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GEOMETRIC CONTROL APPROACH
TO SYNTHESIS THEORY

1. Introduction

In this paper we describe the approach used in geometricatdheory to deal with optimiza-
tion problems. The concept of synthesis, extensively dised in [20], appears to be the right
mathematical object to describe a solution to general aptition problems for control systems.

Geometric control theory proposes a precise proceduredongaish the difficult task of
constructing an optimal synthesis. We illustrate the gfiterof the method and indicate the
weaknesses that limit its range of applicability.

We choose a simple class of optimal control problems for whiwe theory provides a
complete understanding of the corresponding optimal ggab. This class includes various
interesting controlled dynamics appearing in Lagrangigstesns of mathematical physics. In
this special case the structure of the optimal synthesngptetely described simply by a couple
of integers, (cfr. Theorem 3). This obviously provides ayv&mple classification of optimal
syntheses. A more general one, for generic plane contfioeagystems, was developed in [18,
10].

First we give a definition of optimal control problem. We diss the concepts of solution
for this problem and compare them. Then we describe the gicroentrol approach and finally
show its strength using examples.

2. Basic definitions

Consider an optimal control proble(®) in Bolza form:

X = f(x,u), XxeM,uelU
min (/ L(x,u)dt+ §0(Xterm)>
Xin = X0, Xterm€ N C M

whereM is a manifold,U isaset,f : MxU - TM,L: MxU - R, ¢ : M —> R,
the minimization problem is taken over all admissible tc&jey-control pairgx, u), Xi, is the
initial point andxterm the terminal point of the trajectony(-). A solution to the probleniP)
can be given by an open loop controt [0, T] — U and a corresponding trajectory satisfying
the boundary conditions.

One can try to solve the problem via a feedback control, thnding a functioru : M —
U such that the corresponding ODE= f (x, u(x)) admits solutions and the solutions to the
Cauchy problem with initial conditior(0) = xg solve the problen{P). Indeed, one explicits
the dependence @) on X, considers the family of problen® = (P(Xp))x,em and tries to
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solve them via a unique functiom : M — U, that is to solve the family? of problems all
together.

A well-known approach to the solution fis also given by studying the value function, that
is the functionV : M — R assuming at eacky the value of the minimum for the corresponding
problem?P (xg), as solution of the Hamilton-Jacobi-Bellmann equatiow, [& 13]. In general
V is only a weak solution to the HIB equation but can be chatiaetbas the unique “viscosity
solution” under suitable assumptions.

Finally, one can consider a family of pairs trajectory-controlyx,, 7x,) such that each of
them solves the corresponding probl@hixg). This last concept of solution, called synthesis,
is the one used in geometric control theory and has the follpadvantages with respect to the
other concepts:

1) Generality

2) Solution description

3) Systematic approach

Let us now describe in details the three items.

1) Each feedback gives rise to at least one synthesis if thersautions to the Cauchy
problems. The converse is not true, that is a synthesis isewssarily generated by a feedback
even if in most examples one is able to reconstruct a pieeeswigoth control.

If one is able to define the value function this means that paahlem? (xg) has a solution
and hence there exists at least one admissible pair forBéxf). Obviously, in this case, the
converse is true that is every optimal synthesis defines we\ainction. However, to have a
viscosity solution to the HIB equation one has to imposeaednditions.

2) Optimal feedbacks usually lack of regularity and generatentany trajectories some of
which can fail to be optimal. See [20] for an explicit exampléus it is necessary to add some
structure to feedbacks to describe a solution. This is gxattat was done in [11, 22].

Given a value function one knows the value of the minimum feheproblentP (xg). In
applications this is not enough, indeed one usually needsite the system along the optimal
trajectory and hence to reconstruct it from the value fumctiThis is a hard problem, [5]. If one
tries to use the concept of viscosity solutions then in trse @ Lagrangians having zeroes the
solution is not unique. Various interesting problems (seeekample [28]) present Lagrangians
with zeroes. Recent results to deal with this problem carobed in [16].

3) Geometric control theory proposes a systematic way towiesonstruction of optimal
syntheses, while there are not general methods to con$teaiibacks or viscosity solutions for
the HJB equation. We describe in the next session this sgsieapproach.
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3. Optimal synthesis

The approach to construct an optimal synthesis can be sumedan the following way:

a) MP + geometric techniques
U

b)  Properties of extremal trajectories
{

¢) Construction of extremal synthesis
U

d) Optimal synthesis

We now explain each item of the picture for a complete undadibg of the scheme.

a) The Maximum Principle remains the most powerful tool in thedyg of optimal control
problems forty years after its first publication, see [21]. by effort has been dedicated to
generalizations of the MP in recent years, see [6], [23],raferences therein.

Since late sixties the study of the Lie algebra naturallpeisged to the control system has
proved to be an efficient tool, see [15]. The recent approdainmplectic geometry proposed
by Agrachev and Gamkrelidze, see [1, 4], provides a deeghihsif the geometric properties of
extremal trajectories, that is trajectories satisfying Maximum Principle.

b) Making use of the tools described &) various results were obtained. One of the most
famous is the well known Bang-Bang Principle. Some sim#guits were obtained in [8] for a
special class of systems. For some planar systems everyatajectory is not bang-bang but
still a finite concatenation of special arcs, see [19, 24, 25]

Using the theory of subanalytic sets Sussmann proved a eaegrgl results on the regularity
for analytic systems, see [26]. The regularity, howevethia case is quite weak and does not
permit to drive strong conclusions on optimal trajectaries

Big improvements were recently obtained in the study of Ridmannian metrics, see [2,
3]. In particular it has been showed the link between sulyéioal of the Sub-Riemannian
sphere and abnormal extremals.

¢) Using the properties of extremal trajectories it is possibhlsome cases to construct an
extremal synthesis. This construction is usually based fimite dimensional reduction of the
problem: from the analysis &) one proves that all extremal trajectories are finite comezgiens
of special arcs. Again, for analytic systems, the theoryubbsalytic sets was extensively used:
[11, 12, 22, 27].

However, even simple optimization problems like the oneppsed by Fuller in [14] may
fail to admit such a kind of finite dimensional reduction. Jhenomenon was extensively
studied in [17, 28].

d) Finally, once an extremal synthesis has been construtteninains to prove its optimal-
ity. Notice that no regularity assumption property can eashe optimality (not even local) of
a single trajectory. But the contrary happens for a synshé®ie classical results of Boltianskii
and Brunovsky, [7, 11, 12], were recently generalized todpieable to a wider class of systems
including Fuller's example (see [20]).
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4. Applications to second order equations

Consider the control system:
(1) X =F(X) +uG(x), xeR%, F,G eC3R%,R?), FO)=0, |u <1

and letR(z) be the reachable set within timerom the origin. In the framework of [9, 19, 18],
we are faced with the problem of reaching from the origin @mgkneric conditions of and
G) in minimum time every point ofR(z). Given a trajectory : [a, b] — RZ, we define the
time alongy asT(y) =b—a.

Atrajectoryy of (1) istime optimalf, for every trajectoryy’ having the same initial and terminal
points, one had (y') > T(y). A synthesidfor the control system (1) at time is a family
I' = {(yx, Ux)}xeR(r) Of trajectory-control pairs s.t..

(a) for eachx € R(r) one hasyx : [0, bx] — RZ, yx(0) = 0, yx(byx) = X;
(b) if y = yx(t), wheret is in the domain ofx, thenyy = yxljo.]-

A synthesis for the control system (1)tisie optimaif, for eachx € R(t), one hagx (T (x)) =
X, whereT is the minimum time functiorT (x) := inf{r : X € R(r)}. We indicate byX a
control system of the type (1) and Iypt(X) the set of optimal trajectories. Jf;, y» are two
trajectories theny; * y» denotes their concatenation. For convenience, we definglads/ector
fields: X = F — G, Y = F + G. We say thay is an X-trajectory and we writgr € Traj(X) if

it corresponds to the constant contrel. Similarly we definey-trajectories. If a trajectory is
a concatenation of aK-trajectory and & -trajectory, then we say thatis aY * X-trajectory.
The timet at which the two trajectories concatenate is calledY switching time and we say
that the trajectory has d-Y switching at timet. Similarly we define trajectories of typé = Y,
XY *x X, etc.

In [19] it was shown that, under generic conditions, the fwbof reaching in minimum time
every point of the reachable set for the system (1) admitgalae synthesis. Moreover it was
shown thatR (r) can be partitioned in a finite number of embedded submasifoldiimension
2, 1 and 0 such that the optimal synthesis can be obtaineddrimadbacki(x) satisfying:

e 0n the regions of dimension 2, we haw&) = +1,

e on the regions of dimension 1, called frame curves (in thiniohg FC),u(x) = +1
or u(x) = ¢(x) (wheregp(x) is a feedback control that depends BNnG and on their
Lie bracket F, G], see [19]). The frame curves that correspond to the feedbaare
calledturnpikes A trajectory that corresponds to the contugt) = ¢(y (1)) is called a
Z-trajectory.

The submanifolds of dimension 0 are called frame pointshHanfollowing FP). In [18] it was
provided a complete classification of all types of FP and FC.

Given a trajectoryy € I' we denote byn(y) the smallest integer such that there existe
Traj (X) UTraj(Y) UTraj(2), (i = 1, ..., n(y)), satisfyingy = yny) * -+ * y1.

The previous program can be used to classify the solutiottsedbllowing problem.

Problem: Consider an autonomous ODER

(3) f e C3R?), £(0,00=0
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that describes the motion of a point under the action of aftirat depends on the position
and on the velocity (for instance due to a magnetic field osaaus fluid). Then let apply
an external force, that we suppose bounded (algs 1):

(4) y= "1, y+u.

We want to reach in minimum time a point in the configuratioacgtyy, vg) from the
rest state0, 0).

First of all observe that if we sety = vy, xo =V, (4) becomes:

(5) X1 = X

(6) X = f(xg,%x)+u,

that can be written in our standard forin= F(x) + uG(x), X € R? by settingx = (X1, X2),
F(X) = (X2, f(X)), G(X) =(0,1) :=G.

A deep study of those systems was performed in [9, 10, 19,A®m now on we make use of
notations introduced in [19]. A key role is played by the ftioes A o, Ap:

) Aa(x) = detF(x),G(x)) = X2

(8) Ag(X) = det(G(x),[F(x),G(X)]) =1.
From these it follows:

9) AYO = (xeR%:xp=0)
(10) AglO) = 0.

The analysis of [19] has to be completed in the following way.
Lemma 4.1 of [19] has to be replaced by the following (see f@8ihe definition ofBad(z) and
tana):
LEMMA 1. Let x € Bad(r) and G(x) # 0then:
A xe (A MO NAGY0) =  xetamy;
B. xetam, X(X),Y)#0 = xe A0 nagho).
Proof. The proof ofA. is exactly as in [19]. Let us provB. BeingG(x) # 0 we can choose a

local system of coordinates such ti@at= (1, 0). Then, with the same computations of [19], we
have:

(11) Ag(x) = —d1F2(x) .

From x € tanp it follows x € A;l(O), henceF(X) = aG (¢ € R). Assume thatX(x) is

tangent toA;l(O), being the other case entirely similar. This means Thata(x) - X(x) =
(@—1DVAAX)-G = 0. FromX(x) # 0 we have that # 1, henceVA -G = 0. This implies
91F> = 0 and using (11) we obtaing(x) =0, i.e.x € Agl(O).

a

Now the proof of Theorem 4.2 of [19] is completed considetimgfollowing case:

4 G #0, X(X) =0o0rY(x) =0.
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Note that (4) impliesx € tana. In this case we assume the generic conditid? ), . .. , (Pg)
were introduced in [19]):
(Pg) Ag(X) #0.

SupposeX(x) = 0 andY(x) # 0. The opposite case is similar. Choose a new local system of
coordinates such thatis the origin,Y = (0, —1) andA;l(O) = {(X1, X2) : X0 = 0}.
TakeU = B(0,r), the ball of radius centered at 0, and choosesmall enough such that:

e 0Oisthe only bad point itJ;

e ApB(X) # 0 for everyx € U;

o for everyx € U we have:

(12) IX(x)] <« 1.

LetU; = U N{(Xg,X2) : X2 > 0}, Up = U N {(x1, X2) : X2 < 0}. We want to prove the
following:

THEOREM1. If y € Opt(X) and{y(t) : t € [bg, b1]} C U then we have a bound on the
number of arcs, that i3Nx € N s.t. (¥ l[bg,by]) = Nx-

In order to prove Theorem 1 we will use the following Lemmas.

LEMMA 2. Lety € Opt(X) and assume that has a switching at timgte Dom(y) and
that Aa(y (t1)) = 0. ThenAa(y (t2)) = 0, to € Dom(y), iff ty is a switching time fory .

Proof. The proof is contained in [10].
|

LEMMA 3. Lety : [a,b] — U be an optimal trajectory such that([a, b]) c Uz or
y([a, b)) Cc Uy, thenn(y) < 2.

Proof. Itis a consequence of Lemma 3.5 of [19] and of the fact thatyepeint of U1 (respec-
tively U») is an ordinary pointi.eAa(X) - Ag(X) # 0.
|

LEMMA 4. Considery € Opt(X), {y(t) : t € [bg, b1]} € U. Assume that there exist a
X-Y switching timé € (bg, by) for y andy () € U;. Theny|[t—,bl] is a 'Y -trajectory.

Proof. Assume by contradiction that switches at time&’ e (bg, by),t’ > f. If y(t') € U1 then
this contradicts the conclusion of Lemma 3ylft’) A;l(O) then this contradicts Lemma 2.
Assumey (t') € Up. From sgma(y(f)) = —sgnAa(y (t') we have thag X(y () A Y =
—%(X(y(t/)) A'Y). This means that:

(13) sgn(Xz(y () = —sgn(Xa(y ("),

where X5 is the second component &. Chooseg € (bg, f) and define the trajectory satis-
fying 7 (bg) = y (bg) and corresponding to the conti@lt) = —1 fort € [bg, tg] andd(t) = 1
fort € [tg, by]. From (13) there existy > tg s.t. ¥ (t1) = y(t) € Uo. Using (12) it is easy to
prove thaty < t. This contradicts the optimality of (see fig. 1).

|
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Figure 1:

of Theorem 1.For sake of simplicity we will writey instead ofy |[p, b,]-

Assume first that no switching happens AI’Xl(O). We have the following cases (see fig. 2
for some of these):

(A) y has no switchingn(y) = 1;
(B) for somes > 0, y|[hy,by+e] IS @NX-trajectory,y (bp) € Uy, n(y) > 1;
(B1) if y switches toY in Uy, by Lemma 4n(y) = 2;

(B2) if y crossesA;l(O) and switches tor in Uy, by Lemma 3,y does not switch
anymore. Henca(y) = 2;

(C) for somes > 0, ¥ I[bo, bo-+e] is an X-trajectory,y (bg) € Uo, n(y) > 1;
(C1) if y switches toY before crossin@;l(O) then, by Lemma 3 (y) = 2;
(C2) if y reached); without switching, then we are in tt{8) or (B) case, thus(y) < 2;

(D) forsomee > 0, yl[hy by+e] IS @Y-trajectory,y (bp) € Uy, n(y) > 1;
(D1) if ¥ switches toX in U1 and never crosses;1(0) then by Lemma 31(y) = 2;

(D2) if y switches toX in U; (at timety € [bg, by]) and then it crosseA;l(O), then
7 [to,b1] satisfies the assumptions @) or (C). Hencen(y) < 3;

(D3) if y switches toX in U, attg € [bg, b1] and then it does not cro%;l(O), we have
niy) =2

(D4) if y switches toX in Uy and then it crosseA;l(O) we are in casef) or (B) and
niy) <3;

(E) for somes > 0, y[py by+¢] IS aY-trajectory,y (bp) € Uz, n(y) > 1.

(E1) if y switches toX in Up and it does not cros&;l(O) thenn(y) = 2;
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Figure 2:

(E2) if y switghes toX in U and then it cross%;l(O), we are in cas@A) or B. Hence
ny) <3.

If y switches am;l(O), by Lemma 2 all the others switchings pfhappen on the se&;l(O).
Moreover, ify switches toY it has no more switchings. Henogy) < 3.

The Theorem is proved witNy = 3.
O

By direct computations it is easy to see thatglemericconditionsPy, . . ., Pg, under which
the construction of [19] holds, are satisfied under the d@di

(14) f(x,00=x1 = 09:f(X1,00#0

that obviously impliesf (x1, 0) = 1 or f (X1, 0) = —1 only in a finite number of points.

In the framework of [9, 19, 18] we will prove that, for our ptem (5), (6), with the condition
(14), the “shape” of the optimal synthesis is that shown in3ign particular the partition of the
reachable set is described by the following

THEOREM2. The optimal synthesis of the control problem (5) (6) withabedition (14),
satisfies the following:

1. there are no turnpikes;

2. the trajectoryy = (starting from the origin and corresponding to constant itoh-£1) exits
the origin with tangent vectof0, +1) and, for an interval of time of positive measure,
lies in the se{(xq, X2) : X1, X2 > 0} respectively{(x1, X2) : X1, X2 < 0};

3. y* is optimal up to the first intersection (if it exists) with thg-axis. At the point in
whichy 1 intersects the yaxis it generates a switching curve that lies in the halfngla
{(X1, X2) : X2 > 0} and ends at the next intersection with theaxis (if it exists). At that
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x2

X1

Figure 3: The shape of the optimal synthesis for our problem.

point another switching curve generates. The same hapmensf and the half plane
{(x1, X2) 1 X2 < O}

4. lety, fori = 1,...,n (n possibly+oo) (respectively gz fori = 1,..., m (m possibly
+00)) be the set of boundary points of the switching curves donethin the half plane
{(X1, X2) : Xo > 0} (respectively{(x1, Xo) : Xo < 0}) ordered by increasing (resp.
decreasing) first components. Under generic assumptigrandg z do not accumulate.
Moreover:

e Fori =2,...,n, the trajectory corresponding to constant conttel ending at y
startsat z_1;

e Fori =2,..., m,the trajectory corresponding to constant contrdl ending at z
startsat y_1.

REMARK 1. The union ofy* with the switching curves is a one dimensioddimanifold
M. Above this manifold the optimal control #s1 and below is-1.

REMARK 2. The optimal trajectories turn clockwise around the origd switch along the
switching part ofM. They stop turning after the last or z; and tend to infinity withxy (t)
monotone after the last switching.

From4. of Theorem 2 it follows immediately the following:

THEOREM 3. To every optimal synthesis for a control problem of the tyf)g§) with the
condition (14), it is possible to associate a cougtem) € (N U co)2 such that one of the
following cases occurs:

A. n =m, n finite;
B. n=m+ 1, n finite;
C. n=m- 1, n finite;
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D. n= 00, m=co.

Moreover, ifI"'1, I'> are two optimal syntheses for two problems of kind (5), (&3),(and
(n1, my) (resp.(np, my)) are the corresponding couples, thEpis equivalent td", iff Ny = ny
and m = my.

REMARK 3. In Theorem 3 the equivalence between optimal synthedks e defined in

[9].

of Theorem 3.Let us consider the synthesis constructed by the algoriteserébed in [9]. The
stability assumptions (SA1), . ,(SA6) holds. The optimality follows from Theorem 3.1 of [9]

1. By definition a turnpike is a subset m‘El(O). From (8) it follows the conclusion.
2. We leave the proof to the reader.

3. Let )/Zi(t) = nz(yi(t)), whererns : R? — R, 2(X1, X2) = Xo, and consider the adjoint
vector fieldv : R? x Dom(y¥) x Dom(y*) — R? associated tp * that is the solution
of the Cauchy problem:

(15) 0(vo, to; 1) (VF £ VG)(¥E (1)) - v(vo, to: t)
v(vo, tosto) = vo,

We have the following:

LEMMA 5. Consider they = trajectories for the control problem (5), (6). We have that
v(G, t; 0) and G are parallel iﬁAA(yi(t)) =0(.e. )/Zi(t) =0).

Proof. Consider the curverT, the case ofy~ being similar. From (9) we know that
Aa(yT (1) = 0iff y, (1) = 0. First assumes a(y+(t)) = 0. We have thaG and
(F + G)(y Tt (1)) are collinear that i = «(F + G)(y (1)) with o € R. For fixedto, t
the map:

(16) fto,t - vg = v(vo, to: 1)

is clearly linear and injective, then using (15) aind(t) = (F 4+ G)(y T (t)), we obtain
v(G,t;0) =av ((F +G)(yT ), t; 0) =a(F +G)(0) = aG.
Viceversa assume(G, t; 0) = «G, then (as above) we obtainG, t; 0) = av((F +
G)(yt(1)),t;0). From the linearity and the injectivity of (16) we ha@ = «(F +
G)(y* (1)) henceAa(y T (t)) = 0.

Od

LEMMA 6. Consider the trajectory T for the control problem (5), (6). Ldt> 0 (pos-

sibly +00) be the first time such thazt2+(t') = 0. Theny T is extremal exactly up to time
t. And similarly fory —.

Proof. In [19] it was defined the functiofi(t) = arg(G(0), v (G(y (1)), t,0)). This
function has the following properties:

(i) sgn(@(t)) = sgnAg(y (1)), that was proved in Lemma 3.4 of [19]. From (8) we have
that sgn6(t)) = 1 soé(t) is strictly increasing;
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(i) y7 is extremal exactly up to the time in which the measure of #nge ofd is r i.e.
up to the time:

(17) tT =min{t € [0, c0] : |0(s1) — 6(Sp)| = =, for somesy, sp € [0,t 7]},
under the hypothesis(t*) # 0. This was proved in Proposition 3.1 of [9].
From Lemma 5 we have thata(y T (t)) = 0 iff there existsn € N satisfying:
(18) 0(G,v(G,t,0) =nx.
In particular (18) holds fot = t and somen. From the fact that is the first time in which

v, (f) = 0 and hence the first time in whickia(y+(f)) = 0, we have that = 1.

Fromé(f) = = and sgnd(f)) = 1 the Theorem is proved witht = f.

From Lemma 6y % are extremal up to the first intersection with theaxis.

Let t be the time such that™ (t) = z1, defined in4 of Theorem 2. The extremal trajecto-
ries that switch along th€-curve starting ay (if it exists), are the trajectories that start
from the origin with control-1 and then, at some timé < t, switch to controk-1. Since
the first switching occurs in the orthaf(ix, x2) : X1, X2 < 0}, by a similar argument to
the one of Lemma 6, the second switch has to occur in the hatfex1, X2) : Xo > 0},
because otherwise between the two switches we have (ne@a®(0(t))) > m. This
proves that the switching curves never crossxhexis.

4. The two assertions can be proved separately. Let us deratmetily the first, being the proof

of the second similar. Defingy = zg = (0, 0). By definition the+1 trajectory starting
at zg reachesy;. By Lemma 2 we know that if an extremal trajectory has a sviriiglat

a point of thexs-axis, then it switches iff it intersects thg-axis again. This means that
the extremal trajectory that switchesyathas a switching atj for somej. By induction
one hasj > i — 1. Let us prove that =i — 1. By contradiction assume that- i — 1,
then there exists an extremal trajectory switching;jay that switches on th€ curve
with boundary pointsy;_1, yj. This is forbidden by Lemma 2.

a

ExampPLES 1. In the following we will show the qualitative shape of thathesis of some

physical systems coupled with a control. More precisely vaat#o determine the value of the
couple(m, n) of Theorem 3.

Duffin Equation
The Duffin equation is given by the formufa= —y — e(y3 + 2uy), &, > 0, ¢ small. By
introducing a control term and transforming the secondroedeation in a first order system, we

have:

(19)
(20)

f(]_ = X2
Yo = —x1—e0C +2uxp) +u.

From this form it is clear thaf (x) = —x; — a(x:l3 + 2ux2).
Consider the trajectory . It starts with tangent vectq, 1), then, from (19), we see that it
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Figure 4: The synthesis for the Van Der Pol equation.

moves in the orthar® := {(x1, X2), X1, X2 > 0}. To know the shape of the synthesis we need
to know where(F + G)»(x) = 0. If we seta = 2%“ this happens where

(22) X =a(l—xq — sx3) .
From (19) and (20) we see that, after meeting this curve rdjedtory moves with}fr > 0and
J}2+ < 0. Then it meets the;-axis because otherwise ' (t) € Q we necessarily have (for

t — o0) y;7 — 00, 5~ — 0, that is not permitted by (20). The behavior of the trajecto is
similar.

In this case, the numbei®, m) are clearly(co, co) because ther-1 trajectory that starts at
71 meets the curve (21) exactly one time and behavesyike So theC-curve that starts af;
meets again th&; axis. The same happens for thd curve that starts at;. In this way an
infinite sequence of; andz is generated.

Van der Pol equation

The Van der Pol equation is given by the formiilae —y+e(1—y2)y+u, ¢ > 0and small. The
associated control system is; = X, Xp = —X1 +e(1— xf)xz—l— u. We have(F + G)2(x) =0
on the curvesy = _Wlﬂ) for x; # 41, x; = —1. After meeting these curves, the tra-
jectory moves with)lJr >0 and;'/ZJr < 0 and, for the same reason as before, meetsg taxis.
Similarly for y ~. As in the Duffin equation, we have thatandn are equal tot-oco. But here,
starting from the origin, we cannot reach the regio;{isxl, X2) 1Xp < —1, X > _Wlﬂ)}

{(XL X2) 1X1 > -1 % < _Wl—l)} (see fig. 4).

Another example
In the following we will study an equation whose synthesis iham < co. Consider the equa-
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X1

Figure 5: The synthesis for the control problem (22), (23he Bketched region is
reached by curves that start from the origin with contrdl and then switch ter1
control between the point& andB.

tion: y = —eY + y + 1. The associated control system is:

(22) X1 = X
(23) Xp = —€l4x+1+u

We have;?zJr = 0 on the curvexy = €1 — 2. After meeting this curve, thg™ trajectory meets
the x1-axis.

Now the synthesis has a different shape because the tndgsctmrresponding to contretl
satisfyy» = 0 on the curve:

(24) Xp = Xt
that is contained in the half plarjéxy, x2) : Xo > 0}. Hencey ~ never meets the curve given by

(24) and this means that = 0. Since we know that is at least 1, by Remark 4, we have= 1,
m = 0. The synthesis is drawn in fig. 5.

5. Optimal syntheses for Bolza Problems

Quite easily we can adapt the previous program to obtainrimdition about the optimal synthe-
ses associated (in the previous sense) to second ordeediffd equations, but for more general
minimizing problems.

We have the well known:

LEMMA 7. Consider the control system:

(25) %X=F®X) +uG(x), xeR? F,GeC3R?R?, F@0) =0, [u<1.
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Let L : RZ2 — R be aC® bounded function such that there exists 0 satisfying L(x) > & for
any xe R2.

Then, for every R?, the problem:min fof L(x(t)) dt s.t. XO) = 0O, x(r) = Xp, is equivalent
to theminimum time problem(with the same boundary conditions) for the control systemm
F(X)/L(X) + uG(x)/L(X).

By this lemma it is clear that if we have a second order difféed equation with a bounded-
external forcef = f(y, y)+u, f € C3R?), f(0, 0) = 0, |u| < 1, then the problem of reaching a
point in the configuration spacgg, vg) from the origin, minimizing/of L(y(), y(t))dt, (under
the hypotheses of Lemma 7) is equivalent to the minimum tinoblpm for the systemx; =
X2/L(X), X = f(X)/L(X) + 1/L(X)u. By setting: a : R? —10,1/8[, a(x) = 1/L(X),

B R? - R, BX) = f(X)/L(x), we have:F(x) = (Xoa(X), B(X)), G(X) = (0, ¢(x)). From
these it follows:A A(X) = Xoa2, Ag(X) = a(a + Xodoar).

The equations defining turnpikes amep # 0, Ag = 0, that with our expressions become the
differential conditionx + x2d2a = 0 that in terms oL is:

(26) L(X) — X202L(X) =0

REMARK 4. SinceL > 0 it follows that the turnpikes never intersect theaxis. Since
(26) depends o (x) and not on the control system, all the properties of the ikespdepend
only on the Lagrangian.

Now we consider some particular cases of Lagrangians.

L=L(y) In this case the Lagrangian depends only on the positiand not on the velocity
(i.e. L = L(x1)). (26) is never satisfied so there are no turnpikes.

L=L(y) In this case the Lagrangian depends only on velocity anduimpikes are horizontal
lines.

L=V(y) + 2y? In this case we want to minimize an energy with a kinetic garf and a pos-
itive potential depending only on the position and satigfy¥ (y) > 0. The equation for
turnpikes is(xp)2 = 2V (xy).
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