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STATISTICALLY STORED DISLOCATIONS IN

RATE-INDEPENDENT PLASTICITY

Abstract. Work hardening in crystalline materials is related to the accumulation of
statistically stored dislocations in low-energy structures. We present here a model
which includes dislocation dynamics in the rate-independent setting for plasticity.
Three basic physical features are taken into account: (i) the role of dislocation
densities in hardening; (ii) the relations between the slipvelocities and the mobility
of gliding dislocations; (iii)the energetics of self and mutual interactions between
dislocations. The model unifies a number of different approaches to the problem
presented in literature. Reaction-diffusion equation with mobility depending on
the slip velocities are obtained for the evolution of the dislocations responsible of
hardening.

1. Introduction

Slip lines and slip bands on the surface of a plastically deformed crystal are due to complicated
phenomena which occur inside the crystal. When plastic deformation occurs, dislocations are
generated : some of them move towards the crystal surface forming slip lines, others may be
stored to harden the material and form more or less regular patterns ([1]-[16]). As reported in
Fleck et al. [1], “dislocations become stored for two reasons : they accumulate by trapping
each other in a random way or they are required for compatibledeformation of various parts
of the crystal. The dislocation which trap each other randomly are referred to asstatistically
stored dislocations...gradients of plastic shear result in the storage ofgeometrically necessary
dislocations”.

Taking into account both statistically stored dislocation(SSD) and geometrically necessary
dislocations (GND), our purpose in this paper is to construct a model which is able, at least in the
simple case of single slip, to describe dislocations patterns. The basic idea here is to introduce
dislocation densities as independent variables in the framework of Gurtin’s theory of gradient
plasticity [17].

Total dislocation densities have been introduced frequently in the literature, both to describe
hardening and the formation of patterns during plastic deformations ([18]-[26]).

In fact, materials scientists often describe hardening dueto dislocation accumulation by
means of the so-called Kocks’ model (see [22]): the resistance to slipζ is assumed to depend on
the total dislocation density% through a relation of the form

ζ = ζ(%),
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and the accumulation of dislocations during plastic slip evolves according to an ordinary differ-
ential equation which can be rewritten in the form

(1)
d%

dt
= |ν|(ks

√
% − kr %),

whereν is the resolved (plastic) shear strain rate andkr , ks are positive constants. In the right
hand side of equation (1), the termks

√
% represents dislocation storage and the termskr % repre-

sents dynamic recovery. An important consequence of this approach is immediately recognizable
by equation (1): the dislocation rate%̇ depends on the strain rate. Roughly, this means that dis-
locations are less mobile when the material hardens.

The above approach does not take into account dislocation density gradients and thus, while
very efficient for small strain rates, it does not allow to study spatial variations of the density.
One of the first approaches tonon-local models, which should take into account both spatial
and temporal variations of the dislocation density, is due to Holt [18], which obtains a Cahn-
Hilliard equation for the total dislocation densities to describe patterning in a manner analogous
to spinoidal decomposition in alloys. His model is based on afree energy density which takes
into account dislocation interactions through higher gradients of the dislocation density, in con-
junction with a gradient-flow derivation of a balance equation for such densities.

Other authors, for instance Aifantis (see for example [23])and co-workers, model the com-
plex phenomena due to dislocation interaction and annihilation by means of a reaction-diffusion
system: in this approach two or more dislocation species areinvolved (e.g., mobile and immobile
dislocations) and an evolution equation for each specie, say %(X, t), is postulated

(2)
d%

dt
= D1% + g(%)

whereg(%) is a source term describing creation and annihilation of dislocations (e.g.,g(%) =
a% − b%2, with a andb phenomenological coefficients),D is a diffusive-like coefficient and1
is the laplacian. Models like (2) may be used to describe various phenomena related to pattern
formation, but they do not include (plastic) strain rate effects of the type described by (1).

The main goal of our work is a unified model which includes all the basic features of the
models described above, i.e., the dependence of (plastic) shear rate on dislocation density rate,
the non-locality, and finally a term describing work and soft-hardening.

Using consistently the assumption of rate-independence (see Gurtin [17]), we obtain an
equation for the total edge dislocation density of the form

(3)
d%

dt
= |ν|

(

ε1% − ∂ϕ

∂%

)

whereε may be interpreted as a diffusive coefficient andϕ(%) is a dislocation energy including
work and soft-hardening behavior. Notice that equilibriumsolutions satisfy

(4) ε1% − ∂ϕ

∂%
= 0.

Those solutions may correspond to low energy dislocations structures (LEDS, see Kuhlmann-
Wilsdorf [2]), or patterns forming during fatigue, where dislocations arrange themselves in such
a way that their self and interaction energy are minimized, and their average density does not
change with time, even if plastic flow does occur andν 6= 0.
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If τ andζ(%) denote the resolved shear stress and the slip resistance respectively, then by
regularization of the classical yield equationτ = (sgn ν)ζ(%), by lettingτ = (sgn ν)|ν|1/nζ(%)
for a large positive integern, we obtain

(5) |ν| =
( |τ |
ζ(%)

)n
.

By substitution ofν, as given by (5), into (3), we obtain the non linear parabolicdifferential
equation

(6)
d%

dt
=
( |τ |
ζ(%)

)n (

ε1% − ∂ϕ

∂%

)

,

which can be solved if the resolved shear stressτ = τ(X, t) is known as a function of position
and time.

2. Kinematics

Consider a body identified with its reference configurationBR, a regular region inR3, and let
X ∈ BR denote an arbitrary material point of the body. A motion of the body is a time-dependent
one-to-one smooth mappingx = y(X, t). At each fixed timet , the deformation gradient is a
tensor field defined by

(7) F = Grad y

and consistent withdet F(X, t) > 0 for anyX in BR. A superposed dot denotes material time
derivative so that, for instance,ẏ is the velocity of the motion.

We assume that the classic elastic-plastic decomposition holds, i.e.,

(8) F = FeFp,

with Fe andFp the elastic and plastic gradients, consistent withJe = det Fe > 0 andJp =
det Fp > 0. The usual interpretation of these tensors is thatFe represents stretching and
rotation of the atomic lattice embedded in the body, whileFp represents disarrangements due to
slip of atomic planes.

We restrict attention toplastic slip shear deformation, i.e., deformations such that the de-
composition (8) holds, withFe arbitrary and withFp of the form

(9) Fp = I + αs⊗ m, s · m = 0,

with I the identity inR
3, s andm constant unit vectors andα = α(X, t). In (9), α̇ may be

interpreted as slip rate on the slip plane, defined by the glide directionsand the slip-plane normal
m. This plane is understood to be the only one active among all the available slip systems.

2.1. The geometrically necessary dislocation tensor

The presence of geometrically necessary dislocations in a crystal is usually described in terms of
Burgers vector, a notion strictly related to the incompatibility of the elastic deformation.
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DEFINITION 1. Let S be a surface in the deformed configuration, whose boundary ∂S is a
smooth closed curve. The Burgers vector of∂S is defined as

b(∂S) =
∫

∂S
F−1

e dx

where dx is the line element of the circuit∂S. Stokes’ theorem implies that

b(∂S) =
∫

S

(

curl F−1
e

)T
nda,

wheren is the unit normal to the surface S andcurl and da are, respectively, the curl operator
with respect to the pointx and the area element in the deformed configuration.

Sincecurl F−1
e 6= 0 is necessary to have non null Burgers vectors, the tensorcurl F−1

e
seems to be a candidate to measure geometrically necessary dislocations. As such, however, it
suffers some drawbacks: for example,curl F−1

e is not invariant under superposed compatible
elastic deformations; moreover, in view of applications togradient theories of plasticity, it should
be desirable to work in terms of a dislocation measure which can be expressed in terms of the
plastic strain gradient also. In [27], Cermelli and Gurtin prove the existence of a dislocation
tensor which satisfies both requirements above. We can rephrase their result as follows:

DEFINITION 2. Lety be a deformation andF = ∇y its deformation gradient. IfFe andFp

are smooth fields satisfying (8), then the identity1
Jp

FpCurl Fp = JeF−1
e curl F−1

e holds: we

define therefore the geometrically necessary dislocation tensor (GND tensor) as

(10) DG := 1

Jp
FpCurl Fp = JeF−1

e curl F−1
e .

By (10), we have an alternative plastic and elastic representation ofDG. As pointed out in
[27], in developing a constitutive theory “it would seem advantageous to use the representation
of DG in terms ofFp, which characterizes defects, leavingFe to describe stretching and rotation
of the lattice”. See [27] for an exhaustive discussion of thegeometrical dislocation tensor defined
by (10).

For single slip plastic deformations (9), the GND tensor hasthe form

(11) DG = (∇α × m)⊗ s = sgs⊗ s+ egt ⊗ s

wheret = s× m and

(12) eg = ∇α · s, sg = −∇α · t.

The quantitieseg andsg can be interpreted as densities associated to geometrically necessary
edgeandscrewdislocations, respectively, with Burgers vector parallelto s.

2.2. The total dislocation tensor

Individual dislocations can be visualized by electron microscopy and their direction and Burgers
vector can be determined experimentally. We thus assume that the microscopic arrangement of
dislocations at each point is characterized by scalar densities of edge end screw dislocations, for
any given Burgers vector. More precisely, assuming that only dislocations with Burgers vectors
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are present, and their line direction is contained in the slip planem⊥, we introduce nonnegative
functions

(13) e+ = e+(X, t), e− = e−(X, t), s+ = s+(X, t), s− = s−(X, t),

with the following interpretation :e+ ande− are the densities of dislocations with Burgers vector
s and line directiont and−t respectively (edge dislocations);s+ and s− are the densities of
dislocations with Burgers vectorsand line directions and−s respectively (screw dislocations).

Noting that all the information on a given system of dislocations may be summarized in one
of the tensorial quantities (recall thate±, s± ≥ 0)

e+t ⊗ s, −e−t ⊗ s, s+s⊗ s, −s−s⊗ s,

we assume that the edge and screw densities above are relatedto the geometrically necessary
dislocation tensor by a compatibility relation of the form

(14) DG = (e+ − e−)t ⊗ s+ (s+ − s−)s⊗ s

from which it follows that

e+ − e− = eg, s+ − s− = sg.

DEFINITION 3. Introducing the total edge and screw dislocation densities

e := e+ + e−, s := s+ + s−,

we define the total dislocation tensor by

(15) DS := e t ⊗ s+ s s⊗ s.

3. Dynamics

3.1. Standard forces and microforces

To describe the force systems associated to the motion of thebody, plastic deformation and the
evolution of the total dislocation densities, we introducea tensor fieldS, vector fieldsbext, ξ, κe
andκs, and scalar fields5, 5ext, Me, Mext

e , Ms andMext
e , all functions of(X, t).

These fields correspond to three physically distinct sets offorces acting on the body.

The first force system is standard, and is given by the usual Piola-Kirchhoff stress tensorS
and the body forcebext.

The second force system has been introduced by Gurtin in his theory of gradient plasticity
of single crystals (see [17]), to describe forces that perform work associated to plastic slip. This
system consists in a vector microstressξ , a scalar internal microforce5, and a scalar external
microforce5ext.

The last set of forces is introduced to account for the dynamics of the total screw and edge
dislocation densities. It consists of a vector forceκe, a scalar internal microforceMe, and a
scalar external microforceMext

e for edge dislocations, and corresponding quantitiesκs, Ms and
Mext

s for screw dislocations.

A balance law is associated to each force system. We considerfirst the standard system
(S,bext), which is governed by the classical force balances, in localform given by

(16) Div S+ bext = 0, SFT = FST,
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where we have omitted the inertial terms. To the second forcesystem(ξ,5,5ext), governing
plastic slip, a corresponding microforce balance is associated (Gurtin, [17])

(17) Div ξ +5+5ext = 0.

Following Gurtin, [17] we shall see later that this relationreplaces the usual yield condition for
the single slip system under consideration.

In our theory two more balances must be introduced, in order to obtain a complete integrable
set of equations once an adequate constitutive theory is developed. These new balances are
associated to the force systems(κe,5e,5

ext
e ) and(κs, 5s, 5

ext
s ), and are given in local form

by

Div κe + Me + Mext
e = 0,

Div κs + Ms + Mext
s = 0.(18)

Each of the above force system is characterized by the way it expends power on the rate of
change of the corresponding microstructural field : precisely, we assume that the working of the
forces on an arbitrary portionP of the body is

W(P) =
∫

∂P
(Sn · ẏ + ξ · nα̇ + κe · nė+ κs · nṡ)da

+
∫

P

(bext · ẏ + α̇5ext + ėMext
e + ṡMext

s )dv.(19)

Notice that the microstressξ and the corresponding external force, expend power on the slip
velocity α̇, while the total dislocation forcesκe andκs expand power on the rate of change of the
corresponding dislocation densities.

We take the second law in the form of a dissipation inequality, stating that the time-derivative
of the free energy relative to an arbitrary subregionP of the body may not exceed the working
of the external forces acting onP , i.e.,

(20)
d

dt

∫

P

ψdv ≤ W(P)

whereψ is the free energy, density per unit volume in the reference configuration. Using the
balance equations, this inequality becomes, in local form,

(21) ψ̇ ≤ Te · Ḟe + ξ · ∇α̇ + κe · ∇ė+ κs · ∇ṡ + πα̇ − Meė− Msṡ

where

(22) Te = SFT
p π = τ −5, τ = S · (Fes⊗ m).

Notice thatτ is theresolved shear stresson the slip system under consideration.

3.2. Constitutive equations

Lettingσ = (Fe,e+,e−, s+, s−,∇e+,∇e−,∇s+,∇s−) andv = (α̇, ė, ṡ) we consider consti-
tutive equations of the form

(23) ψ = ψ̂(σ ), Te = T̂e(σ ), ξ = ξ̂ (σ ), κe = κ̂e(σ ), κs = κ̂s(σ )
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and

(24) π = π̂ (σ, v), Me = M̂e(σ, v), Ms = M̂s(σ, v).

Requiring the consistency of the constitutive equations with the dissipation inequality for any
process, we obtain by the classical Coleman-Noll procedurethe result that the constitutive func-
tions above cannot depend on∇e+, ∇e−, ∇s+ and∇s−, but only on∇e and∇s, i.e., we can
rewrite the constitutive relations (23) in terms of the list

σ ′ = (Fe,e+,e−, s+, s−,∇e,∇s)

or, equivalently,
σ ′′ = (Fe,eg, sg,e, s,∇e,∇s).

Furthermore, the constitutive relations in (23) must satisy the requirements

(25)
Te = ∂ψ̂

∂Fe
, ξ = ∂ψ̂

∂eg
s+ ∂ψ̂

∂sg
m × s,

κe = ∂ψ̂

∂∇e
, κs = ∂ψ̂

∂∇s
,

while the internal microforcesMe andMs decompose as

(26) Me = −Mdis
e − ∂ψ̂

∂e
, Ms = −Mdis

s − ∂ψ̂

∂s

whereMdis
e , Mdis

s andπ must satisfy the residual dissipation inequality

(27) δ = πα̇ + Mdis
e ė+ Mdis

s ṡ ≥ 0

for all processes(σ, v).

3.3. Rate independence

Notice that, under a time scale transformation defined byt → t/θ , θ > 0, the fieldsα̇, ė andṡ
transform according tȯα → θα̇, ė → θ ė andṡ → θ ṡ. Following Gurtin, we assume that the
constitutive equations forMdis

e , Mdis
s andπ are rate-independent, in the sense that they satisfy

Mdis
e (σ, v) = Mdis

e (σ, θv), Mdis
s (σ, v) = Mdis

s (σ, θv), π(σ, v) = π(σ, θv),

for any(σ, v) and for allθ > 0.

4. A nonlinear model

For the applications presented in this paper, we choose a particular form of the free energy
functionψ , namely

(28) ψ = ψe(Fe)+ ϕ(eg, sg,e, s)+ 1

2
ε1|∇e|2 + 1

2
ε2|∇s|2

whereψe andϕ are non-negative functions andε1 andε2 are positive constants.
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Moreover, we shall assume that the dissipative fieldsMdis
e , Mdis

s andπ are given by

Mdis
e (σ, v) = a(e, s)

ė

|α̇| ,

Mdis
s (σ, v) = b(e, s)

ṡ

|α̇| ,(29)

π(σ, v) = ζ(e, s)sgn α̇,

wherea(e, s), b(e, s) andζ(e, s) are positive functions. This choice guarantees rate-independ-
ence, and yields a dissipation density1 quadratic in the rates of change of the total dislocation
densities. Moreover, as we shall see, whenα̇ = 0, equations (29)1 and (29)2 are well-defined.

Following Gurtin [17], the functionζ may be interpreted as theslip resistance. In [17], ζ
is introduced as internal variable, whose evolution is given by an ordinary differential equation,
called thehardening equation, of the form

ζ̇ = f (λ, α̇),

whereλ is a list possibly containing the fieldsFe, Fp, ∇Fp andζ . As shown in [17], when
restricted by rate independence, the hardening equation becomes

(30) ζ̇ = K (λ)|α̇|.

Our approach to hardening is substantially different from that based on internal variables: we
assume in fact thatζ is given by a constitutive relation compatible with the dissipation inequality
and the hypothesis of rate independence. Therefore it is notnecessary to introduce the hardening
equationa priori, since, as shown below, it is a consequence of the constitutive choices (29)1
and (29)2 for Mdis

e andMdis
s .

To write explicitly the evolution equations for our model, we assume that no external forces
are present, and choose a cartesian coordinate system(X,Y, Z) in the reference configuration
such that

(1,0, 0) = s× m (0, 1,0) = s (0,0, 1) = m.

The balance equations are then

1) the balances of linear and angular momentum

(31) Div

(

∂ψe

∂Fe
F−T

p

)

= 0, and
∂ψe

∂Fe
FT

e = Fe

(

∂ψe

∂Fe

)T
.

2) the yield equation

(32) τ = (sgn α̇)ζ − ∂2ϕ

∂e2
g

∂2α

∂Y2
+ 2

∂2ϕ

∂eg∂sg

∂2α

∂X∂Y
− ∂2ϕ

∂s2
g

∂2α

∂X2
,

Notice that the yield condition is modified by the presence ofgeometrically necessary
dislocations (we have used (12) to express the geometrically necessary dislocation den-
sities in terms of the derivatives of the plastic slipα), which can be thought as inducing
isotropic hardening-softening.

3) a reaction-diffusion system for the total dislocation densities

(33) ė = |α̇|
a

(

ε11e− ∂ϕ

∂e

)

, ṡ = |α̇|
b

(

ε21s − ∂ϕ

∂s

)

.
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Notice that the dislocation mobility is proportional to themodulus of the slip velocitẏα.
Henceforth, two characteristic features of dislocation dynamics are immediately recog-
nizable from (33):

(i) one can have equilibrium configurations for edge dislocations, i.e.,

ε11e− ∂ϕ

∂e
= 0

such thaṫe = 0 and dislocations are ”locked” in low energy structures, but plastic
flow does occur, and the slip velocity does not vanish:α̇ 6= 0. A similar discussion
applies to screw densities.

(ii) if the material behaves elastically, so thatα̇ = 0, then dislocations cannot move.

Besides, by derivations with respect the time of the constitutive relationζ(e, s) for the
slip resistance, and using equations (33)1 and (33)2, we obtain a hardening equation

(34) ζ̇ =
[

1

a

∂ζ

∂e

(

ε11e− ∂ϕ

∂e

)

+ 1

b

∂ζ

∂s

(

ε21s − ∂ϕ

∂s

)]

|α̇|

which is a generalization of the classical equation (30).

5. One dimensional model

In this section we describe some simplifying assumptions which allow to reduce the reaction-
diffusion system for the total dislocation densities, to a single one-dimensional equation for the
total edge density.

ASSUMPTIONS

(i) We assume that the geometrically necessary dislocationdensities vanish, i.e.,

eg = sg = 0,

which implies thate+ = e−, s+ = s− and thus, by (12),α only depends on(Z, t) .

(ii) Screw dislocations densities are assumed to vanish identically, and the total edge disloca-
tion densitye is constant on each slip plane, so thate depends only on(Z, t). Thuse is
the only non-vanishing dislocation density.

(iii) The resolved shear stressτ is assumed to be constant with respect to(X, t).

(iv) The constitutive relation for the slip resistance has the form

ζ(e) = ζ0 + c
√

e

whereζ0 andc are positive constants. This relation is well known in the materials science
literature (cf. Livingston [4], Van Drunen and Saimoto [5],Staker and Holt [6]).

(v) We approximatesgn α̇ for α̇ 6= 0 by

|α̇|
1
nsgn α̇

with n large (viscoplastic regularization).

(vi) Assuming that the bodyB is an infinite layer between the planesZ = 0 andZ = L , we
take natural boundary conditions for the microstress associated to the total edge disloca-
tion density,

∂e

∂Z

∣

∣

∣

∣

Z=0
= ∂e

∂Z

∣

∣

∣

∣

Z=L
= 0.
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5.1. A particular energy dislocation function

We further chooseϕ(e) in the form

(35) ϕ(e) = 1

4
[e(e− em)]

2,

with em > 0 a constant. The functionϕ(e) is non-convex and non-negative with a local minimum
at e = 0 ande = em and a local maximum ate = em/2.

5.2. The model

Assuming that the standard balance of momentum (31) is identically satisfied, the previous as-
sumptions reduce the general model to the following two equations

(36) τ = (sgn α̇)|α̇|1/n(ζ0 + c
√

e),

and

(37) ė = 1

a
|α̇|
(

ε1
∂2e

∂Z2
− e(e− em/2)(e− em)

)

.

Using (36), equation (37) becomes

(38) ė = 1

a

( |τ |
ζ0 + c

√
e

)n
(

ε1
∂2e

∂Z2
− e(e− em/2)(e− em)

)

,

supplemented by the natural boundary conditions discussedabove. Equation (38), which is
the basic result of this work, is a non-linear partial differential equation which may be solved
numerically: a complete discussion of the behavior of the solutions to (38) will be published
elsewhere.
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