggregate of cubic grains must have
all their cl

mn coefficients vanish forl = 1, 2,3, 5. Hence we just need to worry about thec4
mn

andc6
mn coefficients.

Consider an arrangement of 8 identical cubic grains so that the aggregate� (1) has tetragonal
texture symmetry (i.e.� cr = O and� (1) = D4). From the fact that Eqs. (26) and (27) should
hold for Q ∈ O andQ ∈ D4, respectively, we observe that all thec6

mn coefficients will vanish if
c6
00 andc6

40 are null. Using Maple to solve the equationsc6
00(R0) = 0 andc6

40(R0) = 0, where
the texture coefficients are in the form of Eq. (14), we found that

(37) R0(ψ0, θ0, φ0) = (0.08033115, 2.63923776, 0.99945255)

is an orientation which makes all thec6
mn coefficients vanish for the aggregate� (1) of type

D4R0O.

Place 4 identical copies of this� (1) aggregate so that the new super-aggregate� (2) has
orthorhombic texture symmetryD2. Equation (25) reminds us that thec6

mn coefficients of� (2)
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vanish since all thec6
mn coefficients of� (1) are zero. Because of theD2 texture symmetry, we

only need to solve a system of three equations:

(38) c4
00(R1) = 0, c4

20(R1) = 0, c4
40(R1) = 0,

where each texture coefficient is of the form given in Eq. (16).

Using Maple, we found a solution

(39) R1(ψ1, θ1, φ1) = (0.10523426, 0.47936161, 0.28647879).

Thus we have constructed an aggregate of typeD2R1D4R0O consisting of 4× 8 = 32 identical
cubic grains which has all its material tensors of orderl ≤ 6 isotropic.

5.2. Grains of other crystal symmetries

By the argument given in Section 4.2, we know that for any rotation R2 and point group� (3) ⊂

� , an aggregate� (3) of type O RT
0 D4RT

1 D2RT
2 � (3), whereR0 and R1 are given by Eqs. (37)

and (39), respectively, has all its material tensors of order l ≤ 6 isotropic. Such an aggregate
consists of 24× 8 × 4 = 768 identical grains of crystal symmetry�cr = � (3).

For most crystal symmetries, we expect that we can achieve the same goal with a smaller
number of grains. For instance, by Remark 2 and 3, aggregatesof typesO RT

0 D4RT
1 D2, O RT

0 D4

RT
1 D4, andO RT

0 D4RT
1 D6, whereR0 andR1 are given by Eqs. (37) and (39), respectively, have

all their material tensors of orderl ≤ 6 isotropic. These aggregates are made up of 24× 8 = 192
identical orthorhombic, tetragonal, and hexagonal grains, respectively.

Likewise, by treating an aggregate of typeD2R1D4R0O as of typeC(1)

2 IC(2)

2 R1D4R0O,

whereC(1)

2 andC(2)

2 are defined in Sec. 4.2, we obtain a solution of typeO RT
0 D4RT

1 C(2)

2 IC(1)

2 ,
which consists of 24×8×2 = 384C2-grains of equal volume. By Remark 3, aggregates of type

O RT
0 D4RT

1 C(2)

2 IC4 and of typeO RT
0 D4RT

1 C(2)

2 IC6 are also solutions. These aggregates are
made up of 384C4- andC6-grains, respectively.

6. Discussion

The outlined method allows the construction of aggregates having isotropic tensors of various
orders. So long as�cr is a finite subgroup of the rotation group� , the specific crystal symmetry
of the crystallites is of no concern. Indeed we have shown in Sections 4 and 5 that once a design
of any type is found for an aggregate of identical grains which has a specific set of material
tensors isotropic, it generates for each such�cr a solution which has the same set of tensors
isotropic. Our ODF method can be easily implemented using any software which can solve
(nonlinear) systems of equations.

But there are limitations. At each step, say thep-th, the method requires finding a rotation
Rp−1(ψp−1, θp−1, φp−1) which satisfies a system of nonlinear equationscl

mn(Rp−1) = 0,

wherecl
mn is of the form (17),l andn are given, andm runs over those indices between−l and

l for which the texture coefficientscl
mn are independent for aggregates with� (p) as the group

of texture symmetry. When the number of independent indicesis bigger than three, there are
more equations than the number of unknowns. While nothing can be said for sure because the
equations are nonlinear, it is likely that the method would break down when that happens. To
reduce the number of independentm’s, we could take� (p) to be a group of larger order. For
example, for� (p) = O, the number of independentm’s is not bigger than three whenl ≤ 34.
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Of course, we hardly need to worry about tensors of order higher than 34 in practice. But
taking� (p) = O at every step is also impractical. The equations describingthecl

mn coefficients
quickly become unwieldy asl is increased or when the orders of the symmetry groups involved
are large. In this case, it may be infeasible to find solutionseven if they exist. Using�cr and
� (p) (p ≥ 1) of smaller orders will simplify the equations. A smaller�cr, however, will increase
the number of steps required because for eachl there will be more(l ,n) pairs for which thecl

mn
coefficients must be considered. A smaller� (p) will increase the number of equations at the
p-th step. Hence the method relies on finding a suitable combination of �cr and� (p) (p ≥ 1)
which produces solvable systems of equations at all the necessary steps that lead to the design of a
suitable aggregate. This requires some trial-and-error until a more systematic approach is worked
out. In fact, some texture and crystal symmetry combinations do not have solutions to produce
� (1) aggregates with isotropic elasticity tensor. (For example, �cr = D6 with � (1) = C2 has
no solution forc2

00(R0) = 0, c2
02(R0) = 0.) Finally, even if our method successfully produces a

solution for a given�cr and a given set of material tensors
� (i ) (i = 1, ..., s), the solution found

need not be a minimal solution, i.e., there might still be other arrangements involving a smaller
number of� cr-grains for which all the

� (i ) tensors of the aggregate are isotropic.

Our ODF method seeks solutions which exhibit texture symmetry. Carrying texture sym-
metry is clearly not a necessary condition for a solution. A more basic question, which remains
to be answered, is whether the set of minimal solutions for a particular�cr and set of material
tensors

� (i ), if non-empty, would always include some member that exhibits texture symmetry.
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