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HIGH ORDER NECESSARY OPTIMALITY CONDITIONS

Abstract.
In this paper we present a method for determining some variations of a sin-

gular trajectory of an affine control system. These variations provide necessary
optimality conditions which may distinguish between maximizing and minimizing
problems. The generalized Legendre-Clebsch conditions are an example of these
type of conditions.

1. Introduction

The variational approach to Majer minimization control problems can be roughly summarized
in the following way: letx∗ be a solution on the interval [ti , te] relative to the controlu∗; if
the pair(x∗, u∗) is optimal, then the cone of tangent vectors to the reachableset atx∗(te) is
contained in the subspace where the cost increase. If there are constraints on the end-points,
then the condition is no more necessary; nevertheless in [1]it has been proved that particular
subcones of tangent vectors, the regular tangent cones, have to be contained in a cone which
depends on the cost and on the constraints. Tangent vectors whose collection is a regular tangent
cone are named good trajectory variations, see [8].

The aim of this paper is to construct good trajectory variations of a trajectory of an affine
control process which contains singular arcs, i.e. arcs of trajectory relative to the drift term of
the process. It is known, [2], that the optimal trajectory ofan affine control process may be of
this type; however the pair(x∗, 0) may satisfy the Pontrjagin Maximum Principle without being
optimal. Therefore it is of interest in order to single out a smaller number of candidates to the
optimum, to know as many good trajectory variations as we can.

In [5] good trajectory variations of the pair(x∗, 0) have been constructed by using the
relations in the Lie algebra associated to the system at the points of the trajectory. The variations
constructed in that paper are of bilateral type, i.e. both the directions+v and −v are good
variations. In this paper I am going to find conditions which single out unilateral variations,
i.e. only one direction need to be a variation. Unilateral variations are of great interest because,
contrary to the bilateral ones, they distinguish between maximizing and minimizing problems.

2. Notations and preliminary results

To each familyf = ( f0, f1, . . . , fm) of C∞ vector fields on a finite dimensional manifoldM
we associate the affine control process6f on M

ẋ = f0(x) +
m
∑

i=1

ui fi (x) |ui | ≤ α(1)
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where the controlu = (u1, . . . , um) is a piecewise constant map whose values belong to the
hypercube|ui | ≤ α. We will denote bySf(t, t0, y, u) the value at timet of the solution of6f
relative to the controlu, which at timet0 is equal toy. We will omit t0 if it is equal to 0, so that
Sf(t, y, u) = Sf(t, 0, y, u); we will also use the exponential notation for constant control map,
for example expt f0 · y = Sf(t, y, 0).

We want to construct some variations of the trajectoryt 7→ xf(t) = expt f0 · x0, t ∈ [t0, t1]
at time τ ∈ [t0, t1]. We will consider trajectory variations produced by needle-like control
variations concentrated atτ . The definition is the following:

DEFINITION 1. A vectorv ∈ Txf(τ )M is a right (left) trajectory variation of xf at τ if for
eachε ∈ [0, ε] there exists a control map u(ε) defined on the interval[0, a(ε)], limε→0+ a(ε) =

0, such that u(ε) depends continuously onε in the L1 topology and the mapε 7→ exp(−a(ε) f0)·

Sf(a(ε), xf(τ), u(ε)), (ε 7→ Sf(a(ε), xf(τ − a(ε)), u(ε))) hasv as tangent vector atε = 0.

The variations atτ indicates the controllable directions of the reference trajectory from
xf (τ); they are local objects atxf (τ) and in any chart atxf (τ) they are characterized by the
property

Sf(a(ε), xf (τ), u(ε)) = xf (τ + a(ε)) + ε v + o(ε) ∈ R(τ + a(ε), xf(t0))(2)

whereR(t, x) is the set of points reachable in timet from x.

The transport along the reference flow generated by the 0 control from timeτ to timet1 of a
variation atτ is a tangent vector to the reachable set at timet1 in the pointxf (t1). The transport
of particular trajectory variations, the good ones, gives rise to tangent vectors whose collection
is a regular tangent cone. The definition of good variations is the following:

DEFINITION 2. A vectorv ∈ Tx∗(τ )M is a goodright variation (left variation) atτ of order
k if there exists positive numbersc , ε and for eachε ∈ [0, ε] a family of admissible control
maps, uε (c) , c ∈ [0, c] with the following properties:

1. uε(c) is defined on the interval[0, aεk]

2. for eachε, c 7→ uε (c) is continuous in the L1 topology

3. exp[−(1 + a)εk] f0 · Sf(aεk, xf (τ + εk), uε(c)) = xf (τ) + εcv + o(ε) (expεk f0 ·

Sf(aεk, xf(τ − (1 + a)εk), uε(c)) = xf (τ) + εcv + o(ε)) uniformly w.r.t. c.

The good trajectory variations will be simpler named g-variations. Standing the definitions,
the variations of a trajectory are more easily found than itsg-variations. However a property
proved in [8] allows to find g-variations as limit points of trajectory ones. More precisely the
following Proposition holds:

PROPOSITION1. Let I be an interval contained in[t0, t1] and let g ∈ L1(I ) be such
that g(t) is a right (left) trajectory variation at t for each t in the set L+, (L−), of right (left)
Lebesgue points of g. For each t∈ L+, (t ∈ L−), let [0, at (ε)] be the interval as in Definition
1 relatively to the variation g(t). If there exists positive numbers N and s such that for each
τ ∈ L+, (τ ∈ L−), 0 < aτ (ε) ≤ (N ε)s, then for each t∈ L+ g(t) is a right variation, (for
each t∈ L−, g(t) is a left variation), at t of order s.

Let τ be fixed; to study the variations atτ we can suppose without loss of generality thatM
is an open neighborhood of 0∈

�n. Moreover by Corollary 3.3 in [5], we can substitute to the
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family f the familyφ whereφi is the Taylor polynomial offi of order sufficiently large. We can
therefore suppose thatf is an analytic family of vector fields on

�n.

Let me recall some properties of analytic family of vectors fields. LetX = {X0, X1, . . . ,

Xm} be(m+ 1) indeterminate;L(X) is the Lie algebra generated byX with Lie bracket defined
by

[S, T ] = ST− T S.

L̂(X) denotes the set of all formal series,
∑

∞

k=1 Pk, eachPk homogeneous Lie polynomial of

degreek. For eachS ∈ L̂(X) we set

expS=
∞
∑

k=0

Sk

k!

and

log(Id + Z) =
∞
∑

k=0

(−1)k+1Zk

k
.

The following identities hold

exp(log Z) = Z log(expS) = S.

Formula di Campbell-Hausdorff[9]

For eachP, Q ∈ L̂(X) there exists an uniqueZ ∈ L̂(X) such that

expP · expQ = expZ

andZ is given by

Z = P + Q +
1

2
[ P, Q] + · · ·

Let u be an admissible piecewise constant control defined on the interval [0, T(u)]; by the Camp-
bell Hausdorff formula we can associate tou an element of̂L(X), logu, in the following way: if
u(t) = (ωi

1, . . . , ωi
m) in the interval(ti−1, ti ) then

exp logu = exp(T(u) − tk−1)

(

X0 +
m
∑

i=1

ωk
i Xi

)

· · · · · expt1

(

X0 +
m
∑

i=1

ω1
i Xi

)

If f is an analytic family, then logu is linked toSf(T(u), y, u) by the following proposition [6]

PROPOSITION2. If f is an analytic family of vector fields on an analytic manifoldM then
for each compact K⊂ M there exist T such that, iflogf u denotes the serie of vector fields
obtained by substituting inlogu, fi for Xi , then∀y ∈ K and∀u, T(u) < T , the serieexp logf u·

y converges uniformly to Sf(T(u), y, u).

In the sequel we will deal only with right variations. The same ideas can be used to construct
left variations.

To study the right trajectory variations it is useful to introduce Logu defined by

exp(Logu) = exp−T(u)X0 · exp(logu) .

By definition it follows that if y belongs to a compact set andT(u) is sufficiently small, then
exp(−T(u)) f0 · Sf(T(u), y, u) is defined and it is the sum of the serie exp(Logfu)y; notice that
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exp(Logfu)y is the value at timeT(u) of the solution of the pullback system introduced in [4]
starting aty.

Let u(ε) be a family of controls which depend continuously onε and such thatT(u(ε)) =

o(1). Such a family will be named control variation if

Logu(ε) =
∑

ε j i Yi(3)

with Yi ∈ Lie X and j i < j i+1. Let j i be the smallest integer for whichYs
f (xf(τ)) 6= 0; Yi is

namedf-leading termof the control variation atτ because it depends on the familyf and on the
time τ .

The definition of exp and Proposition 2 imply that ifYi is an f-leading term of a control
variation, then

exp(−T(u(ε)) · Sf(T(u(ε)), xf (τ), u(ε)) = xf (τ) + ε j i Yi
f (xf(τ)) + o(ε j i ) ;

therefore by Definition 1,Y j
f (x(τ)) is a variation ofxf at τ of order 1/j i . Since the set of

variation is a cone, we have:

PROPOSITION3. Let2 be an element ofLie X; if a positive multiple of2 is thef-leading
element atτ of a control variation, then2f(xf(τ)) is a variation atτ .

3. General Result

The results of the previous section can be improved by using the relations in Lief at xf (τ). The
idea is that these relations allow to modify the leading termof a given control variation and
therefore one can obtain more than one trajectory variationfrom a control variation.

Let us recall some definitions given by Susmann, [6], [7].

DEFINITION 3. An admissible weightfor the process (1) is a set of positive numbers,l =

(l0, l1, . . . , lm), which verify the relations l0 ≤ l i , ∀i .

By means of an admissible weight, one can give a weight to eachbracket in LieX, [6]. Let
3 be a bracket in the indeterminateX′

i s; |3|i is the number of times thatXi appears in3.

DEFINITION 4. Let l = {l0, l1, . . . , lm} be an admissible weight, thel-weight of a bracket
8 is given by

‖8‖l =
m
∑

i=0

l i |8|i .

An element2 ∈ Lie X is said l-homogeneous if it is a linear combination of brackets with the
samel-weight, which we name thel-weight of the element.

The weight of a bracket,8, with respect to the standard weightl = {1, 1, . . . , 1} coincides
with its length and it is denoted by‖8‖.

The weight introduce a partial order relation in LieX.

DEFINITION 5. Let 2 ∈ Lie X; following Susmann [7] we say that2 is l f -neutralizedat
a point y if the value at y of2f is a linear combination of the values of brackets with lessl-
weight, i.e.2f(y) =

∑

α j 8
j
f (y), ‖8 j ‖l < ‖2‖l . The numbermax‖8 j ‖ is theorder of the

neutralization.
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Let N be a positive integer; withSN we denote the subspace of LieX spanned by the
brackets whose length is not greater thanN and with QN we denote the subspace spanned by
the brackets whose length is greater thanN. LieX is direct sum ofSN andQN .

DEFINITION 6. Let u be any control;logN u andLogN u are the projections oflogu and
Logu respectively, on SN .

DEFINITION 7. An element8 ∈ SN is a N-goodelement if there exists a neighborhood
V of 0 in SN and a C1 map u : V → L1, such that u(V) is contained in the set of admissible
controls and

LogN u(2) = 8 + 2 .

Notice that there existN-good elements whatever is the naturalN.

We are going to present a general result.

THEOREM 1. Let Z be an N-good element and letl be an admissible weight. Z=
∑

Yi ,
Yi l-homogeneous element such that if bi = ‖Yi ‖l , then bi ≤ b j if i < j . If there exists j such

that for each i< j , Y i is l f -neutralized atτ with order not greater than N and bj < b j +1, then

1. Y j
f (xf (τ)) is a variation atτ of order‖Y j ‖l ;

2. if 8 is a bracket contained in SN , ‖8‖l < b j , then±8f(xf (τ)) is a variation atτ of
order ‖8‖l .

Proof. We are going to provide the proof in the case in which there is only one element which
is l f -neutralized atτ . The proof of the general case is analogous. By hypothesis there exist
l-homogeneous elementsW j , c j = ‖W j ‖l < ‖Y1‖l , such that:

Y1
f (xf (τ)) =

∑

α j W
j

f (xf (τ)) .(4)

Let u be an admissible control; the control defined in [0, εl0T(u)] by

δε u(t) = (εl1−l0u1(t/εl0), . . . , εlm−l0um(t/εl0))

is an admissible control; such control will be denoted byδεu. The mapε 7→ δεu is continuous
in theL1 topology andT(δεu) goes to 0 withε.

Let Y be any element of̂L(X); δε(Y) is the element obtained by multiplying each indeter-
minateXi in Y by εl i . The definition ofδεu implies:

Logδεu = δε Logu .

δεY1 = εb1Y1 andδε (
∑

α j W
j ) =

∑

α j ε
c j W j ; therefore

δε(Y
1 −

∑

α j ε
(b1−c j )W j )f

vanishes atxf(τ). By hypothesis there exists a neighborhoodV of 0 ∈ SN and a continuous map
u : V → L1 such that

LogN u(8) = Z + 8 .

Set2(ε) = −
∑

α j ε
(b1−c j )W j ; 2(ε) depends continuously fromε and since(b1 − c j ) < 0,

2(ε) ∈ V if ε is sufficiently small. Therefore the control variationδεu(2(ε)) proves the first
assertion.
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Let 8 satisfies the hypothesis; ifσ andε are sufficiently smallσ8 + 2(ε) ∈ V and

δεu(2(ε) + σ8)

ia a control variation which hasf-leading term equal toδ8. The second assertion is proved.

For the previous result to be applicable, we need to know how the N-good controls are
made. The symmetries of the system give some information on this subject.

Let me recall some definitions introduced in [6] and in [4].

DEFINITION 8. Thebad bracketsare the brackets inLie X which contain X0 an odd num-
ber of times and each Xi an even number of times. Let� be the set of bad brackets

� = {3 , |3|0 is odd |3|i is even i= 1, . . . , m} .

The set of theobstructionsis the set

�∗ = Lie (X0, � ) \ {aX0 , a ∈
�

} .

PROPOSITION4. For each integer N there exists a N-good element which belongs to�∗.

Proof. In [6] Sussmann has proved that there exists an element9 ∈ � and aC1 map,u, from
a neighborhood of 0∈ SN in L1 such that the image ofu is contained in the set of admissible
controls and

logN u(2) = 9 + 2 .

This result is obtained by using the symmetries of the process. Standard arguments imply that it
is possible to construct aC1 mapu from a neighborhood of 0∈ SN to L1 such that the image
of u is contained in the set of admissible controls and

LogN u(2) = 4 + 2

with 4 ∈ �∗.

The previous proposition together with Theorem 1 imply thatthe trajectory variations are
linked to the neutralization of the obstruction.

Theorem 1 can be used to find g-variations if thef l -neutralization holds on an interval
containingτ .

4. Explicit optimality conditions for the single input case

In this section I am going to construct g-variations of a trajectory of an affine control process at
any point of an interval in which the reference control is constantly equal to 0. It is known that
if x∗ is a solution of a sufficiently regular control process such that

g0(x∗(t1)) = min
y∈R(t1,x∗(t0))∩S

g0(y) ,

then there exists an adjoint variableλ(t) satisfying the Pontrjagin Maximum Principle and such
that for eachτ and for each g-variation,v, of x∗ at τ

λ(τ)v ≤ 0 .
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Therefore the g-variations I will obtain, provide necessary conditions of optimality for the sin-
gular trajectory.

For simplicity sake I will limit myself to consider an affine single input control process

ẋ = f0(x) + u f1(x)

and I suppose that the control which generate the reference trajectory,x∗, which we want to
test, is constantly equal to 0 on an intervalI containingτ so thatx∗(t) = xf(t), ∀t ∈ I . The
f l -neutralization of the obstructions onI provides g-variations atτ . In [4] it has been proved
that if each bad bracket,2, ‖2‖l ≤ p is f l -neutralized onxf(I ), then all the obstructions whose
l-weight is not greater thanp aref l -neutralized onxf (I ). Moreover if8 is a bracket which is
f l -neutralized onI , then [X0,8] is f l -neutralized onI . Therefore to know which obstructions
aref l -neutralized onI it is sufficient to test those bad brackets whose first elementis equal to
X1. Let l be an admissible weight;l induces an increasing filtration in LieX

{0} = Y0
l ⊂ Y1

l ⊂ · · · ⊂ Yn
l ⊂ . . .

Yi = span{8 : ‖8‖l ≤ pi }, pi < pi+1. Let p j be such that each bad bracket whose weight is

less than or equal top j is f l -neutralized on an interval containingτ . We know thatY j
f (xf (τ)) is

a subspace of g-variation atτ , which are obviously bilateral variations. Unilateral g-variation can

be contained in the set ofl-homogeneous elements belonging toY j +1
f (xf(τ)). Notice that each

subspaceYi
f (xf(τ)) is finite dimensional and that the sequence{Yi

f (xf(τ))} become stationary for
i sufficiently large. Therefore we are interested only in the elements ofSN with N sufficiently
large. LetN be such that eachYi

f (xf (τ)) is spanned by brackets whose length is less thanN.
The following Lemma proves that it is possible to modify the weightl in order to obtain a weight
l with the following properties:

1. each bracket which isf l -neutralized atτ is f l-neutralized atτ ;

2. thel-homogeneous elements are linear combination of brackets which contain the same
numbers both ofX0 than ofX1.

LEMMA 1. Let l be an admissible weight; for each integer N there exists an admissible
weightl with the following properties: if8 and2 are brackets whose length is not greater than
N, then

1. ‖8‖l < ‖2‖l implies‖8‖l < ‖2‖l

2. ‖8‖l = ‖2‖l and‖8‖1 < ‖2‖1, implies‖8‖l < ‖2‖l

3. ‖8‖l = ‖2‖l , ‖8‖1 = ‖2‖1 and‖8‖0 < ‖2‖0, implies‖8‖l < ‖2‖l

Proof. The set of brackets whose weight is not greater thanN is a finite set therefore ifε0, ε1
are positive numbers sufficiently small, thenl = {l0 − ε0, l1 + ε1} is an admissible weight for
which the properties 1), 2) and 3) hold.

In order to simplify the notation, we will use the multiplicative notation for the brackets:

XY = [X,Y] , Z XY = [Z, XY] , etc.
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It is known, [10], that each bracket,8, in LieX is linear combination of brackets right normed,
i.e. of the following type:

Xi1
0 Xi2

1 . . . Xis
1 , i j ∈ {0, 1, . . . } ,

which contains bothX0 thanX1 the same number of times of8; therefore it is sufficient to test
the neutralization of right normed bad brackets.

Any N-good element,Z, of LieX can be written as:

Z =
∑

ai 8i

8i right normed bracket; we nameai coefficientof 8i in Z.

LEMMA 2. Let N > 2n + 3. The coefficient of X1X2n+1
0 X1 in any N-good element is

positive if n is even and negative if n is odd; the coefficient of X2n−1
1 X0X1 is always positive.

Proof. Let Z be aN-good element and let us consider the control process























ẋ1 = u
ẋ2 = x1
. . .

ẋn+1 = xn

ẋn+2 = x2
n+1 .

Take as reference trajectoryxf (t) ≡ 0. The reachable setR(t, 0) is contained, for any positive
t , in the half spacexn+1 ≥ 0 and hence− ∂

∂xn+1
cannot be a variation at any time. The only

elements in Lief which are different from 0 in 0 are:

(X1)f =
∂

∂x1
,

(Xi
0X1)f = (−1)i

∂

∂xi+1
, i = 1, . . . , n

(X1X2n+1
0 X1)f = (−1)n2

∂

xn+1
.

If the coefficient ofX1X2n+1
0 X1 in Z were equal to 0, then 0 will be locally controllable [6],

which is an absurd. Therefore it is different from 0; its signhas to be equal to(−1)n because
otherwise− ∂

∂xn+1
would be a variation. The first assertion is proved.

The second assertion is proved by using similar arguments applied to the system:

{

ẋ1 = u
ẋ2 = x2n

1

Let us now compute explicitly some g-variations. We recall that

adXY = [X, Y] , adn+1
X Y = [X,adn

XY] .
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THEOREM 2. If there exists an admissible weightl such that each bad bracket ofl-weight
less than(2n + 1)l0 + 2l1 is f l -neutralized on an interval containingτ , then

(−1)n[X1, ad2n+1
X0

X1]f(x
∗(τ))

is a g-variation atτ .

Proof. We can suppose that the weightl has the properties 1), 2) and 3) as in Lemma 1. Therefore
the brackets ofl-weight equal to 2l1 + (2n + 1)l0 contains 2X1 and (2n+1)X0. The brackets
which have as first elementX0 are the adjoint with respect toX0 of brackets which by hypothesis
aref l -neutralized on the intervalI and therefore aref l -neutralized. Since the only bad bracket
of l-weight (2n + 1)l0 + 2l1 which has as first elementX1, is X1X2n+1

0 X1 the theorem is a
consequence of Theorem 1 and of Lemma 2.

Notice that the theorem contains as particular case the wellknown generalized Legendre-
Clebsch conditions. In fact it is possible to chooseσ such that each bracket which isf-neutralized
on I with respect to the weight(0, 1) is f-neutralized with respect to the weightl = (σ, 1);
moreover bearing in mind that only a finite set of brackets areto be considered, we can suppose
that if two brackets contain a different number ofX1, then the one which contains lessX1
has lessl-weight and that two brackets have the samel-weight if and only if they contain the
same number both ofX0 than ofX1. Since each bad bracket contains at least twoX1, then the
only bad bracket whose weight is less than(2n + 1)σ + 2 contains twoX1 and(2i + 1) X0,
i = 0, . . . , (n − 1); among these the only ones which we have to consider areX1X2i+1

0 X1. Set

Si = span{8; which containsi timesX1} .

If
(X1X2i+1

0 X1)f(xf(I )) ∈ S1
f (xf (I )) , i = (1, . . . , (n − 1))

Theorem 2 implies that(−1)n(X1X2n+1
0 X1)f(xf(τ)) is a g-variation ofxf at τ ; therefore ifx∗

is optimal, then the adjoint variable can be chosen in such a way that

(−1)nλ(t)(X1X2i+1
0 X1)f(x

∗(τ)) ≤ 0 , t ∈ I

condition which is known as generalized Legendre-Clebsch condition.

The following example shows that by using Theorem 2 one can obtain further necessary
conditions which can be added to the Legendre-Clebsch ones.

EXAMPLE 1. Let:

f0 =
∂

∂x1
+ x2

∂

∂x3
+ x3

∂

∂x4
+

(

x2
3
2

−
x3
2
6

)

∂

∂x5
+

x2
4
2

∂

∂x6

f1 =
∂

∂x2
.

The generalized Legendre-Clebsch condition implies that−(X1X3
0X1)f(xf(τ)) = ∂

∂x5
is a g-

variation atτ . Let us apply Theorem 2 with the weightl = (1, 1); the bad brackets ofl-weight
less than 7 are:

X1X0X1, X1X3
0X1, X3

1X0X1, X2
1X2

0X1X0X1, X2
1X0X1X2

0X1,



50 R. M. Bianchini

the only one different from 0 along the trajectory is(X1X3
0X1)f which is atxf (I ) a multiple

(X2
1X0X1)f(xf(I )). Therefore it isf l -neutralized. Theorem 1 implies that±(X1X3

0X1)f(xf (τ))

= ± ∂
∂x5

, and(X1X5
0X1)f(xf(τ)) = ∂

∂x6
are g-variations.

Another necessary optimality condition can be deduced fromTheorem 1 and Lemma 2.

THEOREM 3. If there exists an admissible weightl such that all the bad brackets whose
l-weight is less than l0 + 2n l1 are f l -neutralized on an interval containingτ , then

(X2n−1
1 X0X1)f(xf(τ))

is a g-variation atτ .

Proof. We can suppose that the weightl is such that the brackets with the samel-weight contain
the same number both ofX1 than of X0. Since there is only one bracket,X2n−1

1 X0X1 which
contain 2n X1 and 1X0, the theorem is a consequence of Theorem 1 and of Lemma 2.

Notice that this condition is active also in the case in whichthe degree of singularity is+∞.
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