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A. Agrachev

COMPACTNESS FOR SUB-RIEMANNIAN

LENGTH-MINIMIZERS AND SUBANALYTICITY

Abstract.
We establish compactness properties for sets of length-minimizing admissi-

ble paths of a prescribed small length. This implies subanayticity of small sub-
Riemannian balls for a wide class of real-analytic sub-Riemannian structures: for
any structure without abnormal minimizers and for many structures without strictly
abnormal minimizers.

1. Introduction

Let M be aC∞ Riemannian manifold, dimM = n. A distribution onM is a smooth linear
subbundle1 of the tangent bundleT M. We denote by1q the fiber of1 atq ∈ M; 1q ⊂ Tq M.
A numberk = dim1q is therankof the distribution. We assume that 1< k < n. The restriction
of the Riemannian structure to1 is asub-Riemannian structure.

Lipschitzian integral curves of the distribution1 are calledadmissible paths; these are
Lipschitzian curvest 7→ q(t), t ∈ [0,1], such thaṫq(t) ∈ 1q(t) for almost allt .

We fix a pointq0 ∈ M and study only admissible paths started from this point, i.e. we
impose the initial conditionq(0) = q0. Sections of the linear bundle1 are smooth vector fields;
iterated Lie brackets of these vector fields define a flag

1q0 ⊂ 12
q0

⊂ · · · ⊂ 1m
q0

· · · ⊂ Tq M

in the following way:

1m
q0

= span{[X1, [X2, [. . . , Xm] . . . ](q0) : Xi (q) ∈ 1q, i = 1, . . . ,m, q ∈ M}.

A distribution1 is bracket generatingat q0 if 1m
q0

= Tq0 M for somem > 0. If 1 is bracket
generating, then according to a classical Rashevski-Chow theorem (see [15, 22]) there exist ad-
missible paths connectingq0 with any point of an open neighborhood ofq0. Moreover, applying
a general existence theorem for optimal controls [16] one obtains that for anyq1 from a small
enough neighborhood ofq0 there exists a shortest admissible path connectingq0 with q1. The
length of this shortest path is thesub-Riemannianor Carnot-Caratheodory distancebetweenq0
andq1.

For the rest of the paper we assume that1 is bracket generating at the given initial point
q0. We denote byρ(q) the sub-Riemannian distance betweenq0 andq. It follows from the
Rashevsky-Chow theorem thatρ is a continuous function defined on a neighborhood ofq0.
Moreover,ρ is Hölder-continuous with the Hölder exponent1

m , where1m
q0

= Tq0 M. A sub-
Riemannian sphere S(r ) is the set of all points at sub-Riemannian distancer from q0, S(r ) =
ρ−1(r ).
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2 A. Agrachev

In contrast to the Riemannian distance, the sub-Riemanniandistanceρ is never smooth in
a punctured neighborhood ofq0 (see Theorem 1) and the main motivation for this research is
to understand regularity properties ofρ. In the Riemannian case, where all paths are available,
the set of shortest paths connectingq0 with the sphere of a small radiusr is parametrized by the
points of the sphere. This is not true for the set of shortestsadmissible paths connectingq0 with
the sub-Riemannian sphereS(r ). The structure of the last set may be rather complicated; we
show that this set is at least compact inH1-topology (Theorem 2). The situation is much simpler
if no one among so called abnormal geodesics of lengthr connectq0 with S(r ). In the last
case, the mentioned set of shortests admissible paths can beparametrized by a compact part of a
cylinderSk−1 ×�n−k (Theorem 3). In Theorem 4 we recall an efficient necessary condition for
a lengthr admissible path to be a shortest one. In Theorem 5 we state a result, which is similar
to that of Theorem 3 but more efficient and admitting nonstrictly abnormal geodesics as well.

We apply all mentioned results to the case of real-analyticM and1. The main problem
here is to know whether the distance functionρ is subanalytic. Positive results for some special
classes of distributions were obtained in [8, 17, 19, 20, 23]and the first counterexample was
described in [10] (see [13, 14] for further examples and for study of the “transcendence” ofρ).

Both positive results and the counterexamples gave an indication that the problem is inti-
mately related to the existence of abnormal length-minimizers. Corollaries 2, 3, 4 below make
this statement a well-established fact: they show very clear that only abnormal length-minimizers
may destroy subanalyticity ofρ out of q0.

What remains? The situation with subanalyticity in a whole neighborhood includingq0 is
not yet clarified. This subanalyticity is known only for a rather special type of distributions (the
best result is stated in [20]). Another problem is to pass from examples to general statements
for sub-Riemannian structures with abnormal length-minimizers. Such length-minimizers are
exclusive for rankk ≥ 3 distributions (see discussion at the end of the paper) and typical for
rank 2 distributions (see [7, 21, 24]). A natural conjectureis:
If k = 2 and12

q0
6= 13

q0
, thenρ is not subanalytic.

2. Geodesics

We are working in a small neighborhoodOq0 of q0 ∈ M, where we fix an orthonormal frame
X1, . . . , Xk ∈ VectM of the sub-Riemannian structure under consideration. Admissible paths
are thus solutions to the differential equations

q̇ =
k∑

i=1

ui (t)Xi (q), q ∈ Oq0, q(0) = q0,(1)

whereu = (u1(·), . . . ,uk(·)) ∈ Lk
2[0,1].

Below ‖u‖ =
(∫ 1

0
∑k

i=0 u2
i (t)dt

)1/2
is the norm inLk

2[0, 1]. We also set‖q(·)‖ = ‖u‖,

whereq(·) is the solution to (1). Let

Ur = {u ∈ Lk
2[0, 1] : ‖u‖ = r }

be the sphere of radiusr in Lk
2[0, 1]. Solutions to (1) are defined for allt ∈ [0,1], if u belongs

to the sphere of a small enough radiusr . In this paper we takeu only from such spheres without

special mentioning. The lengthl (q(·)) =
∫ 1
0

(∑k
i=1 u2

i (t)
)1/2

dt is well-defined and satisfies
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the inequality

l (q(·)) ≤ ‖q(·)‖ = r .(2)

The length doesn’t depend on the parametrization of the curve while the norm‖u‖ depends. We
say thatu andq(·) arenormalizedif

∑k
i=1 u2

i (t) doesn’t depend ont . For normalizedu, and
only for them, inequality (2) becoms equality.

REMARK 1. The notations‖q(·)‖ and l (q(·)) reflect the fact that these quantities do not
depend on the choice of the orthonormal frameX1, . . . , Xk and are characteristics of thetrajec-
tory q(·) rather than thecontrol u. L2-topology in the space of controls isH1-topology in the
space of trajectories.

We consider the endpoint mappingf : u 7→ q(1). This is a well-defined smooth mapping
of a neighborhood of the origin ofLk

2[0,1] into M. We set fr = f
∣∣
Ur

. Critical points of the
mapping fr : Ur → M are calledextremal controlsand correspondent solutions to the equation
(1) are calledextremal trajectoriesor geodesics.

An extremal controlu and the correspondent geodesicq(·) areregular if u is a regular point
of f ; otherwise they aresingularor abnormal.

Let Cr be the set of normalized critical points offr ; in other words,Cr is the set of normal-
ized extremal controls of the lengthr . It is easy to check thatf −1

r (S(r )) ⊂ Cr . Indeed, among
all admissible curves of the length no greater thanr only geodesics of the length exactlyr can
reach the sub-Riemannian sphereS(r ). Controlsu ∈ f −1

r (S(r )) and correspondent geodesics
are calledminimal.

Let Du f : Lk
2[0, 1] → T f (u)M be the differential off at u. Extremal controls (and only

them) satisfy the equation

λDu f = νu(3)

with some “Lagrange multipliers”λ ∈ T∗
f (u)M \0, ν ∈ �

. HereλDu f is the composition of the

linear mappingDu f and the linear formλ : T f (u)M → �
, i.e. (λDu f ) ∈ Lk

2[0, 1]∗ = Lk
2[0, 1].

We haveν 6= 0 for regular extremal controls, while for abnormal controls ν can be taken 0. In
principle, abnormal controls may admit Lagrange multipliers with both zero and nonzeroν. If it
is not the case, then the control and the geodesic are calledstrictly abnormal.

Pontryagin maximum principle gives an efficient way to solveequation (3), i.e. to find ex-
tremal controls and Lagrange multipliers. A coordinate free formulation of the maximum princi-
ple uses the canonical symplectic structure on the cotangent bundleT∗M. The symplectic struc-
ture associates a Hamiltonian vector fieldEa ∈ VectT∗M to any smooth functiona : T∗M → �

(see [11] for the introduction to symplectic methods).

We define the functionshi , i = 1, . . . , k, andh on T∗M by the formulas

hi (ψ) = 〈ψ, Xi (q)〉 , h(ψ) = 1

2

k∑

i=1

h2
i (ψ) , ∀q ∈ M, ψ ∈ T∗

q M .

Pontryagin maximum principle implies the following

PROPOSITION1. A triple (u, λ, ν) satisfies equation (3) if and only if there exists a solution
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ψ(t), 0 ≤ t ≤ 1, to the system of differential and pointwise equations

ψ̇ =
k∑

i=1

ui (t)Ehi (ψ) , hi (ψ(t)) = νui (t)(4)

with boundary conditionsψ(0) ∈ T∗
q0

M, ψ(1) = λ.

Here(ψ(t), ν) are Lagrange multipliers for the extremal controlut : τ 7→ tu(tτ); in other
words,ψ(t)Dut f = νut .

Note that abnormal geodesics remain to be geodesics after anarbitrary reparametrization,
while regular geodesics are automatically normalized. We say that a geodesic isquasi-regularif
it is normalized and is not strictly abnormal. Settingν = 1 we obtain a simple description of all
quasi-regular geodesics.

COROLLARY 1. Quasi-regular geodesics are exactly projections to M of thesolutions to
the differential equationψ̇ = Eh(ψ) with initial conditionsψ(0) ∈ T∗

q0
M. If h(ψ(0)) is small

enough, then such a solution exists (i.e. is defined on the whole segment[0,1]). The length of
the geodesic equals

√
2h(ψ(0)) and the Lagrange multiplierλ = ψ(1).

The next result demonstrates a sharp difference between Riemannian and sub-Riemannian
distance functions.

THEOREM 1. Any neighbourhood of q0 in M contains a point q6= q0, where the distance
functionρ is not continuously differentiable.

This theorem is a kind of folklore; everybody agrees it is true but I have never seen the
proof. What follows is a sketch of the proof.

Supposeρ is continuously differentiable out ofq0. Take a minimal geodesicq(·) of the
lengthr . Thenτ 7→ q(tτ) is a minimal geodesic of the lengthtr for any t ∈ [0,1] and we have
ρ(q(t)) ≡ r t ; hence〈dq(t)ρ, q̇(t)〉 = r . Since any point of a neighborhood ofq0 belongs to
some minimal geodesic, we obtain thatρ has no critical points in the punctured neighborhood. In
particular, the spheresS(r ) = ρ−1(r ) areC1-hypersurfaces inM. Moreover,S(r ) = ∂ f (Ur );
hence

(
dq(1)ρ

)
Du fr = 0 and we obtain the equality

(
dq(1)ρ

)
Du f = 1

r u, whereu is the
extremal control associated withq(·). Henceq(·) is the projection toM of the solution to the
equationψ̇ = Eh(ψ)with the boundary conditionψ(1) = rdq(1)ρ. Moreover, we easily conclude
thatψ(t) = rdq(t)ρ and come to the equation

q̇(t) = r
k∑

i=1

〈dq(t)ρ, Xi (q(t))〉Xi (q(t)) .

For the rest of the proof we fix local coordinates in a neighborhood ofq0. We are going to prove
that the vector fieldV(q) = r

∑k
i=1〈dqρ, Xi (q)〉Xi (q), q 6= q0, has index 1 at its isolated

singularityq0. Let Bε = {q ∈ �n : |q − q0| ≤ ε} be a so small ball thatρ(q) < r
2 , ∀q ∈

Bε. Let s 7→ q(s; qε) be the solution to the equatioṅq = V(q) with the initial condition
q(0; qε) = qε ∈ Bε. Thenq( r

2; qε) 6∈ Bε. In particular, the vector fieldWε on Bε defined by
the formulaW(qε) = q( r

2; qε) − qε looks “outward” and has index 1. The family of the fields

Vs(qε) = 1
s (q(s; qε) − qε), 0 ≤ s ≤ r

2 provides a homotopy ofV
∣∣
Bε

and r
2W, henceV has

index 1 atq0 as well.
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On the other hand, the fieldV is a linear combination ofX1, . . . , Xk and takes its values
near thek-dimensional subspace span{X1(q0), . . . , Xk(q0)}. Such a field must have index 0 at
q0. This contradiction completes the proof.

Corollary 1 gives us a parametrization of the space of quasi-regular geodesics by the poins
of an open subset9 of T∗

q0
M. Namely,9 consists ofψ0 ∈ T∗

q0
M such that the solutionψ(t) to

the equationψ̇ = Eh(ψ) with the initial conditionψ(0) = ψ0 is defined for allt ∈ [0,1]. The
composition of this parametrization with the endpoint mapping f is theexponential mapping�

: 9 → M. Thus
�
(ψ(0)) = π(ψ(1)), whereπ : T∗M → M is the canonical projection.

The space of quasi-regular geodesics of a small enough length r are parametrized by the

points of the manifoldH(r ) = h−1( r 2

2 ) ∩ T∗
q0

M ⊂ 9. Clearly, H(r ) is diffeomorphic to
�n−k × Sk−1 andH(sr) = sH(r ) for any nonnegatives.

All results about subanalyticity of the distance functionρ are based on the following state-
ment. As usually, the distancesr are assumed to be small enough.

PROPOSITION2. Let M and the sub-Riemannian structure be real-analytic. Suppose that
there exists a compact K⊂ h−1(1

2) ∩ T∗
q0

M such that S(r ) ⊂ �
(r K ), ∀r ∈ (r0, r1). Thenρ is

subanalytic onρ−1 ((r0, r1)).

Proof. It follows from our assumptions and Corollary 1 that

ρ(q) = min{r : ψ ∈ K ,
�
(rψ) = q} , ∀q ∈ ρ−1 ((r0, r1)) .

The mapping
�

is analytic thanks to the analyticity of the vector fieldEh. The compactK can
obviously be chosen semi-analytic. The proposition follows now from [25, Prop. 1.3.7].

3. Compactness

Let � ⊂ Lk
2[0,1] be the domain of the endpoint mappingf . Recall that� is a neighborhood

of the origin ofLk
2[0,1] and f : � → M is a smooth mapping. We are going to use not only

defined by the norm “strong” topology in the Hilbert spaceLk
2[0,1], but also weak topology. We

denote by�weakthe topological space defined by weak topology restricted to� .

PROPOSITION3. f : �weak→ M is a continuous mapping.

This proposition easily follows from some classical results on the continuous dependence
of solutions to ordinary differential equations on the right-hand side. Nevertheless, I give an
independent proof in terms of the chronological calculus (see [1, 5]) since it is very short. We
have

f (u) = q0
−→exp

∫ 1

0

k∑

i=1

ui (t)Xi dt

= q0 +
k∑

i=1

q0

∫ 1

0


ui (t)

−→exp
∫ t

0

k∑

j =1

u j (t)X j dτ


 dt ◦ Xi .
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The integration by parts gives:

∫ 1

0

(
ui (t)−→exp

∫ t

0

k∑

j =1

u j (t)X j dτ

)
dt =

∫ 1

0
ui (t)dt −→exp

∫ 1

0

k∑

j =1

u j (t)X j dt

−
k∑

i=1

∫ 1

0

(
u j (t)

∫ t

0
ui (τ) dτ −→exp

∫ t

0

k∑

j =1

u j (t)X j dτ

)
dt ◦ X j .

It remains to mention that the mappingu(·) 7→
∫ ·
0 u(τ) dτ is a compact operator inLk

2[0,1]. A
detailed study of the continuity of−→exp in various topologies see in [18].

THEOREM 2. The set of minimal geodesics of a prescribed length r is compact in H1-
topology for any small enough r.

Proof. We have to prove thatf −1
r (S(r )) is a compact subset ofUr . First of all, f −1

r (S(r )) =
f −1(S(r )) ∩ convUr , where convUr is a ball in Lk

2[0,1]. This is just becauseS(r ) cannot
be reached by trajectories of the length smaller thanr . Then the continuity ofρ implies that
S(r ) = ρ−1(r ) is a closed set and the continuity off in weak topology implies thatf −1(S(r )) is
weakly closed. Since convUr is weakly compact we obtain thatf −1

r (S(r )) is weakly compact.
What remains is to note that weak topology resricted to the sphereUr in the Hilbert space is
equivalent to strong topology.

THEOREM 3. Suppose that all minimal geodesics of the length r are regular. Then we have
that

�−1(S(r )) ∩ H(r ) is compact.

Proof. Denote byuψ(0) the extremal control associated withψ(0) ∈ H(r ) so that
�
(ψ(0)) =

f (uψ(0)). We haveuψ(0) = (h1(ψ(·)), . . . ,hk(ψ(·))) (see Proposition 1 and its Corollary). In
particular,uψ(0) continuously depends onψ(0).

Take a sequenceψm(0) ∈ �−1(S(r )) ∩ H(r ), m = 1,2, . . . ; the controlsuψm(0) are
minimal, the set of minimal controls of the lengthr is compact, hence there exists a convergent
subsequence of this sequence of controls and the limit is again a minimal control. To simplify
notations, we suppose without losing generality that the sequenceuψm(0), m = 1, 2, . . . , is
already convergent,∃ limm→∞ uψm(0) = ū.

It follows from Proposition 1 thatψm(1)Duψm(0)
f = uψm(0). Suppose thatM is endowed

with some Riemannian structure so that the length|ψm(1)| of the cotangent vectorψm(1) has a
sense. There are two possibilities: either|ψm(1)| → ∞ (m → ∞) or ψm(1), m = 1,2, . . . ,
contains a convergent subsequence.

In the first case we come to the equationλDū f = 0, whereλ is a limiting point of the
sequence 1

|ψm(1)|
ψm(1), |λ| = 1. Henceū is an abnormal minimal control that contradicts the

assumption of the theorem.

In the second case letψml (1), l = 1,2, . . . , be a convergent subsequence. Thenψml (0),
l = 1,2, . . . , is also convergent,∃ liml→∞ ψml (0) = ψ̄(0) ∈ H(r ). Thenū = u

ψ̄(0) and we
are done.

COROLLARY 2. Let M and the sub-Riemannian structure be real-analytic. Suppose that
all minimal geodesics of the length r0 are regular for some r0 < r . Thenρ is subanalytic on
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ρ−1 ((r0, r ]).

Proof. According to Theorem 3,K0 = �−1(S(r0)) ∩ H(r0) is a compact set and{uψ(0) :
ψ(0) ∈ K0} is the set of all minimal extremal controls of the lengthr0. The minimality of an
extremal controluψ(0) implies the minimality of the controlusψ(0) for s < 1, sinceusψ(0)(τ) =
suψ(0)(τ) and a reparametrized piece of a minimal geodesic is automatically minimal. Hence

S(r1) ⊂ � ( r1
r0

K0

)
for r1 ≥ r0 and the required subanalyticity follows from Proposition 2.

Corollary 2 gives a rather strong sufficient condition for subanalyticity of the distance func-
tion ρ out ofq0. In particular, the absence of abnormal minimal geodesics implies subanalyticity
of ρ in a punctured neighborhood ofq0. This condition is not however quite satisfactory because
it doesn’t admit abnormal quasi-regular geodesics. Thoughbeing non generic, abnormal quasi-
regular geodesics appear naturally in problems with symmetries. Moreover, they are common in
so called nilpotent approximations of sub-Riemannian structures at (see [5, 12]). The nilpotent
approximation (or nilpotenization) of a generic sub-Riemannian structureq0 leads to a simplified
quasi-homogeneous approximation of the original distancefunction. It is very unlikely thatρ
loses subanalyticity under the nilpotent approximation, although the above sufficient condition
loses its validity. In the next section we give chekable sufficient conditions for subanalyticity,
wich are free of the above mentioned defect.

4. Second Variation

Let u ∈ Ur be an extremal control, i.e. a critical point offr . Recall that the Hessian offr at u
is a quadratic mapping

Hesu fr : ker Du fr → cokerDu fr ,

an independent on the choice of local coordinates part of thesecond derivative offr at u. Let
(λ, ν) be Lagrange multipliers associated withu so that equation (3) is satisfied. Then the cov-
ectorλ : T f (u)M → �

annihilates imDu fr and the composition

λHesu fr : ker Du fr → �
(5)

is well-defined.

Quadratic form (5) is thesecond variationof the sub-Riemannian problem at(u, λ, ν). We
have

λHesu fr (v) = λD2
u f (v, v)− ν|v|2 , v ∈ ker Du fr .

Let q(·) be the geodesic associated with the controlu. We set

ind(q(·), λ, ν) = ind+(λHesu fr )− dim cokerDu fr ,(6)

where ind+(λHesu fr ) is the positive inertia index of the quadratic formλHesu fr . Decoding
some of the symbols we can re-write:

ind(q(·), λ, ν) = sup{dim V : V ⊂ ker Du fr , λD2
u f (v, v) > ν|v|2, ∀v ∈ V \ 0}

− dim{λ′ ∈ T∗
f (u)M : λ′Du fr = 0} .

The value of ind(q(·), λ, ν) may be an integer or+∞.
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REMARK 2. Index (5) doesn’t depend on the choice of the orthonormal frameX1, . . . , Xk
and is actually a characteristic of the geodesicq(·) and the Lagrange multipliers(λ, ν). Indeed,
a change of the frame leads to a smooth transformation of the Hilbert manifoldUr and to a linear
transformation of variables in the quadratic formλHesu fr and linear mappingDu fr . Both terms
in the right-hand side of (5) remain unchanged.

PROPOSITION4. (u, λ, ν) 7→ ind(q(·), λ, ν) is a lower semicontinuous function on the
space of solutions of (3).

Proof. We have dim cokerDu fr = codim kerDu fr . Here kerDu fr = ker Du f ∩ {u}⊥ ⊂
Lk

2[0,1] is a subspace of finite codimension inLk
2[0, 1]. The multivalued mappingu 7−→

(ker Du fr ) ∩ Ur is upper semicontinuous in the Hausdorff topology, just becauseu 7→ Du f
is continuous.

Take(u, λ, ν) satisfying (3). Ifu′ is close enough tou, then kerDu′ fr is arbitraryly close
to a subspace of codimension

dim cokerDu fr − dim cokerDu′ fr

in Du fr . SupposeV ⊂ ker Du fr is a finite-dimensional subspace such thatλHesu fr
∣∣
V is

a positive definite quadratic form. Ifu′ is sufficiently close tou, then kerDu′ fr contains a
subspaceV ′ of dimension

dim V − (dim cokerDu fr − dim cokerDu′ fr )

that is arbitrarily close to a subspace ofV . If λ′ is sufficiently close toλ, then the quadratic form
λ′Hesu′ fr

∣∣
V ′ is positive definite.

We come to the inequality ind(q′(·), λ′, ν′) ≥ ind(q(·), λ, ν) for any solution(u′, λ′, ν′) of
(3) close enough to(u, λ, ν); hereq′(·) is the geodesic associated to the controlu′.

THEOREM 4. If q(·) is minimal geodesic, then there exist associated with q(·) Lagrange
multipliersλ, ν such thatind(q(·), λ, ν) < 0.

This theorem is a direct corollary of a general result announced in [2] and proved in [3]; see
also [8] for the updated proof of exactly this corollary.

THEOREM 5. Suppose thatind(q(·), λ,0) ≥ 0 for any abnormal geodesic q(·) of the length
r and associated Lagrange multipliers(λ,0). Then there exists a compact Kr ⊂ H(r ) such that
S(r ) = �

(Kr ).

Proof. We use notations introduced in the first paragraph of the proof of Theorem 3. Letqψ(0)
be the geodesic associated to the controluψ(0). We set

Kr = {ψ(0) ∈ H(r ) ∩ �−1(S(r )) : ind(qψ(0), ψ(1),1) < 0} .(7)

It follows from Theorem 4 and the assumption of Theorem 5 that
�
(Kr ) = S(r ). What remains

is to prove thatKr is compact.

Take a sequenceψm(0) ∈ Kr , m = 1, 2, . . . ; the controlsuψm(0) are minimal, the set
of minimal controls of the lengthr is compact, hence there exists a convergent subsequence
of this sequence of controls and the limit is again a minimal control. To simplify notations, we
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suppose without losing generality that the sequenceuψm(0), m = 1, 2, . . . , is already convergent,
∃ limm→∞ uψm(0) = ū.

It follows from Proposition 1 thatψm(1)Duψm(0)
f = uψm(0). There are two possibilities:

either|ψm(1)| → ∞ (m → ∞) orψm(1), m = 1,2, . . . , contains a convergent subsequence.

In the first case we come to the equationλ̄Dū f = 0, whereλ̄ is a limiting point of the
sequence 1

|ψm(1)|
ψm(1), |λ̄| = 1. Lower semicontinuity of ind(q(·), λ, ν) implies the inequality

ind(q̄(·), λ̄,0) < 0, whereq̄(·) is the geodesic associated with the controlū. We come to a
contradiction with the assumption of the theorem.

In the second case letψml (1), l = 1,2, . . . , be a convergent subsequence. Thenψml (0),
l = 1, 2, . . . , is also convergent,∃ liml→∞ ψml (0) = ψ̄(0) ∈ H(r ). Then ū = u

ψ̄(0) and

ind(q̄(·), ψ̄(1), 1) < 0 because of lower semicontinuity of ind(q(·), λ, ν). Henceψ̄(0) ∈ Kr
and we are done.

COROLLARY 3. Let M and the sub-Riemannian structure be real-analytic. Suppose r0 < r
is such thatind(q(·), λ,0) ≥ 0 for any abnormal geodesic q(·) of the length r0 and associated
Lagrange multipliers(λ,0). Thenρ is subanalytic onρ−1 ((r0, r ]).

Proof. Let Kr0 be defined as in (7). ThenKr0 is compact and{uψ(0) : ψ(0) ∈ Kr0} is the
set of all minimal extremal controls of the lengthr0. The minimality of an extremal control
uψ(0) implies the minimality of the controlusψ(0) for s < 1, sinceusψ(0)(τ) = suψ(0)(τ)
and a reparametrized piece of a minimal geodesic is automatically minimal. HenceS(r1) ⊂
� ( r1

r0
Kr0

)
for r1 ≥ r0 and the required subanalyticity follows from Proposition 2.

Among 2 terms in expression (6) for ind(q(·), λ, ν) only the first one, the inertia index of the
second variation, is nontrivial to evaluate. Fortunately,there is an efficient way to compute this
index for both regular and singular (abnormal) geodesics, as well as a good supply of conditions
that garantee the finiteness or infinity of the index (see [2, 4, 6, 9]). The simplest one is theGoh
condition(see [6]):

If ind(q(·), ψ(1),0) < +∞, thenψ(t) annihilates12
q(t), ∀t ∈ [0,1].

Recall thatψ(t) annihilates1q(t), 0 ≤ t ≤ 1, for any Lagrange multiplier(ψ(1),0) associated
with q(·). We say thatq(·) is aGoh geodesicif there exist Lagrange multipliers(ψ(1),0) such
thatψ(t) annihilates12

q(t), ∀t ∈ [0, 1]. In particuar, strictly abnormal minimal geodesics must
be Goh geodesics. Besides that, the Goh condition and Corollary 3 imply

COROLLARY 4. Let M and the sub-Riemannian structure be real-analytic andr0 < r . If
there are no Goh geodesics of the length r0, thenρ is subanalytic onρ−1((r0, r ]).

I’ll finish the paper with a brief analysis of the Goh condition. Suppose thatq(·) is an
abnormal geodesic with Lagrange multipliers(ψ(1),0), andk = 2. Differentiating the iden-
tities h1( ψ(t) ) = h2( ψ(t) ) = 0 with respect tot , we obtain u2(t) { h2,h1 } ( ψ(t) ) =
u1(t){h1,h2}(ψ(t)) = 0, where{h1,h2}(ψ(t)) = 〈ψ(t), [X1, X2](q(t))〉 is the Poisson bracket.
In other words, the Goh condition is automatically satisfiedby any abnormal geodesic.

The situation changes dramatically ifk > 2. In order to understand why, we need some
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notation. Takeλ ∈ T∗M and set

b0(λ) =
(
{h1,h2}(λ), {h1,h3}(λ), . . . , {hk−1, hk}(λ)

)
,

a vector in
� k(k−1)

2 whose coordinates are numbers{hi , h j }(λ), 1 ≤ i < j ≤ k, with lexico-

graphically ordered indeces(i, j ). Set alsoβ0 = k(k−1)
2 . The Goh condition forq(·), ψ(1)

implies the identityb0(ψ(t)) = 0, ∀t ∈ [0, 1]. The differentiation of this identity with respect to
t in virtue of (4) gives the equality

k∑

i=1

ui (t){hi ,b0}(ψ(t)) = 0 , 0 ≤ t ≤ 1 .(8)

Consider the space
∧k �β0 , thek-th exterior power of

�β0 . The standard lexicographic basis in

∧k �β0 gives the identification
∧k �β0 ∼= �

(
β0

k

)

. We setβ1 = β +
(
β0
k

)
and

b1(λ) = (b0(λ), {h1,b0}(λ) ∧ · · · ∧ {hk,b0}(λ)) ∈ �β1 .

Equality (8) implies:b1(ψ(t)) = 0, 0≤ t ≤ 1.

Now we set by inductionβi+1 = βi +
(
βi
k

)
, i = 0, 1, 2, . . . , and fix identifications

�βi × �

(
βi

k

)

∼= �βi+1 . Finaly, we define

bi+1(λ) = (bi (λ), {h1,bi }(λ) ∧ · · · ∧ {hk,bi }(λ)) ∈ �βi+1 , i = 1, 2, . . . .

Successive differentiations of the Goh condition give the equationsbi (ψ(t)) = 0, i = 1,2, . . . .
It is easy to check that the equationbi+1(λ) = 0 is not, in general, a consequence of the equation
bi (λ) = 0 and we indeed impose more and more restrictive conditions on the locus of Goh
geodesics.

A natural conjecture is that admitting Goh geodesics distributions of rankk > 2 form a set
of infinite codimension in the space of all rankk distributions, i.e. they do not appear in generic
smooth families of distributions parametrized by finite-dimensional manifolds. It may be not
technically easy, however, to turn this conjecture into thetheorem.

Anyway, Goh geodesics are very exclusive for the distributions of rank greater than 2. Yet
they may become typical under a priori restictions on the growth vector of the distribution (see
[6]).

Note in proof. An essential progress was made while the paper was waiting for the publication.
In particular, the conjecture on Goh geodesics has been proved as well as the conjecture stated
at the end of the Introduction. These and other results will be included in our joined paper with
Jean Paul Gauthier, now in preparation.
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ON THE DIRICHLET PROBLEM

FOR NONLINEAR DEGENERATE ELLIPTIC EQUATIONS

AND APPLICATIONS TO OPTIMAL CONTROL

Abstract.
We construct a generalized viscosity solution of the Dirichlet problem for fully

nonlinear degenerate elliptic equations in general domains by the Perron-Wiener-
Brelot method. The result is designed for the Hamilton-Jacobi-Bellman-Isaacs
equations of time-optimal stochastic control and differential games with discon-
tinuous value function. We study several properties of the generalized solution, in
particular its approximation via vanishing viscosity and regularization of the do-
main. The connection with optimal control is proved for a deterministic minimum-
time problem and for the problem of maximizing the expected escape time of a
degenerate diffusion process from an open set.

Introduction

The theory of viscosity solutions provides a general framework for studying the partial differ-
ential equations arising in the Dynamic Programming approach to deterministic and stochastic
optimal control problems and differential games. This theory is designed for scalar fully nonlin-
ear PDEs

F(x, u(x), Du(x), D2u(x)) = 0 in�,(1)

where� is a general open subset of
�N , with the monotonicity property

F(x, r, p, X) ≤ F(x, s, p,Y)
if r ≤ s andX − Y is positive semidefinite,

(2)

so it includes 1st order Hamilton-Jacobi equations and 2nd order PDEs that are degenerate
elliptic or parabolic in a very general sense [18, 5].

The Hamilton-Jacobi-Bellman (briefly, HJB) equations in the theory of optimal control of
diffusion processes are of the form

sup
α∈A

�αu = 0 ,(3)

∗* Partially supported by M.U.R.S.T., projects “Problemi nonlineari nell’analisi e nelle applicazioni
fisiche, chimiche e biologiche” and “Analisi e controllo di equazioni di evoluzione deterministiche e stocas-
tiche”, and by the European Community, TMR Network “Viscosity solutions and their applications”.
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whereα is the control variable and, for eachα,
�α is a linear nondivergence form operator

�αu := −aαi j
∂2u

∂xi ∂x j
+ bαi

∂u

∂xi
+ cαu − f α,(4)

where f andc are the running cost and the discount rate in the cost functional, b is the drift of
the system,a = 1

2σσ
T andσ is the variance of the noise affecting the system (see Section 3.2).

These equations satisfy (2) if and only if

aαi j (x)ξi ξ j ≥ 0 andcα(x) ≥ 0, for all x ∈ �, α ∈ A, ξ ∈ �N ,(5)

and these conditions are automatically satisfied by operators coming from control theory. In the
case of deterministic systems we haveaαi j ≡ 0 and the PDE is of 1st order. In the theory of
two-person zero-sum deterministic and stochastic differential games the Isaacs’ equation has the
form

sup
α∈A

inf
β∈B

�α,βu = 0 ,(6)

whereβ is the control of the second player and
�α,β are linear operators of the form (4) and

satisfying assumptions such as (5).

For many different problems it was proved that the value function is the unique continuous
viscosity solution satisfying appropriate boundary conditions, see the books [22, 8, 4, 5] and the
references therein. This has a number of useful consequences, because we have PDE methods
available to tackle several problems, such as the numericalcalculation of the value function,
the synthesis of approximate optimal feedback controls, asymptotic problems (vanishing noise,
penalization, risk-sensitive control, ergodic problems,singular perturbations. . . ). However, the
theory is considerably less general for problems withdiscontinuousvalue function, because it
is restricted to deterministic systems with a single controller, where the HJB equation is of first
order with convex Hamiltonian in thep variables. The pioneering papers on this issue are due
to Barles and Perthame [10] and Barron and Jensen [11], who use different definitions of non-
continuous viscosity solutions, see also [27, 28, 7, 39, 14], the surveys and comparisons of the
different approaches in the books [8, 4, 5], and the references therein.

For cost functionals involving the exit time of the state from the set�, the value function
is discontinuous if the noise vanishes near some part of the boundary and there is not enough
controllability of the drift; other possible sources of discontinuities are the lack of smoothness
of ∂�, even for nondegenerate noise, and the discontinuity or incompatibility of the boundary
data, even if the drift is controllable (see [8, 4, 5] for examples). For these functionals the value
should be the solution of the Dirichlet problem

{
F(x, u, Du, D2u) = 0 in� ,
u = g on ∂� ,

(7)

whereg(x) is the cost of exiting� at x and we assumeg ∈ C(∂�). For 2nd order equations, or
1st order equations with nonconvex Hamiltonian, there are no local definitions of weak solution
and weak boundary conditions that ensure existence and uniqueness of a possibly discontinuous
solution. However a global definition of generalized solution of (7) can be given by the following
variant of the classical Perron-Wiener-Brelot method in potential theory. We define

�
:= {w ∈ BU SC(�) subsolution of (1), w ≤ g on∂�}

�
:= {W ∈ BL SC(�) supersolution of (1), W ≥ g on ∂�} ,
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where BU SC(�) (respectively,BL SC(�)) denote the sets of bounded upper (respectively,
lower) semicontinuous functions on�, and we say thatu : � → �

is a generalized solution of
(7) if

u(x) = sup
w∈�

w(x) = inf
W∈�

W(x) .(8)

With respect to the classical Wiener’s definition of generalized solution of the Dirichlet problem
for the Lapalce equation in general nonsmooth domains [45] (see also [16, 26]), we only replace
sub- and superharmonic functions with viscosity sub- and supersolutions. In the classical theory
the inequality supw∈� w ≤ infW∈� W comes from the maximum principle, here it comes from
theComparison Principlefor viscosity sub- and supersolutions; this important result holds under
some additional assumptions that are very reasonable for the HJB equations of control theory, see
Section 1.1; for this topic we refer to Jensen [29] and Crandall, Ishii and Lions [18]. The main
difference with the classical theory is that the PWB solution for the Laplace equation is harmonic
in � and can be discontinuous only at boundary points where∂� is very irregular, whereas here
u can be discontinuous also in the interior and even if the boundary is smooth: this is because
the very degenerate ellipticity (2) neither implies regularizing effects, nor it guarantees that the
boundary data are attained continuously. Note that if a continuous viscosity solution of (7) exists
it coincides withu, and both the sup and the inf in (8) are attained.

Perron’s method was extended to viscosity solutions by Ishii [27] (see Theorem 1), who
used it to prove general existence results of continuous solutions. The PWB generalized solution
of (7) of the form (8) was studied indipendently by the authors and Capuzzo-Dolcetta [4, 1] and
by M. Ramaswamy and S. Ramaswamy [38] for some special cases of equations of the form (1),
(2). In [4] this notion is calledenvelope solutionand several properties are studied, in particular
the equivalence with the generalized minimax solution of Subbotin [41, 42] and the connection
with deterministic optimal control. The connection with pursuit-evasion games can be found in
[41, 42] within the Krasovskii-Subbotin theory, and in our paper with Falcone [3] for the Fleming
value; in [3] we also study the convergence of a numerical scheme.

The purposes of this paper are to extend the existence and basic properties of the PWB
solution in [4, 1, 38] to more general operators, to prove some new continuity properties with
respect to the data, in particular for the vanishing viscosity method and for approximations of
the domain, and finally to show a connection with stochastic optimal control. For the sake of
completeness we give all the proofs even if some of them follow the same argument as in the
quoted references.

Let us now describe the contents of the paper in some detail. In Subsection 1.1 we recall
some known definitions and results. In Subsection 1.2 we prove the existence theorem under
an assumption on the boundary datag that is reminiscent of the compatibility conditions in
the theory of 1st order Hamilton-Jacobi equations [34, 4]; this condition implies that the PWB
solution is either the minimal supersolution or the maximalsubsolution (i.e., either the inf or
the sup in (8) is attained), and it is verified in time-optimalcontrol problems. We recall that the
classical Wiener Theorem asserts that for the Laplace equation any continuous boundary function
g is resolutive(i.e., the PWB solution of the corresponding Dirichlet problem exists), and this
was extended to some quasilinear nonuniformly elliptic equations, see the book of Heinonen,
Kilpeläinen and Martio [25]. We do not know at the moment if this result can be extended to
some class of fully nonlinear degenerate equations; however we prove in Subsection 2.1 that the
set of resolutive boundary functions in our context is closed under uniform convergence as in the
classical case (cfr. [26, 38]).

In Subsection 1.3 we show that the PWB solution is consistentwith the notions of general-
ized solution by Subbotin [41, 42] and Ishii [27], and it satisfies the Dirichlet boundary condition
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in the weak viscosity sense [10, 28, 18, 8, 4]. Subsection 2.1is devoted to the stability of the
PWB solution with respect to the uniform convergence of the boundary data and the operatorF .
In Subsection 2.2 we consider merely local uniform perturbations of F , such as the vanishing
viscosity, and prove a kind of stability provided the set� is simultaneously approximated from
the interior.

In Subsection 2.3 we prove that for a nested sequence of open subsets�n of � such that⋃
n�n = �, if un is the PWB solution of the Dirichlet problem in�n, the solutionu of (7)

satisfies

u(x) = lim
n

un(x) , x ∈ � .(9)

This allows to approximateu with more regular solutionsun when∂� is not smooth and�n are
chosen with smooth boundary. This approximation proceduregoes back to Wiener [44] again,
and it is standard in elliptic theory for nonsmooth domains where (9) is often used todefine
a generalized solution of (7), see e.g. [30, 23, 12, 33]. In Subsection 2.3 we characterize the
boundary points where the data are attained continuously interms of the existence of suitable
local barriers.

The last section is devoted to two applications of the previous theory to optimal control. The
first (Subsection 3.1) is the classical minimum time problemfor deterministic nonlinear systems
with a closed target. In this case the lower semicontinuous envelope of the value function is the
PWB solution of the homogeneous Dirichlet problem for the Bellman equation. The proof we
give here is different from the one in [7, 4] and simpler. The second application (Subsection 3.2)
is about the problem of maximizing the expected discounted time that a controlled degenerate
diffusion process spends in�. Here we prove that the value function itself is the PWB solution
of the appropriate problem. In both casesg ≡ 0 is a subsolution of the Dirichlet problem, which
implies that the PWB solution is also the minimal supersolution.

It is worth to mention some recent papers using related methods. The thesis of Bettini
[13] studies upper and lower semicontinuous solutions of the Cauchy problem for degenerate
parabolic and 1st order equations with applications to finite horizon differential games. Our
paper [2] extends some results of the present one to boundaryvalue problems where the data
are prescribed only on a suitable part of∂�. The first author, Goatin and Ishii [6] study the
boundary value problem for (1) with Dirichlet conditions inthe viscosity sense; they construct
a PWB-type generalized solution that is also the limit of approximations of� from the outside,
instead of the inside. This solution is in general differentfrom ours and it is related to control
problems involving the exit time from�, instead of�.

1. Generalized solutions of the Dirichlet problem

1.1. Preliminaries

Let F be a continuous function

F : �× � × �N × S(N) → �
,

where� is an open subset of
�N , S(N) is the set of symmetricN × N matrices equipped with

its usual order, and assume thatF satisfies (2). Consider the partial differential equation

F(x, u(x), Du(x), D2u(x)) = 0 in�,(10)
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whereu : � → �
, Du denotes the gradient ofu andD2u denotes the Hessian matrix of second

derivatives ofu. From now on subsolutions, supersolutions and solutions ofthis equation will be
understood in the viscosity sense; we refer to [18, 5] for thedefinitions. For a general subsetE
of
�N we indicate withU SC(E), respectivelyL SC(E), the set of all functionsE → �

upper,
respectively lower, semicontinuous, and withBU SC(E), BL SC(E) the subsets of functions
that are also bounded.

DEFINITION 1. We will say that equation (10) satisfies theComparison Principleif for all
subsolutionsw ∈ BU SC(�) and supersolutions W∈ BL SC(�) of (10) such thatw ≤ W on
∂�, the inequalityw ≤ W holds in�.

We refer to [29, 18] for the strategy of proof of some comparison principles, examples and
references. Many results of this type for first order equations can be found in [8, 4].

The main examples we are interested in are the Isaacs equations:

sup
α

inf
β

�α,βu(x) = 0(11)

and

inf
β

sup
α

�α,βu(x) = 0 ,(12)

where

�α,βu(x) = −aα,βi j (x)
∂2u

∂xi ∂x j
+ bα,βi (x)

∂u

∂xi
+ cα,β (x)u − f α,β (x) .

HereF is

F(x, r, p, X) = sup
α

inf
β

{−trace(aα,β (x)X)+ bα,β (x) · p + cα,β (x)r − f α,β (x)} .

If, for all x ∈ �, aα,β (x) = 1
2σ

α,β (x)(σα,β (x))T , whereσα,β (x) is a matrix of orderN× M, T

denotes the transpose matrix,σα,β, bα,β , cα,β , f α,β are bounded and uniformly continuous in
�, uniformly with respect toα, β, thenF is continuous, and it is proper if in additioncα,β ≥ 0
for all α,β.

Isaacs equations satisfy the Comparison Principle if� is bounded and there are positive
constantsK1, K2, andC such that

F(x, t, p, X)− F(x, s,q,Y) ≤ max{K1trace(Y − X), K1(t − s)} + K2|p − q| ,(13)

for all Y ≤ X andt ≤ s,

‖σα,β (x)− σα,β (y)‖ ≤ C|x − y|, for all x, y ∈ � and allα, β(14)

|bα,β (x)− bα,β (y)| ≤ C|x − y|, for all x, y ∈ � and allα, β ,(15)

see Corollary 5.11 in [29]. In particular condition (13) is satisfied if and only if

max{λα,β (x), cα,β (x)} ≥ K > 0 for all x ∈ �, α ∈ A, β ∈ B ,

whereλα,β (x) is the smallest eigenvalue ofAα,β (x). Note that this class of equations contains
as special cases the Hamilton-Jacobi-Bellman equations ofoptimal stochastic control (3) and
linear degenerate elliptic equations with Lipschitz coefficients.
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Given a functionu : � → [−∞,+∞], we indicate withu∗ andu∗, respectively, the upper
and the lower semicontinuous envelope ofu, that is,

u∗(x) := lim
r↘0

sup{u(y) : y ∈ �, |y − x| ≤ r } ,

u∗(x) := lim
r↘0

inf{u(y) : y ∈ �, |y − x| ≤ r } .

PROPOSITION1. Let S (respectively Z) be a set of functions such that for allw ∈ S (re-
spectively W∈ Z) w∗ is a subsolution (respectively W∗ is a supersolution) of (10). Define the
function

u(x) := sup
w∈S

w(x), x ∈ �, (respectively u(x) := inf
W∈Z

W(x)) .

If u is locally bounded, then u∗ is a subsolution (respectively u∗ is a supersolution) of (10).

The proof of Proposition 1 is an easy variant of Lemma 4.2 in [18].

PROPOSITION2. Letwn ∈ BU SC(�) be a sequence of subsolutions (respectively Wn ∈
BL SC(�) a sequence of supersolutions) of (10), such thatwn(x) ↘ u(x) for all x ∈ � (respec-
tively Wn(x) ↗ u(x)) and u is a locally bounded function. Then u is a subsolution (respectively
supersolution) of (10).

For the proof see, for instance, [4]. We recall that, for a generale subsetE of
�N andx̂ ∈ E,

the second order superdifferential ofu at x̂ is the subsetJ2,+
E u(x̂) of

�N × S(N) given by the
pairs(p, X) such that

u(x) ≤ u(x̂)+ p · (x − x̂)+ 1

2
X(x − x̂) · (x − x̂)+ o(|x − x̂|2)

for E 3 x → x̂. The opposite inequality defines the second order subdifferential of u at x̂,
J2,−

E u(x̂).

LEMMA 1. Let u∗ be a subsolution of (10). If u∗ fails to be a supersolution at some point

x̂ ∈ �, i.e. there exist(p, X) ∈ J2,−
�

u∗(x̂) such that

F(x̂,u∗(x̂), p, X) < 0 ,

then for all k> 0 small enough, there exists Uk : � → �
such that U∗

k is subsolution of (10)
and

{
Uk(x) ≥ u(x), sup�(Uk − u) > 0 ,
Uk(x) = u(x) for all x ∈ � such that|x − x̂| ≥ k .

The proof is an easy variant of Lemma 4.4 in [18]. The last result of this subsection is Ishii’s
extension of Perron’s method to viscosity solutions [27].

THEOREM 1. Assume there exists a subsolution u1 and a supersolution u2 of (10) such that
u1 ≤ u2, and consider the functions

U(x) := sup{w(x) : u1 ≤ w ≤ u2, w
∗ subsolution of(10)} ,

W(x) := inf{w(x) : u1 ≤ w ≤ u2, w∗ supersolution of(10)} .
Then U∗,W∗ are subsolutions of (10) and U∗,W∗ are supersolutions of (10).
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1.2. Existence of solutions by the PWB method

In this section we present a notion of weak solution for the boundary value problem
{

F(x, u, Du, D2u) = 0 in�,
u = g on∂� ,

(16)

whereF satisfies the assumptions of Subsection 1.1 andg : ∂� → �
is continuous. We recall

that
�
,
�

are the sets of all subsolutions and all supersolutions of (16) defined in the Introduction.

DEFINITION 2. The function defined by

Hg(x) := sup
w∈�

w(x) ,

is thelower envelope viscosity solution, or Perron-Wiener-Brelot lower solution, of (16). We will
refer to it as thelower e-solution. The function defined by

Hg(x) := inf
W∈�

W(x) ,

is theupper envelope viscosity solution, or PWB upper solution, of (16), brieflyupper e-solution.
If H g = Hg, then

Hg := Hg = Hg

is theenvelope viscosity solutionor PWB solutionof (16), brieflye-solution. In this case the
data g are calledresolutive.

Observe thatHg ≤ Hg by the Comparison Principle, so the e-solution exists if theinequal-
ity ≥ holds as well. Next we prove the existence theorem for e-solutions, which is the main
result of this section. We will need the following notion of global barrier, that is much weaker
than the classical one.

DEFINITION 3. We say thatw is a lower (respectively,upper) barrier at a point x∈ ∂� if
w ∈ �

(respectively,w ∈ �
) and

lim
y→x

w(y) = g(x) .

THEOREM 2. Assume that the Comparison Principle holds, and that
�
,
�

are nonempty.

i ) If there exists a lower barrier at all points x∈ ∂�, then Hg = minW∈� W is the e-solution
of (16).

i i ) If there exists an upper barrier at all points x∈ ∂�, then Hg = maxw∈� w is the e-solution
of (16).

Proof. Letw be the lower barrier atx ∈ ∂�, then by definitionw ≤ Hg. Thus

(Hg)∗(x) = lim inf
y→x

Hg(y) ≥ lim inf
y→x

w(y) = g(x) .

By Theorem 1(Hg)∗ is a supersolution of (10), so we can conclude that(Hg)∗ ∈ �
. Then

(Hg)∗ ≥ Hg ≥ Hg, soHg = Hg andHg ∈ �
.
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EXAMPLE 1. Consider the problem

{ −ai j (x)uxi x j (x) + bi (x)uxi (x) + c(x)u(x) = 0 in�,
u(x) = g(x) on∂� ,

(17)

with the matrixai j (x) such thata11(x) ≥ µ > 0 for all x ∈ �. In this case we can show
that all continuous functions on∂� are resolutive. The proof follows the classical one for the
Laplace equation, the only hard point is checking the superposition principle for viscosity sub-
and supersolutions. This can be done by the same methods and under the same assumptions as
the Comparison Principle.

1.3. Consistency properties and examples

Next results give a characterization of the e-solution as pointwise limit of sequences of sub and
supersolutions of (16). If the equation (10) is of first order, this property is essentially Subbotin’s
definition of (generalized) minimax solution of (16) [41, 42].

THEOREM 3. Assume that the Comparison Principle holds, and that
�
,
�

are nonempty.

i ) If there exists u∈ �
continuous at each point of∂� and such that u= g on∂�, then there

exists a sequencewn ∈ �
such thatwn ↗ Hg.

i i ) If there existsu ∈ �
continuous at each point of∂� and such thatu = g on∂�, then there

exists a sequence Wn ∈ �
such that Wn ↘ Hg.

Proof. We give the proof only fori ), the same proof works fori i ). By Theorem 2Hg =
minW∈� W. Givenε > 0 the function

uε (x) := sup{w(x) : w ∈ �
, w(x) = u(x) if dist (x, ∂�) < ε} ,(18)

is bounded, anduδ ≤ uε for ε < δ. We define

V(x) := lim
n→∞

(u1/n)∗(x) ,

and note that, by definition,Hg ≥ uε ≥ (uε )∗, and thenHg ≥ V . We claim that(uε)∗ is
supersolution of (10) in the set

�ε := {x ∈ � : dist(x, ∂�) > ε} .

To prove this claim we assume by contradiction that(uε)∗ fails to be a supersolution aty ∈ �ε .
Note that, by Proposition 1,(uε)∗ is a subsolution of (10). Then by Lemma 1, for allk > 0
small enough, there existsUk such thatU∗

k is subsolution of (10) and

sup
�

(Uk − uε) > 0, Uk(x) = uε(x) if |x − y| ≥ k .(19)

We fix k ≤ dist(y, ∂�)− ε, so thatUk(x) = uε(x) = u(x) for all x such that dist(x, ∂�) < ε.
ThenU∗

k (x) = u(x), soU∗
k ∈ �

and by the definition ofuε we obtainU∗
k ≤ uε . This gives a

contradiction with (19) and proves the claim.

By Proposition 2V is a supersolution of (10) in�. Moreover if x ∈ ∂�, for all ε > 0,
(uε )∗(x) = g(x), becauseuε(x) = u(x) if dist (x, ∂�) < ε by definition,u is continuous and
u = g on∂�. ThenV ≥ g on ∂�, and soV ∈ �

.
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To complete the proof we definewn := (u1/n)
∗, and observe that this is a nondecreasing

sequence in
�

whose pointwise limit is≥ V by definition ofV . On the other handwn ≤ Hg by
definition of Hg, and we have shown thatHg = V , sown ↗ Hg.

COROLLARY 1. Assume the hypotheses of Theorem 3. Then Hg is the e-solution of (16 if
and only if there exist two sequences of functionswn ∈ �

, Wn ∈ �
, such thatwn = Wn = g on

∂� and for all x ∈ �

wn(x) → Hg(x), Wn(x) → Hg(x) as n→ ∞ .

REMARK 1. It is easy to see from the proof of Theorem 3, that in casei ), the e-solutionHg
satisfies

Hg(x) = sup
ε

uε(x) x ∈ � ,

where

uε(x) := sup{w(x) : w ∈ �
, w(x) = u(x) for x ∈ � \2ε } ,(20)

and2ε , ε ∈]0,1], is any family of open sets such that2ε ⊆ �, 2ε ⊇ 2δ for ε < δ and⋃
ε 2ε = �.

EXAMPLE 2. Consider the Isaacs equation (11) and assume the sufficient conditions for the
Comparison Principle.

• If

g ≡ 0 and f α,β (x) ≥ 0 for all x ∈ �, α ∈ A, β ∈ B ,

thenu ≡ 0 is subsolution of the PDE, so the assumptioni ) of Theorem 3 is satisfied.

• If the domain� is bounded with smooth boundary and there existα ∈ A andµ > 0 such
that

aα,βi j (x)ξi ξ j ≥ µ|ξ |2 for all β ∈ B, x ∈ �, ξ ∈ �N ,

then there exists a classical solutionu of

{
inf
β∈B

�α,βu = 0 in�,

u = g on∂� ,

see e.g. Chapt. 17 of [24]. Thenu is a supersolution of (11), so the hypothesisi i ) of
Theorem 3 is satisfied.

Next we compare e-solutions with Ishii’s definitions of non-continuous viscosity solution
and of boundary conditions in viscosity sense. We recall that a functionu ∈ BU SC(�) (respec-
tively u ∈ BL SC(�)) is a viscosity subsolution(respectively aviscosity supersolution) of the
boundary condition

u = g or F(x, u, Du, D2u) = 0 on∂� ,(21)
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if for all x ∈ ∂� andφ ∈ C2(�) such thatu−φ attains a local maximum (respectively minimum)
at x, we have

(u − g)(x) ≤ 0 (resp. ≥ 0) or F(x, u(x), Dφ(x), D2φ(x)) ≤ 0 (resp. ≥ 0) .

An equivalent definition can be given by means of the semijetsJ2,+
�

u(x), J2,−
�

u(x) instead of
the test functions, see [18].

PROPOSITION3. If H g : � → �
is the lower e-solution (respectively,Hg is the upper

e-solution) of (16), then H∗g is a subsolution (respectively,Hg∗ is a supersolution) of (10) and
of the boundary condition (21).

Proof. If Hg is the lower e-solution, then by Proposition 1,H∗
g is a subsolution of (10). It

remains to check the boundary condition.

Fix an y ∈ ∂� such thatH∗
g(y) > g(y), andφ ∈ C2(�) such thatH∗

g − φ attains a local
maximum aty. We can assume, without loss of generality, that

H∗
g(y) = φ(y), (H∗

g − φ)(x) ≤ −|x − y|3 for all x ∈ � ∩ B(y, r ) .

By definition of H∗
g, there exists a sequence of pointsxn → y such that

(Hg − φ)(xn) ≥ − 1

n
for all n .

Moreover, sinceHg is the lower e-solution, there exists a sequence of functionswn ∈ S such
that

Hg(xn)−
1

n
< wn(xn) for all n .

Since the functionwn − φ is upper semicontinuous, it attains a maximum atyn ∈ � ∩ B(y, r ),
such that, forn big enough,

− 2

n
< (wn − φ)(yn) ≤ −|yn − y|3.

So asn → ∞

yn → y, wn(yn) → φ(y) = H∗
g(y) > g(y) .

Note thatyn 6∈ ∂�, becauseyn ∈ ∂� would implywn(yn) ≤ g(yn), which gives a contradiction
to the continuity ofg at y. Therefore, sincewn is a subsolution of (10), we have

F(yn, wn(yn), Dφ(yn), D2φ(yn)) ≤ 0 ,

and lettingn → ∞ we get

F(y, H∗
g(y), Dφ(y), D2φ(y)) ≤ 0 ,

by the continuity ofF .
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REMARK 2. By Proposition 3, if the e-solutionHg of (16) exists, it is a non-continuous
viscosity solution of (10) (21) in the sense of Ishii [27]. These solutions, however, are not
unique in general. An e-solution satisfies also the Dirichlet problem in the sense that it is a non-
continuous solution of (10) in Ishii’s sense andHg(x) = g(x) for all x ∈ ∂�, but neither this
property characterizes it. We refer to [4] for explicit examples and more details.

REMARK 3. Note that, by Proposition 3, if the e-solutionHg is continuous at all points of
∂�1 with �1 ⊂ �, we can apply the Comparison Principle to the upper and lowersemicontinu-
ous envelopes ofHg and obtain that it is continuous in�1. If the equation is uniformly elliptic
in �1 we can also apply in�1 the local regularity theory for continuous viscosity solutions
developed by Caffarelli [17] and Trudinger [43].

2. Properties of the generalized solutions

2.1. Continuous dependence under uniform convergence of the data

We begin this section by proving a result about continuous dependence of the e-solution on
the boundary data of the Dirichlet Problem. It states that the set of resolutive data is closed
with respect to uniform convergence. Throughout the paper we denote with→→ the uniform
convergence.

THEOREM 4. Let F : � × � × �N × S(N) → �
be continuous and proper, and let

gn : ∂� → �
be continuous. Assume that{gn}n is a sequence of resolutive data such that

gn→→g on∂�. Then g is resolutive and Hgn→→Hg on�.

The proof of this theorem is very similar to the classical onefor the Laplace equation [26].
We need the following result:

LEMMA 2. For all c > 0, H(g+c) ≤ Hg + c andH (g+c) ≤ Hg + c.

Proof. Let

�
c := {w ∈ BU SC(�) : w is subsolution of (10), w ≤ g + c on ∂�} .

Fix u ∈ �
c, and consider the functionv(x) = u(x) − c. SinceF is proper it is easy to see that

v ∈ �
. Then

H (g+c) := sup
u∈�c

u ≤ sup
v∈�

v + c := Hg + c .

of Theorem 4.Fix ε > 0, the uniform convergence implies∃m : ∀n ≥ m: gn − ε ≤ g ≤ gn + ε.
Sincegn is resolutive by Lemma 2, we get

Hgn − ε ≤ H (gn−ε) ≤ Hg ≤ H (gn+ε) ≤ Hgn + ε .

ThereforeHgn→→Hg. The proof thatHgn→→Hg, is similar.
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Next result proves the continuous dependence of e-solutions with respect to the data of the
Dirichlet Problem, assuming that the equationsFn are strictly decreasing inr , uniformly in n.

THEOREM 5. Let Fn : �× � × �N × S(N) → �
is continuous and proper, g: ∂� → �

is continuous. Suppose that∀n, ∀δ > 0 ∃ε such that

Fn(x, r − δ, p, X)+ ε ≤ Fn(x, r, p, X)

for all (x, r, p, X) ∈ �× � × �N × S(N), and Fn→→F on�× � × �N × S(N). Suppose g is
resolutive for the problems

{
Fn(x, u, Du, D2u) = 0 in � ,
u = g on∂� .

(22)

Suppose gn : ∂� → �
is continuous, gn→→g on∂� and gn is resolutive for the problem

{
Fn(x, u, Du, D2u) = 0 in � ,
u = gn on ∂� .

(23)

Then g is resolutive for (16) and Hngn
→→Hg, where Hn

gn
is the e-solution of (23).

Proof. Step 1. For fixedδ > 0 we want to show that there existsm such that for alln ≥ m:
|Hn

g − Hg| ≤ δ, whereHn
g is the e-solution of (22).

We claim that there existsm such thatHn
g − δ ≤ Hg and Hg ≤ H

n
g + δ for all n ≥ m.

Then

Hn
g − δ ≤ Hg ≤ Hg ≤ H

n
g + δ = Hn

g + δ .

This proves in particularHn
g →→Hg and Hn

g →→Hg, and thenHg = Hg, so g is resolutive for
(16).

It remains to prove the claim. Let

� n
g := {v subsolution ofFn = 0 in�, v ≤ g on∂�} .

Fix v ∈ � n
g , and consider the functionu = v − δ. By hypothesis there exists anε such that

Fn(x, u(x), p, X) + ε ≤ Fn(x, v(x), p, X), for all (p, X) ∈ J2,+
�

u(x). Then using uniform
convergence ofFn at F we get

F(x, u(x), p, X) ≤ Fn(x, u(x), p, X)+ ε ≤ Fn(x, v(x), p, X) ≤ 0 ,

sov is a subsolution of the equationFn = 0 becauseJ2,+
�

v(x) = J2,+
�

u(x).

We have shown that for allv ∈ � n
g there existsu ∈ �

such thatv = u + δ, and this proves
the claim.

Step 2. Using the argument of proof of Theorem 4 with the problem
{

Fm(x, u, Du, D2u) = 0 in� ,
u = gn on ∂� ,

(24)

we see that fixingδ > 0, there existsp such that for alln ≥ p: |Hm
gn

− Hm
g | ≤ δ for all m.

Step 3. Using again arguments of proof of Theorem 4, we see that fixing δ > 0 there exists
q such that for alln,m ≥ q: |Hm

gn
− Hm

gm
| ≤ δ.
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Step 4. Now takeδ > 0, then there existsp such that for alln,m ≥ p:

|Hm
gm

− Hg| ≤ |Hm
gm

− Hm
gn

| + |Hm
gn

− Hm
g | + |Hm

g − Hg| ≤ 3δ .

Similarly |Hm
gm

− Hg| ≤ 3δ. But Hm
gm

= H
m
gm

, and this complete the proof.

2.2. Continuous dependence under local uniform convergence of the operator

In this subsection we study the continuous dependence of e-solutions with respect to perturba-
tions of the operator, depending on a parameterh, that are not uniform over all�× � × �N ×
S(N) as they were in Theorem 5, but only on compact subsets of�×� ×�N × S(N). A typical
example we have in mind is the vanishing viscosity approximation, but similar arguments work
for discrete approximation schemes, see [3]. We are able to pass to the limit under merely local
perturbations of the operator by approximating� with a nested family of open sets2ε , solving
the problem in each2ε , and then lettingε, h go to 0 “withh linked toε” in the following sense.

DEFINITION 4. Letvεh, u : Y → �
, for ε > 0, h > 0, Y ⊆ �N . We say thatvεh converges

to u as(ε,h) ↘ (0, 0) with h linked toε at the point x, and write

lim
(ε,h)↘(0,0)

h≤h(ε)

vεh(x) = u(x)(25)

if for all γ > 0, there exist a functioñh :]0,+∞[→]0,+∞[ andε > 0 such that

|vεh(y)− u(x)| ≤ γ, for all y ∈ Y : |x − y| ≤ h̃(ε)

for all ε ≤ ε, h ≤ h̃(ε).

To justify this definition we note that:

i ) it implies that for anyx andεn ↘ 0 there is a sequencehn ↘ 0 such thatvεnhn
(xn) → u(x)

for any sequencexn such that|x − xn| ≤ hn, e.g. xn = x for all n, and the same holds
for any sequenceh′

n ≥ hn;

i i ) if lim h↘0 v
ε
h(x) exists for all smallε and its limit asε ↘ 0 exists, then it coincides with the

limit of Definition 4, that is,

lim
(ε,h)↘(0,0)

h≤h(ε)

vεh(x) = lim
ε↘0

lim
h↘0

vεh(x) .

REMARK 4. If the convergence of Definition 4 occurs on a compact setK where the limit
u is continuous, then (25) can be replaced, for allx ∈ K and redefining̃h if necessary, with

|vεh(y)− u(y)| ≤ 2γ, for all y ∈ K : |x − y| ≤ h̃(ε) ,

and by a standard compactness argument we obtain the uniformconvergence in the following
sense:

DEFINITION 5. Let K be a subset of
�N andvεh, u : K → �

for all ε,h > 0. We say that
vεh converge uniformlyon K to u as(ε,h) ↘ (0,0) with h linked toε if for anyγ > 0 there are

ε > 0 andh̃ :]0,+∞[→]0,+∞[ such that

sup
K

|vεh − u| ≤ γ
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for all ε ≤ ε, h ≤ h̃(ε).

The main result of this subsection is the following. Recall that a family of functionsvεh :
� → �

is locally uniformly bounded if for each compact setK ⊆ � there exists a constantCK
such that supK |vεh| ≤ CK for all h, ε > 0. In the proof we use the weak limits in the viscosity
sense and the stability of viscosity solutions and of the Dirichlet boundary condition in viscosity
sense (21) with respect to such limits.

THEOREM 6. Assume the Comparison Principle holds,
� 6= ∅ and let ube a continuous

subsolution of (16) such that u= g on∂�. For anyε ∈]0,1], let2ε be an open set such that
2ε ⊆ �, and for h∈]0,1] let vεh be a non-continuous viscosity solution of the problem

{
Fh(x, u, Du, D2u) = 0 in2ε ,
u(x) = u(x) or Fh(x, u, Du, D2u) = 0 on∂2ε ,

(26)

where Fh : 2ε × � × �N × S(N) → �
is continuous and proper. Suppose{vεh} is locally

uniformly bounded,vεh ≥ u in �, and extendvεh := u in � \ 2ε . Finally assume that Fh
converges uniformly to F on any compact subset of� × � × �N × S(N) as h ↘ 0, and
2ε ⊇ 2δ if ε < δ,

⋃
0<ε≤12ε = �.

Thenvεh converges to the e-solution Hg of (16) with h linked toε, that is, (25) holds for all

x ∈ �; moreover the convergence is uniform (as in Def. 5) on any compact subset of� where
Hg is continuous.

Proof. Note that the hypotheses of Theorem 3 are satisfied, so the e-solution Hg exists. Consider
the weak limits

vε (x) := lim inf
h↘0 ∗v

ε
h(x) := sup

δ>0
inf{vεh(y) : |x − y| < δ, 0< h < δ} ,

vε (x) := lim sup
h↘0

∗vεh(x) := inf
δ>0

sup{vεh(y) : |x − y| < δ, 0< h < δ} .

By a standard result in the theory of viscosity solutions, see [10, 18, 8, 4],vε andvε are respec-
tively supersolution and subsolution of

{
F(x, u, Du, D2u) = 0 in2ε ,
u(x) = u(x) or F(x, u, Du, D2u) = 0 on∂2ε .

(27)

We claim thatvε is also a subsolution of (16). Indeedvεh ≡ u in�\2ε , sovε ≡ u in the interior
of � \2ε and then in this set it is a subsolution. In2ε we have already seen thatvε = (vε)

∗ is
a subsolution. It remains to check what happens on∂2ε . Given x̂ ∈ ∂2ε , we must prove that
for all (p, X) ∈ J2,+

�
vε(x̂) we have

Fh(x̂, vε(x̂), p, X) ≤ 0 .(28)

1st Case:vε(x̂) > u(x̂). Sincevε satisfies the boundary condition on∂2ε of problem (27),

then for all(p, X) ∈ J2,+
2ε

vε(x̂) (28) holds. Then the same inequality holds for all(p, X) ∈
J2,+
�

vε(x̂) as well, becauseJ2,+
�

vε(x̂) ⊆ J2,+
2ε

vε (x̂).

2nd Case:vε(x̂) = u(x̂). Fix (p, X) ∈ J2,+
�

vε(x̂), by definition

vε(x) ≤ vε(x̂)+ p · (x − x̂)+ 1

2
X(x − x̂) · (x − x̂)+ o(|x − x̂|2)
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for all x → x̂. Sincevε ≥ u andvε(x̂) = u(x̂), we get

u(x) ≤ u(x̂)+ p · (x − x̂)+ 1

2
X(x − x̂) · (x − x̂)+ o(|x − x̂|2) ,

that is(p, X) ∈ J2,+
�

u(x̂). Now, sinceu is a subsolution, we conclude

F(x̂, vε(x̂), p, X) = F(x̂,u(x̂), p, X) ≤ 0 .

We now claim that

uε ≤ vε ≤ vε ≤ Hg in �,(29)

whereuε is defined by (20). Indeed, sincevε is a supersolution in2ε andvε ≥ u, by the
Comparison Principlevε ≥ w in 2ε for anyw ∈ �

such thatw = u on ∂2ε . Moreovervε ≡ u
on�\2ε , so we getvε ≥ uε in�. To prove the last inequality we note thatHg is a supersolution
of (16) by Theorem 3, which impliesvε ≤ Hg by Comparison Principle.

Now fix x ∈ �, ε > 0, γ > 0 and note that, by definition of lower weak limit, there exists
h = h(x, ε, γ ) > 0 such that

vε(x)− γ ≤ vεh(y)

for all h ≤ h andy ∈ � ∩ B(x,h). Similarly there existsk = k(x, ε, γ ) > 0 such that

vεh(y) ≤ vε(x)+ γ

for all h ≤ k andy ∈ �∩ B(x, k). From Remark 1, we know thatHg = supε uε , so there exists
ε such that

Hg(x)− γ ≤ uε(x), for all ε ≤ ε .

Then, using (29), we get

Hg(x)− 2γ ≤ vεh(y) ≤ Hg(x)+ γ

for all ε ≤ ε, h ≤ h̃ := min{h, k} andy ∈ � ∩ B(x, h̃), and this completes the proof.

REMARK 5. Theorem 6 applies in particular ifvεh are the solutions of the following vanish-
ing viscosity approximation of (10)

{
−h1v + F(x, v, Dv, D2v) = 0 in2ε ,
v = u on∂2ε .

(30)

SinceF is degenerate elliptic, the PDE in (30) is uniformly elliptic for all h > 0. Therefore
we can choose a family of nested2ε with smooth boundary and obtain that the approximating
vεh are much smoother than the e-solution of (16). Indeed (30) has a classical solution if, for
instance, eitherF is smooth andF(x, ·, ·, ·) is convex, or the PDE (10 is a Hamilton-Jacobi-
Bellman equation (3 where the linear operators

�α have smooth coefficients, see [21, 24, 31].
In the nonconvex case, under some structural assumptions, the continuity of the solution of
(30) follows from a barrier argument (see, e.g., [5]), and then it is twice differentiable almost
everywhere by a result in [43], see also [17].
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2.3. Continuous dependence under increasing approximation of the domain

In this subsection we prove the continuity of the e-solutionof (16) with respect to approximations
of the domain� from the interior. Note that, ifvεh = vε for all h in Theorem 6, thenvε(x) →
Hg(x) for all x ∈ � asε ↘ 0. This is the case, for instance, ifvε is the unique e-solution of

{
F(x, u, Du, D2u) = 0 in2ε ,
u = u on∂2ε ,

by Proposition 3. The main result of this subsection extendsthis remark to more general ap-
proximations of� from the interior, where the condition2ε ⊆ � is dropped. We need first a
monotonicity property of e-solutions with respect to the increasing of the domain.

LEMMA 3. Assume the Comparison Principle holds and let�1 ⊆ �2 ⊆ �N , H1
g , respec-

tively H2
g , be the e-solution in�1, respectively�2, of the problem

{
F(x, u, Du, D2u) = 0 in �i ,

u = g on∂�i ,
(31)

with g : �2 → �
continuous and subsolution of (31) with i= 2. If we define

H̃1
g (x) =

{
H1

g (x) if x ∈ �1
g(x) if x ∈ �2 \�1 ,

then H2
g ≥ H̃1

g in �2.

Proof. By definition of e-solutionH2
g ≥ g in �2, so H2

g is also supersolution of (31) in�1.

ThereforeH2
g ≥ H1

g in �1 becauseH1
g is the smallest supersolution in�1, and this completes

the proof.

THEOREM 7. Assume that the hypotheses of Theorem 3 i) hold with ucontinuous and�
bounded. Let{�n} be a sequence of open subsets of�, such that�n ⊆ �n+1 and

⋃
n�n = �.

Let un be the e-solution of the problem

{
F(x, u, Du, D2u) = 0 in �n ,

u = u on∂�n .
(32)

If we extend un := u in � \�n, then un(x) ↗ Hg(x) for all x ∈ �, where Hg is the e-solution
of (16).

Proof. Note that for alln there exists anεn > 0 such that�εn = {x ∈ � : dist(x, ∂�) ≥ εn} ⊆
�n. Consider the e-solutionuεn of problem

{
F(x, u, Du, D2u) = 0 in�εn ,
u = u on∂�εn .

If we setuεn ≡ u in�\�εn , by Theorem 6 we getuεn → Hg in�, as remarked at the beginning
of this subsection. Finally by Lemma 3 we haveHg ≥ un ≥ uεn in �, and soun → Hg in �.
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REMARK 6. If ∂� is not smooth andF is uniformly elliptic Theorem 7 can be used as
an approximation result by choosing�n with smooth boundary. In fact, under some structural
assumptions, the solutionun of (32) turns out to be continuous by a barrier argument (see,e.g.,
[5]), and then it is twice differentiable almost everywhereby a result in [43], see also [17]. If, in
addition,F is smooth andF(x, ·, ·, ·) is convex, or the PDE (10) is a HJB equation (3) where the
linear operators

�α have smooth coefficients, thenun is of classC2, see [21, 24, 31, 17] and the
references therein. The Lipschitz continuity ofun holds also ifF is not uniformly elliptic but it
is coercive in thep variables.

2.4. Continuity at the boundary

In this section we study the behavior of the e-solution at boundary points and characterize the
points where the boundary data are attained continuously bymeans of barriers.

PROPOSITION4. Assume that hypothesis i) (respectively i i)) of Theorem 2 holds. Then the
e-solution Hg of (16) takes up the boundary data g continuously at x0 ∈ ∂�, i.e. limx→x0 Hg(x)
= g(x0), if and only if there is an upper (respectively lower) barrier at x0 (see Definition 3).

Proof. The necessity is obvious because Theorem 2i ) implies thatHg ∈ �
, so Hg is an upper

barrier atx if it attains continuously the data atx.

Now we assumeW is an upper barrier atx. ThenW ≥ Hg, becauseW ∈ �
andHg is the

minimal element of
�

. Therefore

g(x) ≤ Hg(x) ≤ lim inf
y→x

Hg(y) ≤ lim sup
y→x

Hg(y) ≤ lim
y→x

W(y) = g(x) ,

so limy→x Hg(y) = g(x) = Hg(x).

In the classical theory of linear elliptic equations, localbarriers suffice to characterize
boundary continuity of weak solutions. Similar results canbe proved in our fully nonlinear
context. Here we limit ourselves to a simple result on the Dirichlet problem with homogeneous
boundary data for the Isaacs equation





sup
α

inf
β

{−aα,βi j uxi x j + bα,βi uxi + cα,βu − f α,β } = 0 in� ,

u = 0 on ∂� .
(33)

DEFINITION 6. We say that W∈ BL SC(B(x0, r ) ∩�)with r > 0 is anupper local barrier
for problem (33) at x0 ∈ ∂� if

i ) W ≥ 0 is a supersolution of the PDE in (33) in B(x0, r ) ∩�,

i i ) W(x0) = 0, W(x) ≥ µ > 0 for all |x − x0| = r ,

i i i ) W is continuous at x0.

PROPOSITION5. Assume the Comparison Principle holds for (33), fα,β ≥ 0 for all α, β,
and let Hg be the e-solution of problem (33). Then Hg takes up the boundary data continuously
at x0 ∈ ∂� if and only if there exists an upper local barrier W at x0.
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Proof. We recall thatHg exists because the functionu ≡ 0 is a lower barrier for all points
x ∈ ∂� by the fact thatf α,β ≥ 0, and so we can apply Theorem 2. Consider a supersolutionw

of (33). We claim that the functionV defined by

V(x) =
{
ρW(x) ∧ w(x) if x ∈ B(x0, r ) ∩� ,
w(x) if x ∈ � \ B(x0, r ) ,

is an upper barrier atx0 for ρ > 0 large enough. It is easy to check thatρW is a supersolution
of (33) in B(x0, r ) ∩ �, so V is a supersolution inB(x0, r ) ∩ � (by Proposition 1) and in
� \ B(x0, r ). Sincew is bounded, by propertyi i ) in Definition 6, we can fixρ andε > 0 such
thatV(x) = w(x) for all x ∈ � satisfyingr − ε < |x − x0| ≤ r . ThenV is supersolution even
on ∂B(x0, r ) ∩ �. Moreover it is obvious thatV ≥ 0 on∂� andV(x0) = 0. We have proved
thatV is supersolution of (33) in�.

It remains to prove that limx→x0 V(x) = 0. Since the constant 0 is a subsolution of (33) and
w is a supersolution, we havew ≥ 0. Then we reach the conclusion byi i ) andi i i ) of Definition
6.

EXAMPLE 3. We construct an upper local barrier for (33) under the assumptions of Propo-
sition 5 and supposing in addition

∂� is C2 in a neighbourhood ofx0 ∈ ∂� ,

there exists anα∗ such that for allβ either

aα
∗,β

i j (x0)ni (x0)n j (x0) ≥ c > 0(34)

or

−aα
∗,β

i j (x0)dxi x j (x0)+ bα
∗,β

i (x0)ni (x0) ≥ c > 0(35)

wheren denotes the exterior normal to� andd is thesigned distancefrom ∂�

d(x) =
{

dist(x, ∂�) if x ∈ � ,
−dist(x, ∂�) if x ∈ �N \� .

Assumptions (34) and (35) are the natural counterpart for Isaacs equation in (33) of the con-
ditions for boundary regularity of solutions to linear equations in Chapt. 1 of [37]. We claim
that

W(x) = 1 − e−δ(d(x)+λ|x−x0|
2)

is an upper local barrier atx0 for a suitable choice ofδ, λ > 0. Indeed it is easy to compute

−aα,βi j (x0)Wxi x j (x0)+ bα,βi (x0)Wxi (x0)+ cα,β (x0)W(x0)− f α,β (x0) =

−δaα,βi j (x0)dxi x j (x0)+ δ2aα,βi j (x0)dxi (x0)dx j (x0)+ δbα,βi (x0)dxi (x0)

−2δλTr [aα,β (x0)] − f α,β (x0) .

Next we chooseα∗ as above and assume first (34). In this case, since the coefficients are bounded
and continuous andd isC2, we can makeW a supersolution of the PDE in (33) in a neighborhood
of x0 by takingδ large enough. If, instead, (35) holds, we choose firstλ small and thenδ large
to get the same conclusion.
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3. Applications to Optimal Control

3.1. A deterministic minimum-time problem

Our first example of application of the previous theory is thetime-optimal control of nonlinear
deterministic systems with a closed and nonempty target0 ⊂ �N . For this minimum-time
problem we prove that the lower semicontinuous envelope of the value function is the e-solution
of the associated Dirichlet problem for the Bellman equation. This result can be also found in
[7] and [4], but we give here a different and simpler proof. Consider the system

{
y′(t) = f (y(t),a(t)) t > 0 ,
y(0) = x ,

(36)

wherea ∈ � := {a : [0,∞) → A measurable} is the set of admissible controls, with

A a compact space,f :
�N × A → �N continuous

∃L > 0 such that( f (x, a)− f (y,a)) · (x − y) ≤ L |x − y|2 ,(37)

for all x, y ∈ �N , a ∈ A. Under these assumptions, for anya ∈ � there exists a unique
trajectory of the system (36) defined for allt , that we denoteyx(t,a) or yx(t). We also define
the minimum time for the system to reach the target using the control a ∈ � :

tx(a) :=
{

inf{t ≥ 0 : yx(t,a) ∈ 0} , if {t ≥ 0 : yx(t,a) ∈ 0} 6= ∅ ,
+∞ otherwise.

Thevalue functionfor this problem, namedminimum timefunction, is

T(x) = inf
a∈�

tx(a), x ∈ �N .

Consider now the Kruzkov transformation of the minimum time

v(x) :=
{

1 − e−T(x) , if T(x) < ∞ ,

1 , otherwise.

The new unknownv is itself the value function of a time-optimal control problem with a discount
factor, and from its knowledge one recovers immediately theminimum time functionT . We
remark that in generalv has no continuity properties without further assumptions;however, it is
lower semicontinuous iff (x, A) is a convex set for allx, so in such a casev = v∗ (see, e.g.,
[7, 4]).

The Dirichlet problem associated tov by the Dynamic Programming method is

{
v + H(x, Dv) = 0 , in

�N \ 0 ,
v = 0 , in ∂0 ,

(38)

where

H(x, p) := max
a∈A

{− f (x, a) · p} − 1 .

A Comparison Principle for this problem can be found, for instance, in [4].

THEOREM 8. Assume (37). Thenv∗ is the e-solution and the minimal supersolution of (38).
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Proof. Note that by (37) and the fact thatw ≡ 0 is a subsolution of (38), the hypotheses of
Theorem 3 are satisfied, so the e-solution exists and it is a supersolution. It is well known thatv∗
is a supersolution ofv+ H(x, Dv) = 0 in

�N \0, see, e.g., [28, 8, 4]; moreoverv∗ ≥ 0 on∂0,
sov∗ is a supersolution of (38). In order to prove thatv∗ is the lower e-solution we construct a
sequence of subsolutions of (38) converging tov∗.

Fix ε > 0, and consider the set

0ε := {x ∈ �N : dist(x, ∂0) ≤ ε} ,

let Tε be the minimum time function for the problem with target0ε , andvε its Kruzkov trans-
formation. By standard results [28, 8, 4]vε is a non-continuous viscosity solution of

{
v + H(x, Dv) = 0 , in

�N \ 0ε ,
v = 0 orv + H(x, Dv) = 0 , in ∂0ε .

With the same argument we used in Theorem 6, we can see thatv∗ε is a subsolution of (38). We
define

u(x) := sup
ε
v∗ε (x)

and will prove thatu = v∗.

By the Comparison Principlev∗ε ≤ v∗ for all ε > 0, thenu(x) ≤ v∗(x). To prove the
opposite inequality we observe it is obvious in0 and assume by contradiction there exists a
point x̂ 6∈ 0 such that:

sup
ε
vε (x̂) ≤ sup

ε
v∗ε (x̂) < v∗(x̂) .(39)

Consider first the casev∗(x̂) < 1, that is,T∗(x̂) < +∞. Then there existsδ > 0 such that

T∗
ε (x̂) < T∗(x̂)− δ < +∞, for all ε > 0 .(40)

By definition of minimum time, for allε there is a controlaε such that

tεx̂ (aε ) ≤ Tε (x̂)+
δ

2
< +∞ .(41)

Let zε ∈ 0ε be the point reached at timetεx̂ (aε) by the trajectory starting from̂x, using control
aε . By standard estimates on the trajectories, we have for allε

|zε | = |yx̂(t
ε
x̂ (aε))| ≤

(
|x̂| +

√
2MT(x̂)

)
eMT (x̂) ,

whereM := L + sup{| f (0, a)| : a ∈ A}. So, for someR > 0, zε ∈ B(0, R) for all ε. Then we
can find subsequences such that

zεn → z ∈ ∂0, tn := tεnx̂ (aεn) → t, asn → ∞ .(42)

From this, (40) and (41) we get

t < T∗(x̂)−
δ

2
.(43)
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Let yεn be the solution of the system

{
y′ = f (y,aεn) t < tn ,
y(tx̂(aεn)) = z ,

that is, the trajectory moving backward fromz using controlaεn , and setxn := yεn(0). In order
to prove thatxn → x̂ we consider the solutionyεn of

{
y′ = f (y,aεn) t < tn ,
y(tn) = zεn ,

that is, the trajectory moving backward fromzεn and using controlaεn . Note thatyεn(0) = x̂.
By differentiating|yεn − yεn |2, using (37) and then integrating we get, for allt < tn,

|yεn(t)− yεn(t)|2 ≤ |zεn − z|2 +
∫ tn

t
2L |yεn(s)− yεn(s)|2ds.

Then by Gronwall’s lemma, for allt < tn,

|yεn(t)− yεn(t)| ≤ |zεn − z|eL(tn−t) ,

which gives, fort = 0,

|x̂ − xn| ≤ |zεn − z|eLtn .

By lettingn → ∞, we get thatxn → x̂.

By definition of minimum timeT(xn) ≤ tn, so lettingn → ∞ we obtainT∗(x̂) ≤ t , which
gives the desired contradiction with (43).

The remaining case isv∗(x̂) = 1. By (39) T∗
ε (x̂) ≤ K < +∞ for all ε. By using the

previous argument we get (42) witht < +∞ and T∗(x̂) ≤ t . This is a contradiction with
T∗(x̂) = +∞ and completes the proof.

3.2. Maximizing the mean escape time of a degenerate diffusion process

In this subsection we study a stochastic control problem having as a special case the problem
of maximizing the expected discounted time spent by a controlled diffusion process in a given
open set� ⊆ �N . A number of engineering applications of this problem are listed in [19],
where, however, a different cost criterion is proposed and anondegeneracy assumption is made
on the diffusion matrix. We consider a probability space(�′,� , P) with a right-continuous
increasing filtration of complete sub-σ fields{� t }, a Brownian motionBt in

�M � t -adapted, a
compact setA, and call� the set of progressively measurable processesαt taking values inA.
We are given bounded and continuous mapsσ from

�N × A into the set ofN × M matrices
andb :

�N × A → �N satisfying (14), (15) and consider the controlled stochastic differential
equation

(SDE)

{
d Xt = σαt (Xt )d Bt − bαt (Xt )dt , t > 0 ,
X0 = x .

For anyα. ∈ � (SDE) has a pathwise unique solutionXt which is� t -progressively measurable
and has continuous sample paths. We are given also two bounded and uniformly continuous
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maps f, c :
�N × A → �

, cα(x) ≥ c0 > 0 for all x, α, and consider the payoff functional

J(x, α.) := E

(∫ tx(α.)

0
f αt (Xt )e

−
∫ t

0 cαs(Xs) dsdt

)
,

whereE denotes the expectation and

tx(α.) := inf{t ≥ 0 : Xt 6∈ �} ,

where, as usual,tx(α.) = +∞ if Xt ∈ � for all t ≥ 0. We want to maximize this payoff, so we
consider the value function

v(x) := sup
α.∈�

J(x, α.) .

Note that for f = c ≡ 1 the problem becomes the maximization of the mean discounted time
E(1 − e−tx(α.)) spent by the trajectories of(SDE) in �.

The Hamilton-Jacobi-Bellman operator and the Dirichlet problem associated tov by the
Dynamic Programming method are

F(x, u, Du, D2u) := min
α∈A

{−aαi j (x)uxi x j + bα(x) · Du + cα(x)u − f α(x)} ,

where the matrix(ai j ) is 1
2σσ

T , and

{
F(x, u, Du, D2u) = 0 in�,
u = 0 on∂� ,

(44)

see, for instance, [40, 35, 36, 22, 32] and the references therein. The proof that the value function
satisfies the Hamilton-Jacobi-Bellman PDE is based on the Dynamic Programming Principle

v(x) = sup
α.∈�

E

(∫ θ∧tx

0
f αt (Xt )e

−
∫ t

0 cαs (Xs) dsdt + v(Xθ∧tx )e
−
∫ θ∧tx

0 cαs (Xs) ds

)
,(45)

wheretx = tx(α.), for all x ∈ � and all� t -measurable stopping timesθ . Although the DPP
(45) is generally believed to be true under the current assumptions (see, e.g., [35]), we were able
to find its proof in the literature only under some additionalconditions, such as the convexity of
the set

{(aα(x),bα(x), f α(x), cα(x)) : α ∈ A}

for all x ∈ �, see [20] (this is true, in particular, when relaxed controls are used), or the inde-
pendence of the variance of the noise from the control [15], i.e.,σα(x) = σ(x) for all x, or the
continuity ofv [35]. As recalled in Subsection 1.1 a Comparison Principle for (44) can be found
in [29], see also [18] and the references therein.

In order to prove thatv is the e-solution of (44), we approximate� with a nested family of
open sets with the properties

2ε ⊆ �, ε ∈]0,1], 2ε ⊇ 2δ for ε < δ,
⋃

ε

2ε = � .(46)

For eachε > 0 we callvε the value function of the same control problem withtx replaced with

tεx (α.) := inf{t ≥ 0 : Xt 6∈ 2ε}
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in the definition of the payoffJ. In the next theorem we assume that eachvε satisfies the DPP
(45) with tx replaced withtεx .

Finally, we make the additional assumption

f α(x) ≥ 0 for all x ∈ �, α ∈ A .(47)

which ensures thatu ≡ 0 is a subsolution of (44). The main result of this subsectionis the
following.

THEOREM 9. Under the previous assumptions the value functionv is the e-solution and the
minimal supersolution of (44), and

v = sup
0<ε≤1

vε = lim
ε↘0

vε .

Proof. Note thatvε is nondecreasing asε ↘ 0, so limε↘0 vε exists and equals the sup. By
Theorem 3 withg ≡ 0, u ≡ 0, there exists the e-solutionH0 of (44). We consider the functions
uε defined by (20) and claim that

u2ε ≤ (vε)∗ ≤ v∗ε ≤ H0 .

Then

H0 = sup
0<ε≤1

vε ,(48)

becauseH0 = supε u2ε by Remark 1. We prove the claim in three steps.

Step 1. By standard methods [35, 9], the Dynamic ProgrammingPrinciple forvε implies
thatvε is a non-continuous viscosity solution of the Hamilton-Jacobi-Bellman equationF = 0
in 2ε andv∗ε is a viscosity subsolution of the boundary condition

u = 0 or F(x, u, Du, D2u) = 0 on∂2ε ,(49)

as defined in Subsection 1.3.

Step 2. Since(vε )∗ is a supersolution of the PDEF = 0 in2ε and(vε )∗ ≥ 0 on∂2ε , the
Comparison Principle implies(vε)∗ ≥ w for any subsolutionw of (44) such thatw = 0 on∂2ε .
Since∂2ε ⊆ � \22ε by (46), we obtainu2ε ≤ vε∗ by the definition (20) ofu2ε .

Step 3. We claim thatv∗ε is a subsolution of (44). In fact we noted before that it is a
subsolution of the PDE in2ε , and this is true also in� \2ε wherev∗ε ≡ 0 by (47), whereas the
boundary condition is trivial. It remains to check the PDE atall points of∂2ε . Given x̂ ∈ ∂2ε ,
we must prove that for allφ ∈ C2(�) such thatv∗ε − φ attains a local maximum at̂x, we have

F(x̂, v∗ε (x̂), Dφ(x̂), D2φ(x̂)) ≤ 0 .(50)

1st Case:v∗ε (x̂) > 0. Sincev∗ε satisfies (49), for allφ ∈ C2(2ε) such thatv∗ε − φ attains a
local maximum at̂x (50) holds. Then the same inequality holds for allφ ∈ C2(�) as well.

2nd Case:v∗ε (x̂) = 0. Sincev∗ε − φ attains a local maximum at̂x, for all x nearx̂ we have

v∗ε (x)− v∗ε (x̂) ≤ φ(x)− φ(x̂) .

By Taylor’s formula forφ at x̂ and the fact thatv∗ε (x) ≥ 0, we get

Dφ(x̂) · (x − x̂) ≥ o(|x − x̂|) ,
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and this impliesDφ(x̂) = 0. Then Taylor’s formula forφ gives also

(x − x̂) · D2φ(x̂)(x − x̂) ≥ o(|x − x̂|2) ,
and this impliesD2φ(x̂) ≥ 0, as it is easy to check. Then

F(x̂, v∗ε (x̂), Dφ(x̂), D2φ(x̂)) = F(x̂,0, 0, D2φ(x̂)) ≤ 0

becauseaα ≥ 0 and f α ≥ 0 for all x andα. This completes the proof thatv∗ε is a subsolution of
(44). Now the Comparison Principle yieldsv∗ε ≤ H0, sinceH0 is a supersolution of (44).

It remains to prove thatv = sup0<ε≤1 vε . To this purpose we take a sequenceεn ↘ 0 and
define

Jn(x, α.) := E

(∫ tεnx (α.)

0
f αt (Xt )e

−
∫ t

0 cαs (Xs) dsdt

)
.

We claim that

lim
n

Jn(x, α.) = sup
n

Jn(x, α.) = J(x, α.) for all α. andx .

The monotonicity oftεnx follows from (46) and it implies the monotonicity ofJn by (47). Let

τ := sup
n

tεnx (α.) ≤ tx(α.) ,

and note thattx(α.) = +∞ if τ = +∞. In the caseτ < +∞, Xtεnx
∈ ∂2εn implies Xτ ∈ ∂�,

so τ = tx(α.) again. This and (47) yield the claim by the Lebesgue monotoneconvergence
theorem. Then

v(x) = sup
α.

sup
n

Jn(x, α.) = sup
n

sup
α.

Jn(x, α.) = sup
n
vεn = sup

ε
vε ,

so (48) givesv = H0 and completes the proof.

REMARK 7. From Theorem 9 it is easy to get aVerification theoremby taking the su-
persolutions of (44) as verification functions. We considera presynthesisα(x), that is, a map
α(·) : � → � , and say it is optimal atxo if J(xo, α

(xo)) = v(xo). Then Theorem 9 gives im-
mediately the following sufficient condition of optimality: if there exists a verification function
W such that W(xo) ≤ J(xo, α

(xo)), thenα(·) is optimal at xo; moreover, a characterization of
global optimality is the following:α(·) is optimal in� if and only if J(·, α(·)) is a verification
function.

REMARK 8. We can combine Theorem 9 with the results of Subsection 2.2to approximate
the value functionv with smooth value functions. Consider a Brownian motionB̃t in

�N � t -
adapted and replace the stochastic differential equation in (SDE) with

d Xt = σαt (Xt )d Bt − bαt (Xt )dt +
√

2h dB̃t , t > 0 ,

for h > 0. For a family of nested open sets with the properties (46) consider the value function
vεh of the problem of maximizing the payoff functionalJ with tx replaced withtεx . Assume for
simplicity thataα , bα , cα , f α are smooth (otherwise we can approximate them by mollification).
Thenvεh is the classical solution of (30), whereF is the HJB operator of this subsection and
u ≡ 0, by the results in [21, 24, 36, 31], and it is possible to synthesize an optimal Markov
control policy for the problem withε,h > 0 by standard methods (see, e.g., [22]). By Theorem
6 vεh converges tov asε,h ↘ 0 with h linked toε.
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A., Università di Padova, 1998.

[3] BARDI M., BOTTACIN S., FALCONE M., Convergence of discrete schemes for discontin-
uous value functions of pursuit-evasion games, in “New Trends in Dynamic Games and
Applications”, G .J. Olsder ed., Birkhäuser, Boston 1995,273–304.
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HIGH ORDER NECESSARY OPTIMALITY CONDITIONS

Abstract.
In this paper we present a method for determining some variations of a sin-

gular trajectory of an affine control system. These variations provide necessary
optimality conditions which may distinguish between maximizing and minimizing
problems. The generalized Legendre-Clebsch conditions are an example of these
type of conditions.

1. Introduction

The variational approach to Majer minimization control problems can be roughly summarized
in the following way: letx∗ be a solution on the interval [ti , te] relative to the controlu∗; if
the pair(x∗,u∗) is optimal, then the cone of tangent vectors to the reachableset atx∗(te) is
contained in the subspace where the cost increase. If there are constraints on the end-points,
then the condition is no more necessary; nevertheless in [1]it has been proved that particular
subcones of tangent vectors, the regular tangent cones, have to be contained in a cone which
depends on the cost and on the constraints. Tangent vectors whose collection is a regular tangent
cone are named good trajectory variations, see [8].

The aim of this paper is to construct good trajectory variations of a trajectory of an affine
control process which contains singular arcs, i.e. arcs of trajectory relative to the drift term of
the process. It is known, [2], that the optimal trajectory ofan affine control process may be of
this type; however the pair(x∗,0) may satisfy the Pontrjagin Maximum Principle without being
optimal. Therefore it is of interest in order to single out a smaller number of candidates to the
optimum, to know as many good trajectory variations as we can.

In [5] good trajectory variations of the pair(x∗,0) have been constructed by using the
relations in the Lie algebra associated to the system at the points of the trajectory. The variations
constructed in that paper are of bilateral type, i.e. both the directions+v and −v are good
variations. In this paper I am going to find conditions which single out unilateral variations,
i.e. only one direction need to be a variation. Unilateral variations are of great interest because,
contrary to the bilateral ones, they distinguish between maximizing and minimizing problems.

2. Notations and preliminary results

To each familyf = ( f0, f1, . . . , fm) of C∞ vector fields on a finite dimensional manifoldM
we associate the affine control process6f on M

ẋ = f0(x) +
m∑

i=1

ui fi (x) |ui | ≤ α(1)
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where the controlu = (u1, . . . ,um) is a piecewise constant map whose values belong to the
hypercube|ui | ≤ α. We will denote bySf(t, t0, y,u) the value at timet of the solution of6f
relative to the controlu, which at timet0 is equal toy. We will omit t0 if it is equal to 0, so that
Sf(t, y,u) = Sf(t,0, y,u); we will also use the exponential notation for constant control map,
for example expt f0 · y = Sf(t, y,0).

We want to construct some variations of the trajectoryt 7→ xf(t) = expt f0 · x0, t ∈ [t0, t1]
at time τ ∈ [t0, t1]. We will consider trajectory variations produced by needle-like control
variations concentrated atτ . The definition is the following:

DEFINITION 1. A vectorv ∈ Txf(τ )M is a right (left) trajectory variation of xf at τ if for
eachε ∈ [0, ε] there exists a control map u(ε) defined on the interval[0,a(ε)], limε→0+ a(ε) =
0, such that u(ε) depends continuously onε in the L1 topology and the mapε 7→ exp(−a(ε) f0)·
Sf(a(ε), xf(τ), u(ε)), (ε 7→ Sf(a(ε), xf(τ − a(ε)),u(ε))) hasv as tangent vector atε = 0.

The variations atτ indicates the controllable directions of the reference trajectory from
xf (τ); they are local objects atxf (τ) and in any chart atxf (τ) they are characterized by the
property

Sf(a(ε), xf (τ),u(ε)) = xf (τ + a(ε))+ ε v + o(ε) ∈ R(τ + a(ε), xf(t0))(2)

whereR(t, x) is the set of points reachable in timet from x.

The transport along the reference flow generated by the 0 control from timeτ to timet1 of a
variation atτ is a tangent vector to the reachable set at timet1 in the pointxf (t1). The transport
of particular trajectory variations, the good ones, gives rise to tangent vectors whose collection
is a regular tangent cone. The definition of good variations is the following:

DEFINITION 2. A vectorv ∈ Tx∗(τ )M is a goodright variation (left variation) atτ of order
k if there exists positive numbersc , ε and for eachε ∈ [0, ε] a family of admissible control
maps, uε (c) , c ∈ [0, c] with the following properties:

1. uε(c) is defined on the interval[0,aεk]

2. for eachε, c 7→ uε (c) is continuous in the L1 topology

3. exp[−(1 + a)εk] f0 · Sf(aε
k, xf (τ + εk),uε(c)) = xf (τ) + εcv + o(ε) (expεk f0 ·

Sf(aε
k, xf(τ − (1 + a)εk),uε(c)) = xf (τ)+ εcv + o(ε)) uniformly w.r.t. c.

The good trajectory variations will be simpler named g-variations. Standing the definitions,
the variations of a trajectory are more easily found than itsg-variations. However a property
proved in [8] allows to find g-variations as limit points of trajectory ones. More precisely the
following Proposition holds:

PROPOSITION1. Let I be an interval contained in[t0, t1] and let g ∈ L1(I ) be such
that g(t) is a right (left) trajectory variation at t for each t in the set L+, (L−), of right (left)
Lebesgue points of g. For each t∈ L+, (t ∈ L−), let [0, at (ε)] be the interval as in Definition
1 relatively to the variation g(t). If there exists positive numbers N and s such that for each
τ ∈ L+, (τ ∈ L−), 0 < aτ (ε) ≤ (N ε)s, then for each t∈ L+ g(t) is a right variation, (for
each t∈ L−, g(t) is a left variation), at t of order s.

Let τ be fixed; to study the variations atτ we can suppose without loss of generality thatM
is an open neighborhood of 0∈ �n. Moreover by Corollary 3.3 in [5], we can substitute to the
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family f the familyφ whereφi is the Taylor polynomial offi of order sufficiently large. We can
therefore suppose thatf is an analytic family of vector fields on

�n.

Let me recall some properties of analytic family of vectors fields. LetX = {X0, X1, . . . ,

Xm} be(m+ 1) indeterminate;L(X) is the Lie algebra generated byX with Lie bracket defined
by

[S, T ] = ST− T S.

L̂(X) denotes the set of all formal series,
∑∞

k=1 Pk, eachPk homogeneous Lie polynomial of

degreek. For eachS ∈ L̂(X) we set

expS=
∞∑

k=0

Sk

k!

and

log(Id + Z) =
∞∑

k=0

(−1)k+1Zk

k
.

The following identities hold

exp(log Z) = Z log(expS) = S.

Formula di Campbell-Hausdorff[9]

For eachP, Q ∈ L̂(X) there exists an uniqueZ ∈ L̂(X) such that

expP · expQ = expZ

andZ is given by

Z = P + Q + 1

2
[ P,Q] + · · ·

Let u be an admissible piecewise constant control defined on the interval [0, T(u)]; by the Camp-
bell Hausdorff formula we can associate tou an element of̂L(X), logu, in the following way: if
u(t) = (ωi

1, . . . , ω
i
m) in the interval(ti−1, ti ) then

exp logu = exp(T(u)− tk−1)

(
X0 +

m∑

i=1

ωk
i Xi

)
· · · · · expt1

(
X0 +

m∑

i=1

ω1
i Xi

)

If f is an analytic family, then logu is linked toSf(T(u), y,u) by the following proposition [6]

PROPOSITION2. If f is an analytic family of vector fields on an analytic manifoldM then
for each compact K⊂ M there exist T such that, iflogf u denotes the serie of vector fields
obtained by substituting inlogu, fi for Xi , then∀y ∈ K and∀u, T(u) < T , the serieexp logf u·
y converges uniformly to Sf(T(u), y,u).

In the sequel we will deal only with right variations. The same ideas can be used to construct
left variations.

To study the right trajectory variations it is useful to introduce Logu defined by

exp(Logu) = exp−T(u)X0 · exp(logu) .

By definition it follows that if y belongs to a compact set andT(u) is sufficiently small, then
exp(−T(u)) f0 · Sf(T(u), y,u) is defined and it is the sum of the serie exp(Logfu)y; notice that
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exp(Logfu)y is the value at timeT(u) of the solution of the pullback system introduced in [4]
starting aty.

Let u(ε) be a family of controls which depend continuously onε and such thatT(u(ε)) =
o(1). Such a family will be named control variation if

Logu(ε) =
∑

ε j i Yi(3)

with Yi ∈ Lie X and j i < j i+1. Let j i be the smallest integer for whichYs
f (xf(τ)) 6= 0; Yi is

namedf-leading termof the control variation atτ because it depends on the familyf and on the
time τ .

The definition of exp and Proposition 2 imply that ifYi is an f-leading term of a control
variation, then

exp(−T(u(ε)) · Sf(T(u(ε)), xf (τ), u(ε)) = xf (τ)+ ε j i Yi
f (xf(τ))+ o(ε j i ) ;

therefore by Definition 1,Y j
f (x(τ)) is a variation ofxf at τ of order 1/j i . Since the set of

variation is a cone, we have:

PROPOSITION3. Let2 be an element ofLie X; if a positive multiple of2 is thef-leading
element atτ of a control variation, then2f(xf(τ)) is a variation atτ .

3. General Result

The results of the previous section can be improved by using the relations in Lief at xf (τ). The
idea is that these relations allow to modify the leading termof a given control variation and
therefore one can obtain more than one trajectory variationfrom a control variation.

Let us recall some definitions given by Susmann, [6], [7].

DEFINITION 3. An admissible weightfor the process (1) is a set of positive numbers,l =
(l0, l1, . . . , lm), which verify the relations l0 ≤ l i , ∀i .

By means of an admissible weight, one can give a weight to eachbracket in LieX, [6]. Let
3 be a bracket in the indeterminateX′

i s; |3|i is the number of times thatXi appears in3.

DEFINITION 4. Let l = {l0, l1, . . . , lm} be an admissible weight, thel-weight of a bracket
8 is given by

‖8‖l =
m∑

i=0

l i |8|i .

An element2 ∈ Lie X is said l-homogeneous if it is a linear combination of brackets with the
samel-weight, which we name thel-weight of the element.

The weight of a bracket,8, with respect to the standard weightl = {1,1, . . . ,1} coincides
with its length and it is denoted by‖8‖.

The weight introduce a partial order relation in LieX.

DEFINITION 5. Let2 ∈ Lie X; following Susmann [7] we say that2 is l f -neutralizedat
a point y if the value at y of2f is a linear combination of the values of brackets with lessl-
weight, i.e.2f(y) = ∑

α j 8
j
f (y), ‖8 j ‖l < ‖2‖l . The numbermax‖8 j ‖ is theorder of the

neutralization.
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Let N be a positive integer; withSN we denote the subspace of LieX spanned by the
brackets whose length is not greater thanN and with QN we denote the subspace spanned by
the brackets whose length is greater thanN. LieX is direct sum ofSN andQN .

DEFINITION 6. Let u be any control;logN u andLogN u are the projections oflogu and
Logu respectively, on SN .

DEFINITION 7. An element8 ∈ SN is a N-goodelement if there exists a neighborhood
V of 0 in SN and a C1 map u : V → L1, such that u(V) is contained in the set of admissible
controls and

LogN u(2) = 8+2 .

Notice that there existN-good elements whatever is the naturalN.

We are going to present a general result.

THEOREM 1. Let Z be an N-good element and letl be an admissible weight. Z= ∑
Yi ,

Yi l-homogeneous element such that if bi = ‖Yi ‖l , then bi ≤ b j if i < j . If there exists j such

that for each i< j , Y i is l f -neutralized atτ with order not greater than N and bj < b j +1, then

1. Y j
f (xf (τ)) is a variation atτ of order‖Y j ‖l ;

2. if 8 is a bracket contained in SN , ‖8‖l < b j , then±8f(xf (τ)) is a variation atτ of
order ‖8‖l .

Proof. We are going to provide the proof in the case in which there is only one element which
is l f -neutralized atτ . The proof of the general case is analogous. By hypothesis there exist
l-homogeneous elementsW j , c j = ‖W j ‖l < ‖Y1‖l , such that:

Y1
f (xf (τ)) =

∑
α j W

j
f (xf (τ)) .(4)

Let u be an admissible control; the control defined in [0, εl0T(u)] by

δε u(t) = (εl1−l0u1(t/ε
l0), . . . , εlm−l0um(t/ε

l0))

is an admissible control; such control will be denoted byδεu. The mapε 7→ δεu is continuous
in theL1 topology andT(δεu) goes to 0 withε.

Let Y be any element of̂L(X); δε(Y) is the element obtained by multiplying each indeter-
minateXi in Y by εl i . The definition ofδεu implies:

Logδεu = δε Logu .

δεY1 = εb1Y1 andδε (
∑
α j W

j ) = ∑
α j ε

c j W j ; therefore

δε(Y
1 −

∑
α j ε

(b1−c j )W j )f

vanishes atxf(τ). By hypothesis there exists a neighborhoodV of 0 ∈ SN and a continuous map
u : V → L1 such that

LogN u(8) = Z +8 .

Set2(ε) = −∑ α j ε
(b1−c j )W j ; 2(ε) depends continuously fromε and since(b1 − c j ) < 0,

2(ε) ∈ V if ε is sufficiently small. Therefore the control variationδεu(2(ε)) proves the first
assertion.
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Let8 satisfies the hypothesis; ifσ andε are sufficiently smallσ8+2(ε) ∈ V and

δεu(2(ε)+ σ8)

ia a control variation which hasf-leading term equal toδ8. The second assertion is proved.

For the previous result to be applicable, we need to know how the N-good controls are
made. The symmetries of the system give some information on this subject.

Let me recall some definitions introduced in [6] and in [4].

DEFINITION 8. Thebad bracketsare the brackets inLie X which contain X0 an odd num-
ber of times and each Xi an even number of times. Let� be the set of bad brackets

� = {3 , |3|0 is odd |3|i is even i= 1, . . . ,m} .
The set of theobstructionsis the set

�∗ = Lie (X0, � ) \ {aX0 , a ∈ �} .

PROPOSITION4. For each integer N there exists a N-good element which belongs to�∗.

Proof. In [6] Sussmann has proved that there exists an element9 ∈ � and aC1 map,u, from
a neighborhood of 0∈ SN in L1 such that the image ofu is contained in the set of admissible
controls and

logN u(2) = 9 +2 .

This result is obtained by using the symmetries of the process. Standard arguments imply that it
is possible to construct aC1 mapu from a neighborhood of 0∈ SN to L1 such that the image
of u is contained in the set of admissible controls and

LogN u(2) = 4+2

with 4 ∈ �∗.

The previous proposition together with Theorem 1 imply thatthe trajectory variations are
linked to the neutralization of the obstruction.

Theorem 1 can be used to find g-variations if thef l -neutralization holds on an interval
containingτ .

4. Explicit optimality conditions for the single input case

In this section I am going to construct g-variations of a trajectory of an affine control process at
any point of an interval in which the reference control is constantly equal to 0. It is known that
if x∗ is a solution of a sufficiently regular control process such that

g0(x
∗(t1)) = min

y∈R(t1,x∗(t0))∩S
g0(y) ,

then there exists an adjoint variableλ(t) satisfying the Pontrjagin Maximum Principle and such
that for eachτ and for each g-variation,v, of x∗ at τ

λ(τ)v ≤ 0 .
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Therefore the g-variations I will obtain, provide necessary conditions of optimality for the sin-
gular trajectory.

For simplicity sake I will limit myself to consider an affine single input control process

ẋ = f0(x)+ u f1(x)

and I suppose that the control which generate the reference trajectory,x∗, which we want to
test, is constantly equal to 0 on an intervalI containingτ so thatx∗(t) = xf(t), ∀t ∈ I . The
f l -neutralization of the obstructions onI provides g-variations atτ . In [4] it has been proved
that if each bad bracket,2, ‖2‖l ≤ p is f l -neutralized onxf(I ), then all the obstructions whose
l-weight is not greater thanp aref l -neutralized onxf (I ). Moreover if8 is a bracket which is
f l -neutralized onI , then [X0,8] is f l -neutralized onI . Therefore to know which obstructions
aref l -neutralized onI it is sufficient to test those bad brackets whose first elementis equal to
X1. Let l be an admissible weight;l induces an increasing filtration in LieX

{0} = Y0
l ⊂ Y1

l ⊂ · · · ⊂ Yn
l ⊂ . . .

Yi = span{8 : ‖8‖l ≤ pi }, pi < pi+1. Let p j be such that each bad bracket whose weight is

less than or equal top j is f l -neutralized on an interval containingτ . We know thatY j
f (xf (τ)) is

a subspace of g-variation atτ , which are obviously bilateral variations. Unilateral g-variation can

be contained in the set ofl-homogeneous elements belonging toY j +1
f (xf(τ)). Notice that each

subspaceYi
f (xf(τ)) is finite dimensional and that the sequence{Yi

f (xf(τ))} become stationary for
i sufficiently large. Therefore we are interested only in the elements ofSN with N sufficiently
large. LetN be such that eachYi

f (xf (τ)) is spanned by brackets whose length is less thanN.
The following Lemma proves that it is possible to modify the weightl in order to obtain a weight
l with the following properties:

1. each bracket which isf l -neutralized atτ is f l-neutralized atτ ;

2. thel-homogeneous elements are linear combination of brackets which contain the same
numbers both ofX0 than ofX1.

LEMMA 1. Let l be an admissible weight; for each integer N there exists an admissible
weightl with the following properties: if8 and2 are brackets whose length is not greater than
N, then

1. ‖8‖l < ‖2‖l implies‖8‖l < ‖2‖l

2. ‖8‖l = ‖2‖l and‖8‖1 < ‖2‖1, implies‖8‖l < ‖2‖l

3. ‖8‖l = ‖2‖l , ‖8‖1 = ‖2‖1 and‖8‖0 < ‖2‖0, implies‖8‖l < ‖2‖l

Proof. The set of brackets whose weight is not greater thanN is a finite set therefore ifε0, ε1
are positive numbers sufficiently small, thenl = {l0 − ε0, l1 + ε1} is an admissible weight for
which the properties 1), 2) and 3) hold.

In order to simplify the notation, we will use the multiplicative notation for the brackets:

XY = [X,Y] , Z XY = [Z, XY] , etc.
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It is known, [10], that each bracket,8, in LieX is linear combination of brackets right normed,
i.e. of the following type:

Xi1
0 Xi2

1 . . . X
is
1 , i j ∈ {0,1, . . . } ,

which contains bothX0 thanX1 the same number of times of8; therefore it is sufficient to test
the neutralization of right normed bad brackets.

Any N-good element,Z, of LieX can be written as:

Z =
∑

ai8i

8i right normed bracket; we nameai coefficientof 8i in Z.

LEMMA 2. Let N > 2n + 3. The coefficient of X1X2n+1
0 X1 in any N-good element is

positive if n is even and negative if n is odd; the coefficient of X2n−1
1 X0X1 is always positive.

Proof. Let Z be aN-good element and let us consider the control process





ẋ1 = u
ẋ2 = x1
. . .

ẋn+1 = xn

ẋn+2 = x2
n+1 .

Take as reference trajectoryxf (t) ≡ 0. The reachable setR(t,0) is contained, for any positive
t , in the half spacexn+1 ≥ 0 and hence− ∂

∂xn+1
cannot be a variation at any time. The only

elements in Lief which are different from 0 in 0 are:

(X1)f = ∂

∂x1
,

(Xi
0X1)f = (−1)i

∂

∂xi+1
, i = 1, . . . , n

(X1X2n+1
0 X1)f = (−1)n2

∂

xn+1
.

If the coefficient ofX1X2n+1
0 X1 in Z were equal to 0, then 0 will be locally controllable [6],

which is an absurd. Therefore it is different from 0; its signhas to be equal to(−1)n because
otherwise− ∂

∂xn+1
would be a variation. The first assertion is proved.

The second assertion is proved by using similar arguments applied to the system:

{
ẋ1 = u
ẋ2 = x2n

1

Let us now compute explicitly some g-variations. We recall that

adXY = [X,Y] , adn+1
X Y = [X,adn

XY] .
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THEOREM 2. If there exists an admissible weightl such that each bad bracket ofl-weight
less than(2n + 1)l0 + 2l1 is f l -neutralized on an interval containingτ , then

(−1)n[X1,ad2n+1
X0

X1]f(x
∗(τ))

is a g-variation atτ .

Proof. We can suppose that the weightl has the properties 1), 2) and 3) as in Lemma 1. Therefore
the brackets ofl-weight equal to 2l1 + (2n + 1)l0 contains 2X1 and (2n+1)X0. The brackets
which have as first elementX0 are the adjoint with respect toX0 of brackets which by hypothesis
aref l -neutralized on the intervalI and therefore aref l -neutralized. Since the only bad bracket
of l-weight (2n + 1)l0 + 2l1 which has as first elementX1, is X1X2n+1

0 X1 the theorem is a
consequence of Theorem 1 and of Lemma 2.

Notice that the theorem contains as particular case the wellknown generalized Legendre-
Clebsch conditions. In fact it is possible to chooseσ such that each bracket which isf-neutralized
on I with respect to the weight(0,1) is f-neutralized with respect to the weightl = (σ, 1);
moreover bearing in mind that only a finite set of brackets areto be considered, we can suppose
that if two brackets contain a different number ofX1, then the one which contains lessX1
has lessl-weight and that two brackets have the samel-weight if and only if they contain the
same number both ofX0 than ofX1. Since each bad bracket contains at least twoX1, then the
only bad bracket whose weight is less than(2n + 1)σ + 2 contains twoX1 and(2i + 1) X0,
i = 0, . . . , (n − 1); among these the only ones which we have to consider areX1X2i+1

0 X1. Set

Si = span{8; which containsi timesX1} .

If
(X1X2i+1

0 X1)f(xf(I )) ∈ S1
f (xf (I )) , i = (1, . . . , (n − 1))

Theorem 2 implies that(−1)n(X1X2n+1
0 X1)f(xf(τ)) is a g-variation ofxf at τ ; therefore ifx∗

is optimal, then the adjoint variable can be chosen in such a way that

(−1)nλ(t)(X1X2i+1
0 X1)f(x

∗(τ)) ≤ 0 , t ∈ I

condition which is known as generalized Legendre-Clebsch condition.

The following example shows that by using Theorem 2 one can obtain further necessary
conditions which can be added to the Legendre-Clebsch ones.

EXAMPLE 1. Let:

f0 = ∂

∂x1
+ x2

∂

∂x3
+ x3

∂

∂x4
+
(

x2
3
2

−
x3
2
6

)
∂

∂x5
+

x2
4
2

∂

∂x6

f1 = ∂

∂x2
.

The generalized Legendre-Clebsch condition implies that−(X1X3
0X1)f(xf(τ)) = ∂

∂x5
is a g-

variation atτ . Let us apply Theorem 2 with the weightl = (1,1); the bad brackets ofl-weight
less than 7 are:

X1X0X1, X1X3
0X1, X3

1X0X1, X2
1X2

0X1X0X1, X2
1X0X1X2

0X1,
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the only one different from 0 along the trajectory is(X1X3
0X1)f which is atxf (I ) a multiple

(X2
1X0X1)f(xf(I )). Therefore it isf l -neutralized. Theorem 1 implies that±(X1X3

0X1)f(xf (τ))

= ± ∂
∂x5

, and(X1X5
0X1)f(xf(τ)) = ∂

∂x6
are g-variations.

Another necessary optimality condition can be deduced fromTheorem 1 and Lemma 2.

THEOREM 3. If there exists an admissible weightl such that all the bad brackets whose
l-weight is less than l0 + 2n l1 are f l -neutralized on an interval containingτ , then

(X2n−1
1 X0X1)f(xf(τ))

is a g-variation atτ .

Proof. We can suppose that the weightl is such that the brackets with the samel-weight contain
the same number both ofX1 than of X0. Since there is only one bracket,X2n−1

1 X0X1 which
contain 2n X1 and 1X0, the theorem is a consequence of Theorem 1 and of Lemma 2.

Notice that this condition is active also in the case in whichthe degree of singularity is+∞.
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GEOMETRIC CONTROL APPROACH

TO SYNTHESIS THEORY

1. Introduction

In this paper we describe the approach used in geometric control theory to deal with optimiza-
tion problems. The concept of synthesis, extensively discussed in [20], appears to be the right
mathematical object to describe a solution to general optimization problems for control systems.

Geometric control theory proposes a precise procedure to accomplish the difficult task of
constructing an optimal synthesis. We illustrate the strength of the method and indicate the
weaknesses that limit its range of applicability.

We choose a simple class of optimal control problems for which the theory provides a
complete understanding of the corresponding optimal syntheses. This class includes various
interesting controlled dynamics appearing in Lagrangian systems of mathematical physics. In
this special case the structure of the optimal synthesis is completely described simply by a couple
of integers, (cfr. Theorem 3). This obviously provides a very simple classification of optimal
syntheses. A more general one, for generic plane control-affine systems, was developed in [18,
10].

First we give a definition of optimal control problem. We discuss the concepts of solution
for this problem and compare them. Then we describe the geometric control approach and finally
show its strength using examples.

2. Basic definitions

Consider an optimal control problem(� ) in Bolza form:

ẋ = f (x,u), x ∈ M, u ∈ U

min

(∫
L(x,u) dt + ϕ(xterm)

)

xin = x0, xterm ∈ N ⊂ M

whereM is a manifold,U is a set, f : M × U → T M, L : M × U → �
, ϕ : M → �

,
the minimization problem is taken over all admissible trajectory-control pairs(x, u), xin is the
initial point andxterm the terminal point of the trajectoryx(·). A solution to the problem(� )
can be given by an open loop controlu : [0, T ] → U and a corresponding trajectory satisfying
the boundary conditions.

One can try to solve the problem via a feedback control, that is finding a functionu : M →
U such that the corresponding ODĖx = f (x, u(x)) admits solutions and the solutions to the
Cauchy problem with initial conditionx(0) = x0 solve the problem(� ). Indeed, one explicits
the dependence of(� ) on x0, considers the family of problems� = (� (x0))x0∈M and tries to

53
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solve them via a unique functionu : M → U , that is to solve the family� of problems all
together.

A well-known approach to the solution of� is also given by studying the value function, that
is the functionV : M → �

assuming at eachx0 the value of the minimum for the corresponding
problem� (x0), as solution of the Hamilton-Jacobi-Bellmann equation, see [5, 13]. In general
V is only a weak solution to the HJB equation but can be characterized as the unique “viscosity
solution” under suitable assumptions.

Finally, one can consider a family0 of pairs trajectory-control(γx0, ηx0) such that each of
them solves the corresponding problem� (x0). This last concept of solution, called synthesis,
is the one used in geometric control theory and has the following advantages with respect to the
other concepts:

1) Generality

2) Solution description

3) Systematic approach

Let us now describe in details the three items.

1) Each feedback gives rise to at least one synthesis if there are solutions to the Cauchy
problems. The converse is not true, that is a synthesis is notnecessarily generated by a feedback
even if in most examples one is able to reconstruct a piecewise smooth control.

If one is able to define the value function this means that eachproblem� (x0) has a solution
and hence there exists at least one admissible pair for each� (x0). Obviously, in this case, the
converse is true that is every optimal synthesis defines a value function. However, to have a
viscosity solution to the HJB equation one has to impose extra conditions.

2) Optimal feedbacks usually lack of regularity and generate too many trajectories some of
which can fail to be optimal. See [20] for an explicit example. Thus it is necessary to add some
structure to feedbacks to describe a solution. This is exactly what was done in [11, 22].

Given a value function one knows the value of the minimum for each problem� (x0). In
applications this is not enough, indeed one usually needs todrive the system along the optimal
trajectory and hence to reconstruct it from the value function. This is a hard problem, [5]. If one
tries to use the concept of viscosity solutions then in the case of Lagrangians having zeroes the
solution is not unique. Various interesting problems (see for example [28]) present Lagrangians
with zeroes. Recent results to deal with this problem can be found in [16].

3) Geometric control theory proposes a systematic way towardsthe construction of optimal
syntheses, while there are not general methods to constructfeedbacks or viscosity solutions for
the HJB equation. We describe in the next session this systematic approach.
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3. Optimal synthesis

The approach to construct an optimal synthesis can be summarized in the following way:

a) MP + geometric techniques
⇓

b) Properties of extremal trajectories
⇓

c) Construction of extremal synthesis
⇓

d) Optimal synthesis

We now explain each item of the picture for a complete understanding of the scheme.

a) The Maximum Principle remains the most powerful tool in the study of optimal control
problems forty years after its first publication, see [21]. Abig effort has been dedicated to
generalizations of the MP in recent years, see [6], [23], andreferences therein.

Since late sixties the study of the Lie algebra naturally associated to the control system has
proved to be an efficient tool, see [15]. The recent approach of simplectic geometry proposed
by Agrachev and Gamkrelidze, see [1, 4], provides a deep insight of the geometric properties of
extremal trajectories, that is trajectories satisfying the Maximum Principle.

b) Making use of the tools described ina) various results were obtained. One of the most
famous is the well known Bang-Bang Principle. Some similar results were obtained in [8] for a
special class of systems. For some planar systems every optimal trajectory is not bang-bang but
still a finite concatenation of special arcs, see [19, 24, 25].

Using the theory of subanalytic sets Sussmann proved a very general results on the regularity
for analytic systems, see [26]. The regularity, however, inthis case is quite weak and does not
permit to drive strong conclusions on optimal trajectories.

Big improvements were recently obtained in the study of Sub-Riemannian metrics, see [2,
3]. In particular it has been showed the link between subanalyticity of the Sub-Riemannian
sphere and abnormal extremals.

c) Using the properties of extremal trajectories it is possible in some cases to construct an
extremal synthesis. This construction is usually based on afinite dimensional reduction of the
problem: from the analysis ofb) one proves that all extremal trajectories are finite concatenations
of special arcs. Again, for analytic systems, the theory of subanalytic sets was extensively used:
[11, 12, 22, 27].

However, even simple optimization problems like the one proposed by Fuller in [14] may
fail to admit such a kind of finite dimensional reduction. This phenomenon was extensively
studied in [17, 28].

d) Finally, once an extremal synthesis has been constructed, it remains to prove its optimal-
ity. Notice that no regularity assumption property can ensure the optimality (not even local) of
a single trajectory. But the contrary happens for a synthesis. The classical results of Boltianskii
and Brunovsky, [7, 11, 12], were recently generalized to be applicable to a wider class of systems
including Fuller’s example (see [20]).
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4. Applications to second order equations

Consider the control system:

ẋ = F(x) + uG(x), x ∈ �2, F,G ∈ �3(
�2,

�2), F(0) = 0, |u| ≤ 1(1)

and let� (τ) be the reachable set within timeτ from the origin. In the framework of [9, 19, 18],
we are faced with the problem of reaching from the origin (under generic conditions onF and
G) in minimum time every point of� (τ). Given a trajectoryγ : [a, b] → �2, we define the
time alongγ asT(γ ) = b − a.
A trajectoryγ of (1) istime optimalif, for every trajectoryγ ′ having the same initial and terminal
points, one hasT(γ ′) ≥ T(γ ). A synthesisfor the control system (1) at timeτ is a family
0 = {(γx,ux)}x∈� (τ ) of trajectory-control pairs s.t.:

(a) for eachx ∈ � (τ) one hasγx : [0,bx ] → �2, γx(0) = 0, γx(bx) = x;

(b) if y = γx(t), wheret is in the domain ofγx, thenγy = γx|[0,t ] .

A synthesis for the control system (1) istime optimalif, for eachx ∈ � (τ), one hasγx(T(x)) =
x, whereT is the minimum time functionT(x) := inf{τ : x ∈ � (τ)}. We indicate by6 a
control system of the type (1) and byOpt(6) the set of optimal trajectories. Ifγ1, γ2 are two
trajectories thenγ1 ∗ γ2 denotes their concatenation. For convenience, we define also the vector
fields: X = F − G, Y = F + G. We say thatγ is anX-trajectory and we writeγ ∈ Traj(X) if
it corresponds to the constant control−1. Similarly we defineY-trajectories. If a trajectoryγ is
a concatenation of anX-trajectory and aY-trajectory, then we say thatγ is aY ∗ X-trajectory.
The timet at which the two trajectories concatenate is calledX-Y switching time and we say
that the trajectory has aX-Y switching at timet . Similarly we define trajectories of typeX ∗ Y,
X ∗ Y ∗ X, etc.
In [19] it was shown that, under generic conditions, the problem of reaching in minimum time
every point of the reachable set for the system (1) admits a regular synthesis. Moreover it was
shown that� (τ) can be partitioned in a finite number of embedded submanifolds of dimension
2, 1 and 0 such that the optimal synthesis can be obtained froma feedbacku(x) satisfying:

• on the regions of dimension 2, we haveu(x) = ±1,

• on the regions of dimension 1, called frame curves (in the following FC), u(x) = ±1
or u(x) = ϕ(x) (whereϕ(x) is a feedback control that depends onF,G and on their
Lie bracket [F,G], see [19]). The frame curves that correspond to the feedback ϕ are
calledturnpikes. A trajectory that corresponds to the controlu(t) = ϕ(γ (t)) is called a
Z-trajectory.

The submanifolds of dimension 0 are called frame points (in the following FP). In [18] it was
provided a complete classification of all types of FP and FC.
Given a trajectoryγ ∈ 0 we denote byn(γ ) the smallest integer such that there existγi ∈
Traj (X) ∪ Traj(Y) ∪ Traj(Z), (i = 1, . . . ,n(γ )), satisfyingγ = γn(γ ) ∗ · · · ∗ γ1.

The previous program can be used to classify the solutions ofthe following problem.

Problem: Consider an autonomous ODE in
�

:

ÿ = f (y, ẏ) ,(2)

f ∈ �3(
�2), f (0, 0) = 0(3)
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that describes the motion of a point under the action of a force that depends on the position
and on the velocity (for instance due to a magnetic field or a viscous fluid). Then let apply
an external force, that we suppose bounded (e.g.|u| ≤ 1):

ÿ = f (y, ẏ)+ u .(4)

We want to reach in minimum time a point in the configuration space(y0, v0) from the
rest state(0, 0).

First of all observe that if we setx1 = y, x2 = ẏ, (4) becomes:

ẋ1 = x2(5)

ẋ2 = f (x1, x2)+ u ,(6)

that can be written in our standard forṁx = F(x) + uG(x), x ∈ �2 by settingx = (x1, x2),
F(x) = (x2, f (x)), G(x) = (0,1) := G.
A deep study of those systems was performed in [9, 10, 19, 18].From now on we make use of
notations introduced in [19]. A key role is played by the functions1A,1B:

1A(x) = det(F(x),G(x)) = x2(7)

1B(x) = det(G(x), [F(x),G(x)]) = 1 .(8)

From these it follows:

1−1
A (0) = {x ∈ �2 : x2 = 0}(9)

1−1
B (0) = ∅ .(10)

The analysis of [19] has to be completed in the following way.
Lemma 4.1 of [19] has to be replaced by the following (see [19]for the definition ofBad(τ) and
tanA):

LEMMA 1. Let x ∈ Bad(τ) and G(x) 6= 0 then:

A. x ∈ (1−1
A (0) ∩1−1

B (0)) ⇒ x ∈ tanA;

B. x ∈ tanA, X(x),Y(x) 6= 0 ⇒ x ∈ (1−1
A (0) ∩1−1

B (0)).

Proof. The proof ofA. is exactly as in [19]. Let us proveB. BeingG(x) 6= 0 we can choose a
local system of coordinates such thatG ≡ (1, 0). Then, with the same computations of [19], we
have:

1B(x) = −∂1F2(x) .(11)

From x ∈ tanA it follows x ∈ 1−1
A (0), henceF(x) = αG (α ∈ �

). Assume thatX(x) is

tangent to1−1
A (0), being the other case entirely similar. This means that∇1A(x) · X(x) =

(α−1)∇1A(x) ·G = 0. FromX(x) 6= 0 we have thatα 6= 1, hence∇1A ·G = 0. This implies
∂1F2 = 0 and using (11) we obtain1B(x) = 0, i.e. x ∈ 1−1

B (0).

Now the proof of Theorem 4.2 of [19] is completed consideringthe following case:

(4) G(x) 6= 0, X(x) = 0 or Y(x) = 0 .
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Note that (4) impliesx ∈ tanA. In this case we assume the generic condition ((P1), . . . , (P8)

were introduced in [19]):

(P9) 1B(x) 6= 0 .

SupposeX(x) = 0 andY(x) 6= 0. The opposite case is similar. Choose a new local system of
coordinates such thatx is the origin,Y = (0,−1) and1−1

A (0) = {(x1, x2) : x2 = 0}.
TakeU = B(0, r ), the ball of radiusr centered at 0, and chooser small enough such that:

• 0 is the only bad point inU ;

• 1B(x) 6= 0 for everyx ∈ U ;

• for everyx ∈ U we have:

|X(x)| � 1 .(12)

Let U1 = U ∩ {(x1, x2) : x2 > 0}, U2 = U ∩ {(x1, x2) : x2 < 0}. We want to prove the
following:

THEOREM 1. If γ ∈ Opt (6) and{γ (t) : t ∈ [b0,b1]} ⊂ U then we have a bound on the
number of arcs, that is∃Nx ∈ � s.t. n( γ |[b0,b1]) ≤ Nx .

In order to prove Theorem 1 we will use the following Lemmas.

LEMMA 2. Letγ ∈ Opt (6) and assume thatγ has a switching at time t1 ∈ Dom(γ ) and
that1A(γ (t1)) = 0. Then1A(γ (t2)) = 0, t2 ∈ Dom(γ ), iff t2 is a switching time forγ .

Proof. The proof is contained in [10].

LEMMA 3. Let γ : [a, b] → U be an optimal trajectory such thatγ ([a,b]) ⊂ U1 or
γ ([a,b]) ⊂ U2, then n(γ ) ≤ 2.

Proof. It is a consequence of Lemma 3.5 of [19] and of the fact that every point of U1 (respec-
tively U2) is an ordinary point i.e.1A(x) ·1B(x) 6= 0.

LEMMA 4. Considerγ ∈ Opt (6), {γ (t) : t ∈ [b0,b1]} ⊂ U. Assume that there exist a
X-Y switching timēt ∈ (b0,b1) for γ andγ (t̄) ∈ U1. Thenγ |[ t̄,b1] is a Y -trajectory.

Proof. Assume by contradiction thatγ switches at timet ′ ∈ (b0,b1), t ′ > t̄ . If γ (t ′) ∈ U1 then
this contradicts the conclusion of Lemma 3. Ifγ (t ′) ∈ 1−1

A (0) then this contradicts Lemma 2.

Assumeγ (t ′) ∈ U2. From sgn1A(γ (t̄)) = −sgn1A(γ (t
′)) we have that12 X(γ (t̄)) ∧ Y =

−1
2(X(γ (t

′)) ∧ Y). This means that:

sgn(X2(γ (t̄)) = −sgn(X2(γ (t
′)) ,(13)

whereX2 is the second component ofX. Chooset0 ∈ (b0, t̄) and define the trajectorȳγ satis-
fying γ̄ (b0) = γ (b0) and corresponding to the controlū(t) = −1 for t ∈ [b0, t0] and ū(t) = 1
for t ∈ [t0,b1]. From (13) there existst1 > t0 s.t. γ̄ (t1) = γ (t) ∈ U2. Using (12) it is easy to
prove thatt1 < t . This contradicts the optimality ofγ (see fig. 1).
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Figure 1:

of Theorem 1.For sake of simplicity we will writeγ instead ofγ |[b0,b1] .

Assume first that no switching happens on1−1
A (0). We have the following cases (see fig. 2

for some of these):

(A) γ has no switching;n(γ ) = 1;

(B) for someε > 0, γ |[b0,b0+ε] is anX-trajectory,γ (b0) ∈ U1, n(γ ) > 1;

(B1) if γ switches toY in U1, by Lemma 4,n(γ ) = 2;

(B2) if γ crosses1−1
A (0) and switches toY in U2, by Lemma 3,γ does not switch

anymore. Hencen(γ ) = 2;

(C) for someε > 0, γ |[b0,b0+ε] is anX-trajectory,γ (b0) ∈ U2, n(γ ) > 1;

(C1) if γ switches toY before crossing1−1
A (0) then, by Lemma 3,n(γ ) = 2;

(C2) if γ reachesU1 without switching, then we are in the(A) or (B) case, thusn(γ ) ≤ 2;

(D) for someε > 0, γ |[b0,b0+ε] is aY-trajectory,γ (b0) ∈ U1, n(γ ) > 1;

(D1) if γ switches toX in U1 and never crosses1−1
A (0) then by Lemma 3n(γ ) = 2;

(D2) if γ switches toX in U1 (at timet0 ∈ [b0,b1]) and then it crosses1−1
A (0), then

γ |[t0,b1] satisfies the assumptions of(A) or (C). Hencen(γ ) ≤ 3;

(D3) if γ switches toX in U2 at t0 ∈ [b0,b1] and then it does not cross1−1
A (0), we have

n(γ ) = 2;

(D4) if γ switches toX in U2 and then it crosses1−1
A (0) we are in cases(A) or (B) and

n(γ ) ≤ 3;

(E) for someε > 0, γ |[b0,b0+ε] is aY-trajectory,γ (b0) ∈ U2, n(γ ) > 1.

(E1) if γ switches toX in U2 and it does not cross1−1
A (0) thenn(γ ) = 2;
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Figure 2:

(E2) if γ switches toX in U2 and then it crosses1−1
A (0), we are in case(A) or B. Hence

n(γ ) ≤ 3.

If γ switches at1−1
A (0), by Lemma 2 all the others switchings ofγ happen on the set1−1

A (0).
Moreover, ifγ switches toY it has no more switchings. Hencen(γ ) ≤ 3.

The Theorem is proved withNx = 3.

By direct computations it is easy to see that thegenericconditionsP1, . . . , P9, under which
the construction of [19] holds, are satisfied under the condition:

f (x1,0) = ±1 ⇒ ∂1 f (x1,0) 6= 0(14)

that obviously impliesf (x1,0) = 1 or f (x1,0) = −1 only in a finite number of points.
In the framework of [9, 19, 18] we will prove that, for our problem (5), (6), with the condition
(14), the “shape” of the optimal synthesis is that shown in fig. 3. In particular the partition of the
reachable set is described by the following

THEOREM 2. The optimal synthesis of the control problem (5) (6) with thecondition (14),
satisfies the following:

1. there are no turnpikes;

2. the trajectoryγ± (starting from the origin and corresponding to constant control ±1) exits
the origin with tangent vector(0,±1) and, for an interval of time of positive measure,
lies in the set{(x1, x2) : x1, x2 ≥ 0} respectively{(x1, x2) : x1, x2 ≤ 0};

3. γ± is optimal up to the first intersection (if it exists) with thex1-axis. At the point in
whichγ+ intersects the x1-axis it generates a switching curve that lies in the half plane
{(x1, x2) : x2 ≥ 0} and ends at the next intersection with the x1-axis (if it exists). At that
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Figure 3: The shape of the optimal synthesis for our problem.

point another switching curve generates. The same happens for γ− and the half plane
{(x1, x2) : x2 ≤ 0};

4. let yi , for i = 1, . . . , n (n possibly+∞) (respectively zi , for i = 1, . . . ,m (m possibly
+∞)) be the set of boundary points of the switching curves contained in the half plane
{(x1, x2) : x2 ≥ 0} (respectively{(x1, x2) : x2 ≤ 0}) ordered by increasing (resp.
decreasing) first components. Under generic assumptions, yi and zi do not accumulate.
Moreover:

• For i = 2, . . . ,n, the trajectory corresponding to constant control+1 ending at yi
starts at zi−1;

• For i = 2, . . . ,m, the trajectory corresponding to constant control−1 ending at zi
starts at yi−1.

REMARK 1. The union ofγ± with the switching curves is a one dimensional�0 manifold
M. Above this manifold the optimal control is+1 and below is−1.

REMARK 2. The optimal trajectories turn clockwise around the origin and switch along the
switching part ofM. They stop turning after the lastyi or zi and tend to infinity withx1(t)
monotone after the last switching.

From4. of Theorem 2 it follows immediately the following:

THEOREM 3. To every optimal synthesis for a control problem of the type (5) (6) with the
condition (14), it is possible to associate a couple(n,m) ∈ (� ∪ ∞)2 such that one of the
following cases occurs:

A. n = m, n finite;

B. n = m + 1, n finite;

C. n = m − 1, n finite;



62 U. Boscain – B. Piccoli

D. n = ∞, m = ∞.

Moreover, if01, 02 are two optimal syntheses for two problems of kind (5), (6), (14), and
(n1,m1) (resp.(n2,m2)) are the corresponding couples, then01 is equivalent to02 iff n1 = n2
and m1 = m2.

REMARK 3. In Theorem 3 the equivalence between optimal syntheses isthe one defined in
[9].

of Theorem 3.Let us consider the synthesis constructed by the algorithm described in [9]. The
stability assumptions (SA1),. . . ,(SA6) holds. The optimality follows from Theorem 3.1 of [9].

1. By definition a turnpike is a subset of1−1
B (0). From (8) it follows the conclusion.

2. We leave the proof to the reader.

3. Let γ±
2 (t) = π2(γ

±(t)), whereπ2 :
�2 → �

, π2(x1, x2) = x2, and consider the adjoint

vector fieldv :
�2 × Dom(γ±)× Dom(γ±) → �2 associated toγ± that is the solution

of the Cauchy problem:

{
v̇(v0, t0; t) = (∇F ± ∇G)(γ±(t)) · v(v0, t0; t)
v(v0, t0; t0) = v0 ,

(15)

We have the following:

LEMMA 5. Consider theγ± trajectories for the control problem (5), (6). We have that
v(G, t;0) and G are parallel iff1A(γ

±(t)) = 0 (i.e. γ±
2 (t) = 0).

Proof. Consider the curveγ+, the case ofγ− being similar. From (9) we know that
1A(γ

+(t)) = 0 iff γ+
2 (t) = 0. First assume1A(γ

+(t)) = 0. We have thatG and
(F + G)(γ+(t)) are collinear that isG = α(F + G)(γ+(t)) with α ∈ �

. For fixedt0, t
the map:

ft0,t : v0 7→ v(v0, t0; t)(16)

is clearly linear and injective, then using (15) andγ̇+(t) = (F + G)(γ+(t)), we obtain
v(G, t;0) = αv

(
(F + G)(γ+(t)), t; 0

)
= α(F + G)(0) = αG.

Viceversa assumev(G, t;0) = αG, then (as above) we obtainv(G, t;0) = αv((F +
G)(γ+(t)), t; 0). From the linearity and the injectivity of (16) we haveG = α(F +
G)(γ+(t)) hence1A(γ

+(t)) = 0.

LEMMA 6. Consider the trajectoryγ+ for the control problem (5), (6). Let̄t > 0 (pos-
sibly +∞) be the first time such thatγ+

2 (t̄) = 0. Thenγ+ is extremal exactly up to time
t̄. And similarly forγ−.

Proof. In [19] it was defined the functionθ(t) = arg
(
G(0), v

(
G(γ+(t)), t,0

))
. This

function has the following properties:

(i) sgn(θ̇(t)) = sgn(1B(γ (t)), that was proved in Lemma 3.4 of [19]. From (8) we have
that sgn(θ̇(t)) = 1 soθ(t) is strictly increasing;
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(ii) γ+ is extremal exactly up to the time in which the measure of the range ofθ is π i.e.
up to the time:

t+ = min{t ∈ [0,∞] : |θ(s1)− θ(s2)| = π, for somes1, s2 ∈ [0, t+]} ,(17)

under the hypothesiṡθ(t+) 6= 0. This was proved in Proposition 3.1 of [9].

From Lemma 5 we have that1A(γ
+(t)) = 0 iff there existsn ∈ � satisfying:

θ(G, v(G, t,0)) = nπ .(18)

In particular (18) holds fort = t̄ and somen. From the fact that̄t is the first time in which
γ+

2 (t̄) = 0 and hence the first time in which1A(γ
+(t̄)) = 0, we have thatn = 1.

Fromθ(t̄) = π and sgn(θ̇(t̄)) = 1 the Theorem is proved witht+ = t̄ .

From Lemma 6,γ± are extremal up to the first intersection with thex1-axis.

Let t be the time such thatγ−(t) = z1, defined in4 of Theorem 2. The extremal trajecto-
ries that switch along theC-curve starting aty1 (if it exists), are the trajectories that start
from the origin with control−1 and then, at some timet ′ < t, switch to control+1. Since
the first switching occurs in the orthant{(x1, x2) : x1, x2 < 0}, by a similar argument to
the one of Lemma 6, the second switch has to occur in the half space{(x1, x2) : x2 > 0},
because otherwise between the two switches we have meas(range(θ(t))) > π . This
proves that the switching curves never cross thex1-axis.

4. The two assertions can be proved separately. Let us demonstrate only the first, being the proof
of the second similar. Definey0 = z0 = (0,0). By definition the+1 trajectory starting
at z0 reachesy1. By Lemma 2 we know that if an extremal trajectory has a switching at
a point of thex1-axis, then it switches iff it intersects thex1-axis again. This means that
the extremal trajectory that switches atyi has a switching atz j for some j . By induction
one hasj ≥ i − 1. Let us prove thatj = i − 1. By contradiction assume thatj > i − 1,
then there exists an extremal trajectory switching atzi−1 that switches on theC curve
with boundary pointsyi−1, yi . This is forbidden by Lemma 2.

EXAMPLES 1. In the following we will show the qualitative shape of the synthesis of some
physical systems coupled with a control. More precisely we want to determine the value of the
couple(m, n) of Theorem 3.

Duffin Equation
The Duffin equation is given by the formuläy = −y − ε(y3 + 2µẏ), ε, µ > 0, ε small. By
introducing a control term and transforming the second order equation in a first order system, we
have:

ẋ1 = x2(19)

ẋ2 = −x1 − ε(x3
1 + 2µx2)+ u .(20)

From this form it is clear thatf (x) = −x1 − ε(x3
1 + 2µx2).

Consider the trajectoryγ+. It starts with tangent vector(0,1), then, from (19), we see that it
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Figure 4: The synthesis for the Van Der Pol equation.

moves in the orthant� := {(x1, x2), x1, x2 > 0}. To know the shape of the synthesis we need
to know where(F + G)2(x) = 0. If we seta = 1

2εµ , this happens where

x2 = a(1 − x1 − εx3) .(21)

From (19) and (20) we see that, after meeting this curve, the trajectory moves witḣγ+
1 > 0 and

γ̇+
2 < 0. Then it meets thex1-axis because otherwise ifγ+(t) ∈ � we necessarily have (for

t → ∞) γ+
1 → ∞, γ̇+

2 → 0, that is not permitted by (20). The behavior of the trajectory γ− is
similar.

In this case, the numbers(n,m) are clearly(∞,∞) because the+1 trajectory that starts at
z1 meets the curve (21) exactly one time and behaves likeγ+. So theC-curve that starts aty1
meets again thex1 axis. The same happens for the−1 curve that starts aty1. In this way an
infinite sequence ofyi andzi is generated.

Van der Pol equation
The Van der Pol equation is given by the formulaÿ = −y+ε(1−y2)ẏ+u, ε > 0 and small. The
associated control system is:ẋ1 = x2, ẋ2 = −x1 + ε(1− x2

1)x2 + u. We have(F + G)2(x) = 0

on the curvesx2 = − 1
ε(x1+1) for x1 6= ±1, x1 = −1. After meeting these curves, theγ+ tra-

jectory moves withγ̇+
1 > 0 andγ̇+

2 < 0 and, for the same reason as before, meets thex1-axis.
Similarly for γ−. As in the Duffin equation, we have thatm andn are equal to+∞. But here,

starting from the origin, we cannot reach the regions:
{
(x1, x2) : x1 < −1, x2 ≥ − 1

ε(x1+1)

}
,

{
(x1, x2) : x1 > −1, x2 ≤ − 1

ε(x1−1)

}
(see fig. 4).

Another example
In the following we will study an equation whose synthesis has n,m < ∞. Consider the equa-
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Figure 5: The synthesis for the control problem (22), (23). The sketched region is
reached by curves that start from the origin with control−1 and then switch to+1
control between the pointsA andB.

tion: ÿ = −ey + ẏ + 1. The associated control system is:

ẋ1 = x2(22)

ẋ2 = −ex1 + x2 + 1 + u(23)

We haveγ̇+
2 = 0 on the curvex2 = ex1 − 2. After meeting this curve, theγ+ trajectory meets

thex1-axis.

Now the synthesis has a different shape because the trajectories corresponding to control−1
satisfyγ̇2 = 0 on the curve:

x2 = ex1(24)

that is contained in the half plane{(x1, x2) : x2 > 0}. Henceγ− never meets the curve given by
(24) and this means thatm = 0. Since we know thatn is at least 1, by Remark 4, we haven = 1,
m = 0. The synthesis is drawn in fig. 5.

5. Optimal syntheses for Bolza Problems

Quite easily we can adapt the previous program to obtain information about the optimal synthe-
ses associated (in the previous sense) to second order differential equations, but for more general
minimizing problems.

We have the well known:

LEMMA 7. Consider the control system:

ẋ = F(x)+ uG(x), x ∈ �2, F,G ∈ �3(
�2,

�2), F(0) = 0, |u| ≤ 1 .(25)
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Let L :
�2 → �

be a�3 bounded function such that there existsδ > 0 satisfying L(x) > δ for
any x∈ �2.
Then, for every x0 ∈ �2, the problem:min

∫ τ
0 L(x(t))dt s.t. x(0) = 0, x(τ) = x0, is equivalent

to theminimum time problem(with the same boundary conditions) for the control systemẋ =
F(x)/L(x)+ uG(x)/L(x).

By this lemma it is clear that if we have a second order differential equation with a bounded-
external forcëy = f (y, ẏ)+u, f ∈ �3(

�2), f (0, 0) = 0, |u| ≤ 1, then the problem of reaching a
point in the configuration space(y0, v0) from the origin, minimizing

∫ τ
0 L(y(t), ẏ(t))dt, (under

the hypotheses of Lemma 7) is equivalent to the minimum time problem for the system:̇x1 =
x2/L(x), ẋ2 = f (x)/L(x) + 1/L(x)u. By setting: α :

�2 →]0,1/δ[, α(x) := 1/L(x),
β :

�2 → �
, β(x) := f (x)/L(x), we have:F(x) = (x2α(x), β(x)), G(x) = (0, α(x)). From

these it follows:1A(x) = x2α
2,1B(x) = α2(α + x2∂2α).

The equations defining turnpikes are:1A 6= 0,1B = 0, that with our expressions become the
differential conditionα + x2∂2α = 0 that in terms ofL is:

L(x)− x2∂2L(x) = 0(26)

REMARK 4. SinceL > 0 it follows that the turnpikes never intersect thex1-axis. Since
(26) depends onL(x) and not on the control system, all the properties of the turnpikes depend
only on the Lagrangian.

Now we consider some particular cases of Lagrangians.

L= L(y) In this case the Lagrangian depends only on the positiony and not on the velocitẏy
(i.e. L = L(x1)). (26) is never satisfied so there are no turnpikes.

L= L(ẏ) In this case the Lagrangian depends only on velocity and the turnpikes are horizontal
lines.

L=V(y)+ 1
2 ẏ2 In this case we want to minimize an energy with a kinetic part1

2 ẏ2 and a pos-
itive potential depending only on the position and satisfying V(y) > 0. The equation for
turnpikes is(x2)

2 = 2V(x1).
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P. Brandi – A. Salvadori

ON MEASURE DIFFERENTIAL INCLUSIONS

IN OPTIMAL CONTROL THEORY

1. Introduction

Differential inclusions are a fundamental tool in optimal control theory. In fact an optimal control
problem

min
(x,u)∈�

J[x,u]

can be reduced (via a deparameterization process) to a problem of Calculus of Variation whose
solutions can be deduced by suitable closure theorems for differential inclusions.

More precisely, if the cost functional is of the type

J[x,u] =
∫

I
f0(t, x(t),u(t))dλ(1)

and� is a class of admissible pairs subjected to differential andstate constraints

(t, x(t)) ∈ A x′(t) = f (t, x(t), u(t)), u(t) ∈ U(t, x(t)) t ∈ I(2)

the corresponding differential inclusion is

(t, x(t)) ∈ A x′(t) ∈ Q̃(t, x(t)) t ∈ I(3)

where multifunctionQ̃ is related to the epigraph of the integrand i.e.

Q̃(t, x) = {(z, v) : z ≥ f0(t, x, u), u = f (t, x, v), v ∈ U(t, x)} .

We refer to Cesari’s book [8] where the theory is developed inSobolev spaces widely.

The extension of this theory toBV setting, motivated by the applications to variational mod-
els for plasticity [2, 3, 6, 13], allowed the authors to provenew existence results of discontinuous
optimal solutions [4, 5, 9, 10, 11, 12].

This generalized formulation involved differential inclusions of the type

(3∗) (t, x(t)) ∈ A x′(t) ∈ Q̃(t, x(t)) a.e. inI

whereu′ represents the “essential gradient” of theBV function x, i.e. the density of the abso-
lutely continuous part of the distributional derivative with respect to Lebesgue measure; more-
over the Lagrangian functional (1) is replaced by the Serrin-type relaxed functional

(1∗) J[x, u] = inf
(xk,uk)→(x,u)

lim inf
k→∞

I [xk,uk] .

69
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A further extension of this theory was given in [4] where we discussed the existence ofL1

solutions for the abstract evolution equation

(3∗∗) (t,u(t)) ∈ A v(t) ∈ Q(t,u(t)) a.e. inI

whereu andv are two surfaces not necessarely connected. This generalization allowed us to deal
with a more general class of optimization problems inBV setting, also including differential
elements of higher order or non linear operators (see [4] forthe details).

Note that the cost functionalJ takes into account of the whole distributional gradient of the
BV functionu, while the constraints control only the “essential” derivative.

To avoid this inconsistency a new class of inclusions involving the measure distributional deriva-
tive should be taken into consideration. This is the aim of the research we developed in the
present note.

At our knowledge, the first differential inclusion involving the distributional derivative of a
BV function was taken into consideration by M. Monteiro Marques [18, 19] who discussed the
existence of right continuous andBV solutions for the inclusion

u(t) ∈ C(t) − du

|du| (t) ∈ NC(t)(u(t)) |du|–a.e. inI(4)

whereC(t) is a closed convex set andNC(t)(a) is the normal cone atC(t) in the pointa ∈ C(t).

These inclusions model the so called sweepping process introduced by J.J. Moreau to deal with
some mechanical problems.

In [21, 22] J.J. Moreau generalized this formulation to describe general rigid body mechan-
ics with Coulomb friction and introduced the so called measure differential inclusions

(4∗)
dµ

dλ
(t) ∈ K (t) λµ–a.e. inI

whereλµ = λ+ |µ|, with λ is the Lebesgue measure andµ is a Borel measure, and whereK (t)
is a cone.

Both the inclusions (4) and (4∗) are not suitable for our purpose since they can not be applied
to multifunctionQ̃(t,u) = epiF(t,u, ·) whose values are not cones, in general.

Recently S.E. Stewart [23] extended this theory to the case of a closed convex setK (t),
not necessarely a cone. Inspired by Stewart’s research we consider here the following measure
differential inclusion

(4∗∗)

dµa

dλ
(t) ∈ Q(t,u(t)) λ–a.e. inI

dµs

d|µs|
(t) ∈ [Q(t,u(t))]∞ µs–a.e. inI

whereµ = µa + µs is the Lebesgue decomposition of the Borel measureµ and [Q(t,a)]∞ is
the asymptotic cone of the non empty, closed, convex setQ(t,a).

Note that measureµ andBV functionu are not necessarely correlated, analogously to inclusion
(3∗∗). In particular, ifµ coincides with the distributional derivative ofu, i.e. dµa

dλ = u′, the
first inclusion is exactly (3∗), while the second one involves the singular part of the measure
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derivative.

In other words formulation (4∗∗) is the generalization of (3∗) in the spirit of (3∗∗).

The closure theorem we prove here for inclusion (4∗∗) represents a natural extension of that
given in [9, 10, 4, 5] for evolution equations of types (3∗) and (3∗∗). In particular we adopt the
same assumption on multifunctionQ, which fits very well for the applications tõQ and hence
to optimal control problems.

Moreover, we wish to remark that our results improve those given by Stewart under stronger
assumptions on multifunctionQ (see Section 6).

2. Preliminaries

We list here the main notations and some preliminary results.

2.1. On asymptotic cone

DEFINITION 1. Theasymptotic coneof a convex set C⊂ �n is given by

[C]∞ = { lim
k→∞

akxk : ak ↘ 0, xk ∈ C, k ∈ �} .

A discussion of the properties of the asymptotic cone can be found in [16] and [23]. We
recall here only the results that will be useful in the following.

P1. If C is non empty, closed and convex, then[C]∞ is a closed convex cone.

P2. If C is a closed convex cone, then C= [C]∞.

P3. If C is non empty, closed and convex, then[C]∞ is the largest cone K such that x+ K ⊂ C,
with x ∈ C.

Let (C j ) j ∈J be a family of nonempty closed convex values. Then the following results hold.

P4. cl co
⋃

j ∈J

[C j ]∞ ⊂


cl co

⋃

j ∈J

C j




∞

P5. if
⋂

j ∈J

C j 6= φ, then


⋂

j ∈J

C j




∞

=
⋂

j ∈J

[C j ]∞.

2.2. On property (Q)

Let E be a given subset of a Banach space and letQ : E → �m be a given multifunction. Fixed
a pointt0 ∈ E, and a numberh > 0, we denote byBh = B(t0,h) = {t ∈ E : |t − t0| ≤ h}.

DEFINITION 2. Multifunction Q is said to satisfy Kuratowskiproperty (K)at a point t0 ∈
E, provided

(K) Q(t0) =
⋂

h>0

cl
⋃

t∈Bh

Q(t) .

The graph of multifunction Q is the setgraphQ := {(t, v) : v ∈ Q(t), t ∈ E}.
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It is well known that (see e.g. [8])

P6. graphQ is closed in E× �m ⇐⇒ Q satisfies condition(K) at every point.

Cesari [8] introduced the following strengthening of Kuratowski condition which is suitable
for the differential inclusions involved in optimal control problems inBV setting.

DEFINITION 3. Multifunction Q is said to satisfy Cesari’sproperty (Q)at a point t0 ∈ E,
provided

(Q) Q(t0) =
⋂

h>0

cl co
⋃

t∈Bh

Q(t) .

Note that if (Q) holds, then the setQ(t0) is necessarily closed and convex.

We will denote by� (�m) the class of non empty, closed, convex subsets of
�m.

Property (Q) is an intermediate condition between Kuratowski condition (K) and upper semicon-
tinuity [8] which is suitable for the applications to optimal control theory. In fact the multifunc-
tion defined by

Q̃(x, u) = epiF(x, u, ·)
satisfies the following results (see [8]).

P7. Q̃ has closed and convex values iff F(x, u, ·) is lower semicontinuous and convex.

P8. Q̃ satisfies property(Q) iff F is seminormal.

We wish to recall that seminormality is a classical Tonelli’s assumption in problems of calculus
of variations (see e.g. [8] for more details).

Given a multifunctionQ : E → � (�m), we denote byQ∞ : E → � (�m) the multifunc-
tion defined by

Q∞(t) = [Q(t)]∞ t ∈ E .

PROPOSITION1. If Q satisfies property(Q) at a point t0, then also multifunction Q∞ does.

Proof. Since

φ 6= Q(t0) =
⋂

h>0

cl co
⋃

t∈Bh

Q(t)

from P4 andP5 we deduce that

Q∞(t0) =
⋂

h>0


cl co

⋃

t∈Bh

Q(t)




∞

⊂
⋂

h>0

cl co
⋃

t∈Bh

Q∞(t) .

The converse inclusion is trivial and the assertion follows.
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3. On measure differential inclusions, weak and strong formulations

Let Q : I → �n, with I ⊂ �
closed interval, be a given multifunction with nonempty closed

convex values and letµ be a Borel measure onI , of bounded variation.

In [23] Stewart considered the two formulations of measure differential inclusions.

Strong formulation.

(S)

{
dµa
dλ (t) ∈ Q(t) λ–a.e. inI
dµs

d|µs|
(t) ∈ Q∞(t) µs–a.e. inI

whereµ = µa + µs be the Lebesgue decomposition of measureµ.

Weak formulation.

(W)

∫
I φ dµ∫
I φ dλ

∈ cl co
⋃

t∈I ∩Suppφ
Q(t)

for everyφ ∈ �0, where�0 denotes the set of all continuous functionsφ :
� → �+

0 , with
compact support, such that

∫
I φ dλ 6= 0.

Stewart proved that the two formulations are equivalent, under suitable assumptions onQ
(see Theorem 2), by means of a transfinite induction process.

We provide here a direct proof of the equivalence, under weaker assumption.

Moreover, for our convenience, we introduce also the following local version of weak for-
mulation.

Local-weak formulation.
Let t0 ∈ I be fixed. There existsh = h(t0) > 0 such that for every 0< h < h,

(LW)

∫
Bh
φ dµ

∫
Bh
φ dλ

∈ cl co
⋃

t∈Bh

Q(t)

for everyφ ∈ �0 such that Suppφ ⊂ Bh.

Of course,if µ satisfies(W), then(LW) holds for every t0 ∈ I .

Rather surprising also the convers hold, as we shall show in the following (Theorem 3).

In other words, also this last formulation proves to be equivalent to the previous ones.

THEOREM 1. Every solution of(S) is also a solution of(W).

Proof. Let φ ∈ �0 be given. Note that
∫

I φ dµ =
∫

I φ dµa +
∫

I φ dµs moreover
∫

I
φ dµa =

∫

I

dµa

dλ
φ dλ =

∫

I ∩Suppφ

dµa

dλ
dλφ(5)

∫

I
φ dµs =

∫

I

dµs

d|µs|
φ d|µs| =

∫

I ∩Suppφ

dµs

d|µs|
dµs,φ(6)

whereλφ andµs,φ are the Borel measures defined respectively by

λφ(E) =
∫

E
φ dλ µs,φ(E) =

∫

E
φ d|µs| E ⊂ I .
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From (5), in force of the assumption and taking Theorem 1.3 in[1] into account, we get

φa :=
∫

I φ dµa∫
I φ dλ

=
∫

I ∩Suppφ
dµa
dλ dλφ

λφ(I ∩ Suppφ)
∈ cl co

⋃

t∈I ∩Suppφ
Q(t) .(7)

In the case
∫

I φ d|µs| = 0, then
∫

I φ dµs = 0 and the assertion is an immediate consequence of
(7).

Let us put

(7′) Qφ := cl co
⋃

t∈I ∩Suppφ
Q(t) .

Let us assume now that
∫

I φ d|µs| 6= 0. Then from (6), in force of the assumption we get, as
before

∫
I φ dµs∫

I φ d|µs|
=
∫

I ∩Suppφ
dµs

d|µs|
dµs,φ

µs,φ(I ∩ Suppφ)

∈ cl co
⋃

t∈I ∩Suppφ
Q∞(t) ⊂


cl co

⋃

t∈I ∩Suppφ
Q(t)




∞

= [Qφ ]∞

and since the right-hand side is a cone, we deduce

φs :=
∫

I φ dµs∫
I φ dλ

=
∫

I φ dµs∫
I φ d|µs|

·
∫

I φ d|µs|∫
I φ dλ

∈ [Qφ ]∞ .(8)

From (7) and (8) we have that
∫

I φ dµ∫
I φ dλ

= φa + φs with φa ∈ Qφ φs ∈ [Qφ ]∞

and, by virtue ofP3, we conclude that
∫

I φ dµ∫
I φ dλ

∈ Qφ = cl co
⋃

t∈Suppφ
Q(t)

which proves the assertion.

THEOREM 2. Letµ be a solution of(LW) in t0 ∈ I .

(a) If Q has properties(Q) at t0 and the derivativedµa
dλ (t0) exists, then

dµa

dλ
(t0) ∈ Q(t0) .

(b) If Q∞ has properties(Q) at t0 and the derivativedµs
d|µs|

(t0) exists, then

dµs

d|µs|
(t0) ∈ Q∞(t0) .
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Proof. Let Sµ denote the set where measureµs is concentrated, i.e.Sµ = {t ∈ I : µs{t} 6= 0}.
Sinceµs is of bounded variation, thenSµ is denumerable; let us put

Sµ = {sn, n ∈ �} .

Let us fix a pointt0 ∈ I 0. The case wheret0 is an end-point forI is analogous.

The proof will proceed into steps.

Step 1. Let us prove first that for everyBh = B(t0, h) ⊂ I with 0 < h < h(t0) and such that
∂Bh ∩ Sµ = φ, we have

µ(Bh − Sµ)

2h
= µa(Bh)

2h
∈ cl co

⋃

t∈Bh

Q(t) .(9)

Let n ∈ � be fixed. For every 1≤ i ≤ n, we consider a constant 0< r i = r i (n) ≤ 1
n2i

such thatB(si , r i ) ∩ B(sj , r j ) = φ, i 6= j , 1 ≤ i , j ≤ n.

Moreover, we putIn =
n⋃

i=1

B0(si , r i ).

Fixed a constant 0< η < min{h, r i , 1 ≤ i ≤ n}, we denote byIn,η =
n⋃

i=1

B0(si , r i −η)

and consider the function

φn,η(t) =





0 t ∈ I − Bh ∪ In,η
1 t ∈ Bh−η − In
linear otherwise

Of courseφn,η ∈ �0 thus, by virtue of the assumption, we have

Rn,η :=
∫

I φn,η dµ∫
I φn,η dλ

∈ cl co
⋃

t∈Bh

Q(t) .(10)

Note that, putCn,η = Bh −
[
In,η ∪ (Bh−η − In)

]
, we have

Rn,η =
∫

Bh−In,η
φn,η dµ

∫
Bh−In,η

φn,η dλ
=
µ
(
Bh−η − In

)
+
∫
Cn,η

φn,η dµ

λ
(
Bh−η − In

)
+
∫
Cn,η

φn,η dλ
.(11)

If we let η → 0, we get

Bh−η − In ↗ B0
h − In In,η ↗ In

and hence
Cn,η ↘ ∂Bh = {t0 − h, t0 + h} .

As a consequence, we have (see e.g. [14])

lim
η→0

µ(Bh−η − In) = µ(Bh − In)

lim
η→0

λ(Bh−η − In) = λ(Bh − In)

lim
η→0

|µ|(Cn,η) = lim
η→0

λ(Cn,η) = 0

(12)
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and hence

(12′) lim
η→0

∫

Cn,η

φn,η dµ = lim
η→0

∫

Cn,η

φn,η dλ = 0 .

From (11), (12) and (12′), we obtain

lim
η→0

Rn,η = µ(Bh − In)

λ(Bh − In)
= µa(Bh − In)+ µs(Bh − In)

λ(Bh − In)
.(13)

Note that since

λ(In) =
n∑

i=1

2r i ≤ 2

n

n∑

i=1

1

2i
<

2

n

we have

lim
n→+∞

λ(In) = lim
n→+∞

µa(In) = 0 .(14)

Moreover

|µs(Bh − In)| ≤ |µs|(Bh − In) ≤ |µs|(Sµ − In) =
∑

n>n

|µs|({sn})

and, recalling thatµ has bounded variation

(14′) lim
n→+∞

|µs(Bh − In)| ≤ lim
n→+∞

∑

n>n

|µs|({sn}) = 0 .

Finally, from (13), (14) and (14′) we conclude that

lim
n→+∞

lim
η→0

Rn,η = µa(Bh)

2h

that, by virtue of (10), proves (9).

Step 2. Let us prove now part(a). We recall that

dµa

dλ
(t0) = lim

h→0

µa(Bh)

2h
(15)

By virtue of step 1, for every fixedh > 0 such thatBh ⊂ I , we have

µa(Bh)

2h
∈ cl co

⋃

t∈Bh

Q(t) ⊂ cl co
⋃

t∈Bh

Q(t) λ–a.e. 0< h < h

and hence, by lettingh → 0, and taking (15) into account, we get

dµa

dλ
(t0) ∈ cl co

⋃

t∈Bh

Q(t) .

By virtue of the arbitrariness ofh > 0 and in force of assumption (Q), we conclude that

dµa

dλ
(t0) ∈

⋂

h>0

cl co
⋃

t∈Bh

Q(t) = Q(t0) .
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Step 3. For the proof of part(b) let us note that

dµs

d|µs|
(t0) = µs({t0})

|µs|({t0})
(16)

sinceµs({t0}) =
∫
{t0}

dµs =
∫
{t0}

dµs
d|µs|

d|µs| = dµs
d|µs|

(t0) |µs|({t0}).
Let h > 0 be fixed in such a way thatBh = B(t0,h) ⊂ I . For every 0< η < h we
consider the continuous function defined by

φη(t) =





1 t ∈ Bη
2

0 t ∈ I − Bη
linear otherwise.

Note that (see e.g. [14])

µs({t0}) = lim
η→0

µ(Bη
2
) = lim

η→0
µ(Bη).(17)

Moreover we have

µ(Bη
2
) =

∫

Bη
φη dµ =

∫

I
φη dµ−

∫

Bη−Bη
2

φη dµ

=
∫

I φη dµ∫
I φη dλ

·
∫

I
φη dλ−

∫

Bη−Bη
2

φη dµ .

(18)

By assumption we know that
∫

I φη dµ∫
I φη dλ

∈ cl co
⋃

t∈Bη

Q(t) ⊂ cl co
⋃

t∈Bh

Q(t)

let us put
Qh := cl co

⋃

t∈Bh

Q(t) .

Since lim
η→0

∫

I
φη dµ = 0, by virtue ofP4 we get

lim
η→0

∫
I φη dµ∫
I φη dλ

·
∫

I
φη dλ ∈ [Qh]∞ .(19)

Furthermore, by virtue of (17) we have
∣∣∣∣∣∣

∫

Bη−Bη
2

φη dµ

∣∣∣∣∣∣
≤ |µ|(Bη)− |µ|(Bη

2
)

η→0
longrightarrow 0(20)

thus, from (18) and taking (17), (19) and (20) into account, we obtain

µ({t0}) ∈ [Qh]∞ for everyh > 0such thatBh = B(t0,h) ⊂ I .

Finally, recallingP5 we deduce that

µ({t0}) ∈
⋂

h>0

[Qh]∞ =
[⋂

h>0

Qh

]

∞

= Q∞(t0)

and taking (16) into account, sinceQ∞(t0) is a cone, the assertion follows.
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DEFINITION 4. Let µ be a given measure. We will say that aproperty P holds(λ, µs)–
a.e. if property P is satisfied for every point t with the exception perhaps of a set N with
λ(N) + µs(N) = 0.

From Theorem 2 the following result can be deduced.

THEOREM 3. Assume that

(i ) Q has properties(Q) λ–a.e.

(i i ) Q∞ has properties(Q)µs–a.e.

Then every measureµ which is a solution of(LW) (λ,µs)–a.e. is also a solution of(S).

As we will observe in Section 6, the present equivalence result [among the three formula-
tions (S), (W), (LW)] improves the equivalence between strong and weak formulation proved by
Stewart, by means of a transfinite process in [23].

It is easy to see that Theorem 3 admits the following generalization.

THEOREM 4. Let Qh : I → � (�m), h ≥ 0 be a net of multifunctions and letµ be a Borel
measure. Assume that

(i ) Q0(t0) =
⋂

h>0

Qh(t0) λ–a.e.;

(i i ) [Q0]∞(t0) =
⋂

h>0

[Qh]∞(t0) µs–a.e.;

(i i i ) for (λ,µs)–a.e. t0 there existsh = h(t0) > 0 such that for every0< h < h
∫

Bh
φ dµ

∫
Bh
φ dλ

∈ Qh(t0)

for everyφ ∈ �0 such thatSuppφ ⊂ Bh.

Thenµ is a solution of(S).

Proof. Let t0 ∈ I be fixed in such a way that all the assumptions hold.
Following the proof of step 1 in Theorem 3, from assumption(i i i ) we deduce that

µa(Bh)

2h
∈ Qh(t0)

and hence from assumption(i ) (as in step 2) we get

dµa

dλ
(t0) ∈

⋂

h>0

Qh(t0) = Q0(t0) .

Finally, analogously to the proof of step 3, from asumptions(i i i ) and(i i ) we obtain

µ({t0}) ∈
⋂

h>0

[Qh]∞(t0) = Q∞(t0)
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and sinceQ∞(t0) is a cone, we get

dµs

d|µs|
(t0) = µ({t0})

|µ|({t0}) ∈ Q∞(t0) .

4. The main closure theorem

Let I ⊂ �
be a closed interval and letQk : I → � (�m), k ≥ 0, be a sequence of multifunctions.

We introduce first the following definition.

DEFINITION 5. We will say that(Qk)k≥0 satisfies condition (QK) at a pointt0 ∈ E pro-
vided

(QK) Q0(t0) =
⋂

h>0

⋂

n∈N

cl
⋃

k≥n

cl co
⋃

t∈Bh

Qk(t) .

We are able now to state and prove our main closure result.

THEOREM 5. Let Qk : I → � (�m), k ≥ 0 be a sequence of multifunctions and let(µk)k≥0
be a sequence of Borel measures such that

(i ) (Qk)k≥0 satisfies(QK) condition(λ,µ0,s)–a.e.;

(i i ) µk w
∗–converges toµ0;

(i i i )

{ dµk,a
dλ (t) ∈ Qk(t) λ–a.e.

dµk,s
d|µk,s|

(t) ∈ [Qk]∞(t) µk,s–a.e.

Then the following inclusion holds
{ dµ0,a

dλ (t) ∈ Q0(t) λ–a.e.
dµ0,s

d|µ0,s|
(t) ∈ [Q0]∞(t) µ0,s–a.e.

Proof. We prove this result as an application of Theorem 4 to the net

Qh(t) =
⋂

n∈N

cl
⋃

k≥n

cl co
⋂

τ∈B(t,h)

Qk(τ) .

By virtue of P5 assumption(i ) assures that both assumptions(i ) and(i i ) in Theorem 4 hold.

Now, let t0 ∈ I be fixed in such a way that assumption(i i i ) holds and letφ ∈ �0 be given
with Suppφ ⊂ Bh ∩ I .
From Theorem 1 we deduce∫

Suppφ φ dµk∫
Suppφ φ dλ

∈ cl co
⋃

t∈Suppφ
Qk(t) k ∈ �(21)

and from assumption(i i ) we get
∫
Suppφ φ dµ0∫
Suppφ φ dλ

= lim
k→+∞

∫
Suppφ φ dµk∫
Suppφ φ dλ

∈ Qh(t0)(22)

which gives assumption(i i i ) in Theorem 4.
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5. Further closure theorems for measure differential inclusions

We present here some applications of the main result to remarkable classes of measure differen-
tial inclusions.

According to standard notations, we denote byL1 the space of summable functionsu : I →
�m and byBV the space of the functionsu ∈ L1 which are of bounded variation in the sense of
Cesari [7], i.e.V(u) < +∞.

Let uk : I → �m, k ≥ 0, be a given sequence inL1 and letQ : I × A ⊂ �n+1 → � (�m)

be a given multifunction.

DEFINITION 6. We say that the sequence(uk)k≥0 satisfies the property oflocal equi-
oscillationat a point t0 ∈ I provided

(LEO) lim
h→0

lim sup
k→∞

sup
t∈Bh

|uk(t)− u0(t0)| = 0 .

It is easy to see that the following result holds.

PROPOSITION2. If uk converges uniformly to a continuous function u0, then condition
(LEO) holds everywhere in I .

In [10] an other sufficient condition for property (LEO) can be found (see the proof of
Theorem 1).

PROPOSITION3. If (uk)k≥0 is a sequence of BV functions such that

(i ) uk converges to u0 λ–a.e. in I;

(i i ) sup
k∈�

V(uk) < +∞.

Then a subsequence(usk)k≥0 satisfies condition(LEO) λ–a.e. in I.

Let us prove now a sufficient condition for property (QK).

THEOREM 6. Assume that the following conditions are satisfied at a pointt0 ∈ I

(i ) Q satisfies property(Q);

(i i ) (uk)k≥0 satisfies condition(LEO).

Then the sequence of multifunctions Qk : I → � (�m), k ≥ 0, defined by

Qk(t) = Q(t,uk(t)) k ≥ 0

satisfies property(QK) at t0.

Proof. By virtue of assumption(i i ), fixedε > 0 a number 0< hε < ε exists such that for every
0< h < hε an integerkh exists with the property that for everyk ≥ kh

t ∈ Bh(t0) H⇒ |u0(t0)− uk(t)| < ε .

Then for everyk ≥ kh

cl co
⋃

t∈Bh

Q(t,uk(t)) ⊂ cl co
⋃

|t−t0|≤ε,|x−u0(t0)|≤ε

Q(t, x) = Qε .
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Fixedn ≥ kh
cl
⋃

k≥n

cl co
⋃

t∈Bh

Q(t,uk(t)) ⊂ Qε

and hence ⋂

n∈�
cl
⋃

k≥n

cl co
⋃

t∈Bh

Q(t,uk(t)) ⊂ Qε .

Finally, by virtue of assumption(i ), we have
⋂

ε>0

⋂

n∈�
cl
⋃

k≥n

cl co
⋃

t∈Bh

Q(t, uk(t)) ⊂
⋂

ε>0

Qε = Q(t0,u0(t0))

which proves the assertion.

In force of this result, the following closure Theorem 5 can be deduced as an application of
the main theorem.

THEOREM 7. Let Q : I × A ⊂ �n+1 → � (�m) be a multifunction, let(µk)k≥0 be a
sequence of Borel measures of bounded variations and let uk : I → A, k ≥ 0 be a sequence of
BV functions which satisfy the conditions

(i ) Q has properties(Q) at every point(t, x) with the exception of a set of points whose t-
coordinate lie on a set of(λ,µ0,s)–null measure;

(i i )

{ dµk,a
dλ (t) ∈ Q(t,uk(t)) λ–a.e.

dµk,s
d|µk,s|

(t) ∈ Q∞(t,uk(t)) µk,s–a.e.

(i i i ) µk w
∗–converges toµ0;

(i v) supk∈� V(uk) < +∞;

(v) uk converges to u0 pointwiseλ–a.e. and satisfies condition(LEO) atµ0,s–a.e.

Then the following inclusion holds

{ dµ0,a
dλ (t) ∈ Q(t,u0(t)) λ–a.e.

dµ0,s
d|µ0,s|

(t) ∈ Q∞(t,u0(t)) µ0,s–a.e.

REMARK 1. We recall that the distributional derivative of aBV functionu is a Borel mea-
sure of bounded variation [17] that we will denote byµu.

Moreoveru admits an “essential derivative”u′ (i.e. computed by usual incremental quo-
tients disregarding the values taken byu on a suitable Lebesgue null set) which coincides with
dµu,a

dλ [25].

Note that Theorem 7 is an extension and a generalization of the main closure theorem in
[10] (Theorem 1) given for a differential inclusion of the type

u′(t) ∈ Q(t,u(t)) λ–a.e. inI .

To this purpose, we recall that if(uk)k≥0, is a sequence of equi–BV functions, then a subse-
quence of distributional derivativesw∗–converges.

The following closure theorem can be considered as a particular case of Theorem 7.
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THEOREM 8. Let Q : I × E → � (�m), with E subset of a Banach space, be a multifunc-
tion, let (µk)k≥0 be a sequence of Borel measures of bounded variations and let(ak)k≥0 be a
sequence in E. Assume that the following conditions are satisfied

(i ) Q has properties(Q) at every point(t, x) with the exception of a set of points whose t-
coordinate lie on a set of(λ,µ0,s)–null measure;

(i i )

{ dµk,a
dλ (t) ∈ Q(t,ak) λ–a.e.

dµk,s
d|µk,s|

(t) ∈ Q∞(t,ak) µk,s–a.e.

(i i i ) µk w
∗–converges toµ0;

(i v) (ak)k converges to a0.

Then the following inclusion holds
{ dµ0,a

dλ (t) ∈ Q(t,a0) λ–a.e.
dµ0,s

d|µ0,s|
(t) ∈ Q∞(t,a0) µ0,s–a.e.

As we will prove in Section 6, this last result is an extensionof closure Theorem 3 in [10].

As an application of Theorem 7 also the following result can be proved.

THEOREM 9. Let Q : I ×�n ×� p → � (�m), be a multifunction, let f: I × �n ×�q →
�n be a function and let(uk, vk) : I → �n × �q , k ≥ 0, be a sequence of functions.
Assume that

(i ) Q satisfies property(Q) at every point(t, x, y) with the exception of a set of points whose
t-coordinate lie on a set of(λ, µv0,s)–null measure;

(i i ) f is a Carathéodory function and
| f (t,u, v)| ≤ ψ1(t)+ ψ2(t) |u| + ψ3(t) |v| withψi ∈ L1 i = 1, 2,3;

(i i i )

{
v′k(t) ∈ Q(t,uk(t))− f (t,uk(t), vk(t)) λ–a.e.
dµvk,s

d|µvk,s|
(t) ∈ Q∞(t,uk(t)) µvk,s–a.e.

(i v) supk∈� V(vk) < +∞ and(vk)k converges tov0 λ–a.e.;

(v) (uk)k converges uniformly to a continuous function u0.

Then the following inclusion holds
{
v′0(t) ∈ Q(t, u0(t))− f (t,u0(t), v0(t)) λ–a.e.
dµv0,s

d|µv0,s|
(t) ∈ Q∞(t,u0) µv0,s–a.e.

Proof. If we consider the sequence of Borel measures defined by

νk([a, b]) =
∫ b

a
[v′k(t)+ f (t,uk(t), vk(t))] dλ [a, b] ⊂ I k ≥ 0

it is easy to see that

dνk,s = dµvk,s
dνk,a

dλ
(t) = v′k(t)+ f (t,uk(t), vk(t)) λ–a.e.

It is easy to verify that assumptions assure that(νk)k≥0 is a sequence ofBV measure which
w∗–converges and the result is an immediate application of Theorem 7.
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REMARK 2. Differential incusions of this type are adopted as a modelfor rigid body dy-
namics (see [20] for details). As we will observe in Section 6the previous result improves the
analogous theorem proved in [23] (Theorem 4).

6. On comparison with Stewart’s assumptions

This section is dedicated to a discussion on the comparison between our assumptions and that
adopted by Stewart in [23].

Let Q : E → � (�n) be a given multifunction whereE is a subset of a Banach space.

The main hypotheses adopted by Stewart in [23] on muntifunction Q are the closure of the
graph (i.e. property (K)) and the following condition:

for every t0 ∈ Ethere existσ0 > 0and R0 > 0such that

sup
t∈Bσ

inf
x∈Q(t)

‖x‖ ≤ R0 .
(23)

We will prove here that these assumptions are stricly stronger than property (Q). As a con-
sequence, the results of the present paper improve that given in [23].

PROPOSITION4. Let Q be a multifunction with closed graph and let t0 ∈ E be fixed.
Assume that
for a given t0 ∈ E there existσ0 > 0 and R0 > 0 such that

sup
t∈Bσ

inf
x∈Q(t)

‖x‖ ≤ R0

then multifunction Q satisfies property(Q) at t0.

Proof. By virtue of Lemma 5.1 in [23], fixed a numberε > 0, there existsδ = δ(t0, ε) > 0 such
that

t ∈ Bδ H⇒ Q(t) ⊂ Q(t0)+ ε B(0,1)+ (Q∞(t0))ε
where(Q∞(t0))ε denotes theε–enlargement of the setQ∞(t0).
Since the right-hand side is closed and convex

cl co
⋃

t∈Bδ

Q(t) ⊂ Q(t0)+ ε B(0,1)+ (Q∞(t0))ε

then
Q∗(t0) :=

⋂

δ>0

cl co
⋃

t∈Bδ

Q(t) ⊂ Q(t0)+ ε B(0,1)+ (Q∞(t0))ε .

Now, fixed an integern ∈ � and 0< ε < 1
n , we get

Q∗(t0) ⊂ Q(t0)+ ε B(0,1)+ (Q∞(t0))ε ⊂ Q(t0)+ ε B(0,1)+ (Q∞(t0)) 1
n

and lettingε → 0, we obtain

Q∗(t0) ⊂ Q(t0)+ (Q∞(t0)) 1
n
.(24)

Recalling that (seeP3)
Q(t0)+ Q∞(t0) ⊂ Q(t0)
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we have

Q(t0)+ (Q∞(t0)) 1
n

⊂ (Q(t0)) 1
n

+ (Q∞(t0)) 1
n

⊂ (Q(t0)+ Q∞(t0)) 1
n

⊂ (Q(t0)) 2
n

and from (24) lettingn → +∞ we get

Q∗(t0) ⊂ Q(t0)

which proves the assertion.

This result proves that even if Kuratowski condition (K) is weaker than Cesari’s property (Q)
(see Section 2), together with hypothesis (23) it becomes a stronger assumption. The following
example will show that assumption (23) and (K) are strictly stronger than property (Q).
Finally, we recall that inBV setting property (Q) can not be replaced by condition (K), asit
occurs in Sobolev’s setting (see [10], Remark 1).

EXAMPLE 1. Let us consider the functionF :
�+

0 × � → �
defined by

F(t, v) =
{ 1

t sin2 1
t + |v| t 6= 0

|v| t = 0

and the multifunction
Q̃(t, ·) = epiF(t, ·) .

Of course assumption(i i ) in Proposition 2 does not holds for̃Q at the pointt0 = 0.
Moreover, in force of the Corollary to Theorem 3 in A.W.J. Stoddart [24], it can be easily proved
that F is seminormal. Thus̃Q satisfies condition (Q) at every pointt ∈ �+

0 (seeP8).
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A. Bressan

SINGULARITIES OF STABILIZING FEEDBACKS

1. Introduction

This paper is concerned with the stabilization problem for acontrol system of the form

ẋ = f (x, u), u ∈ K ,(1)

assuming that the set of control valuesK ⊂ �m is compact and that the mapf :
�n ×�m 7→ �n

is smooth. It is well known [6] that, even if every initial state x̄ ∈ �n can be steered to the origin
by an open-loop controlu = ux̄(t), there may not exist a continuous feedback controlu = U(x)
which locally stabilizes the system (1). One is thus forced to look for a stabilizing feedback
within a class of discontinuous functions. However, this leads to a theoretical difficulty, because,
when the functionU is discontinuous, the differential equation

ẋ = f (x,U(x))(2)

may not have any Carathéodory solution. To cope with this problem, two approaches are possi-
ble.

I) On one hand, one may choose to work with completely arbitraryfeedback controlsU . In this
case, to make sense of the evolution equation (2), one must introduce a suitable definition
of “generalized solution” for discontinuous O.D.E. For such solutions, a general existence
theorem should be available.

II) On the other hand, one may try to solve the stabilization problem within a particular class
of feedback controlsU whose discontinuities are sufficiently tame. In this case, it will
suffice to consider solutions of (2) in the usual Carathéodory sense.

The first approach is more in the spirit of [7], while the second was taken in [1]. In the
present note we will briefly survey various definitions of generalized solutions found in the liter-
ature [2, 11, 12, 13, 14], discussing their possible application to problems of feedback stabiliza-
tion. In the last sections, we will consider particular classes of discontinuous vector fields which
always admit Carathéodory solutions [3, 5, 16], and outline some research directions related to
the second approach.

In the following,� and∂� denote the closure and the boundary of a set�, while Bε is
the open ball centered at the origin with radiusε. To fix the ideas, two model problems will be
considered.

Asymptotic Stabilization (AS). Construct a feedbacku = U(x), defined on
�n \ {0}, such that

every trajectory of (2) either tends to the origin ast → ∞ or else reaches the origin in
finite time.

Suboptimal Controllability (SOC). Consider the minimum time function

T(x̄)
.= min {t : there exists a trajectory of (1) withx(0) = x̄, x(t) = 0} .(3)

87
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Call R(τ)
.= {x : T(x) ≤ τ } the set of points that can be steered to the origin within

time τ . For a givenε > 0, we want to construct a feedbacku = U(x), defined on a
neighborhoodV of R(τ), with the following property. For everȳx ∈ V , every trajectory
of (2) starting at̄x reaches a point insideBε within time T(x̄)+ ε.

Notice that we are not concerned here with time optimal feedbacks, but only with subopti-
mal ones. Indeed, already for systems on

�2, an accurate description of all generic singularities
of a time optimal feedback involves the classification of a large number of singular points [4, 15].
In higher dimensions, an ever growing number of different singularities can arise, and time op-
timal feedbacks may exhibit pathological behaviors. A complete classification thus appears to
be an enormous task, if at all possible. By working with suboptimal feedbacks, we expect that
such bad behaviors can be avoided. One can thus hope to construct suboptimal feedback controls
having a much smaller set of singularities.

2. Nonexistence of continous stabilizing feedbacks

The papers [6, 19, 20] provided the first examples of control systems which can be asymptotically
stabilized at the origin, but where no continuous feedback control u = U(x) has the property
that all trajectories of (2) asymptotically tend to the origin as t → ∞. One such case is the
following.

EXAMPLE 1. Consider the control system on
�3

(ẋ1, ẋ2, ẋ3) = (u1, u2, x1u2 − x2u1) .(4)

As control setK one can take here the closed unit ball in
�2. Using Lie-algebraic techniques,

it is easy to show that this system is globally controllable to the origin. However, no smooth
feedbacku = U(x) can achieve this stabilization.

Indeed, the existence of such a feedback would imply the existence of a compact neigh-
borhoodV of the origin which is positively invariant for the flow of thesmooth vector field
g(x)

.= f (x,U(x)). Calling TV (x) the contingent cone [2, 8] to the setV at the pointx, we
thus haveg(x) ∈ TV (x) at each boundary pointx ∈ ∂V . Sinceg cannot vanish outside the
origin, by a topological degree argument, there must be a point x∗ where the fieldg is parallel
to thex3-axis: g(x∗) = (0,0, y) for somey > 0. But this is clearly impossible by the definition
(4) of the vector field.
Using a mollification procedure, from a continuous stabilizing feedback one could easily con-
struct a smooth one. Therefore, the above argument also rules out the existence of continuous
stabilizing feedbacks.

We describe below a simple case where the problem of suboptimal controllability to zero
cannot be solved by any continuous feedback.

EXAMPLE 2. Consider the system

(ẋ1, ẋ2) = (u,−x2
1), u ∈ [−1,1] .(5)

The set of points that can be steered to the origin within timeτ = 1 is found to be

R(1) =
{
(x1, x2) : x1 ∈ [−1, 1],

1

3
|x3

1| ≤ x2 ≤ 1

4

(
1

3
+ |x1| + x2

1 − |x3
1|
)}

.(6)
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P
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0

xε

R(1)

figure 1

Moreover, all time-optimal controls are bang-bang with at most one switching, as shown in fig. 1.

Assume that for everyε > 0 there exists a continuous feedbackUε such that all trajectories
of

ẋ = (ẋ1, ẋ2) =
(
Uε(x),−x2

1

)

starting at some point̄x ∈ R(1) reach the ballBε within timeT(x̄)+ε. To derive a contradiction,
fix the point P = (0, 1/24). By continuity, for eachε sufficiently small, there will be at least
one trajectoryxε(·) starting from a point on the upper boundary

∂+ R(1)
.=
{
(x1, x2) : x1 ∈ [−1, 1], x2 = 1

4

(
1

3
+ |x1| + x2

1 − |x3
1|
)}

(7)

and passing throughP before reaching a point inBε. By compactness, asε → 0 we can take a
subsequence of trajectoriesxε(·) converging to functionx∗(·) on [0,1]. By construction,x∗(·) is
then a time optimal trajectory starting from a point on the upper boundary∂+ R(1) and reaching
the origin in minimum time, passing through the pointP at some intermediate times ∈]0, 1[.
But this is a contradiction because no such trajectory exists.

3. Generalized solutions of a discontinuous O.D.E.

Let g be a bounded, possibly discontinuous vector field on
�n. In connection with the O.D.E.

ẋ = g(x) ,(8)

various concepts of “generalized” solutions can be found inthe literature. We discuss here the
two main approaches.

(A) Starting fromg, by some regularization procedure, one constructs an uppersemicontinu-
ous multifunctionG with compact convex values. Every absolutely continuous function
which satisfies a.e. the differential inclusion

ẋ ∈ G(x)(9)

can then be regarded as generalized solutions of (8).
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In the case ofKrasovskii solutions, one takes the multifunction

G(x)
.=
⋂

ε>0

co{g(y) : |y − x| < ε} .(10)

Hereco Adenotes the closed convex hull of the setA. TheFilippov solutionsare defined simi-
larly, except that one now excludes sets of measure zero fromthe domain ofg. More precisely,
calling� the family of setsA ⊂ �n of measure zero, one defines

G(x)
.=
⋂

ε>0

⋂

A∈
� co{g(y) : |y − x| < ε, y /∈ A} .(11)

Concerning solutions of the multivalued Cauchy problem

x(0) = x̄, ẋ(t) ∈ G (x(t)) t ∈ [0, T ] ,(12)

one has the following existence result [2].

THEOREM 1. Let g be a bounded vector field on
�n . Then the multifunction G defined by

either (10) or (11) is upper semicontinuous with compact convex values. For every initial data
x̄, the family� x̄ of Carathéodory solutions of (12) is a nonempty, compact, connected, acyclic
subset of�

(
[0, T ] ; �n). The mapx̄ 7→ � x̄ is upper semicontinuous. If g is continuous, then

G(x) = {g(x)} for all x, hence the solutions of (8) and (9) coincide.

It may appear that the nice properties of Krasovskii or Filippov solutions stated in Theorem
1 make them a very attractive candidate toward a theory of discontinuous feedback control.
However, quite the contrary is true. Indeed, by Theorem 1 thesolution sets for the multivalued
Cauchy problem (12) have the same topological properties asthe solution sets for the standard
Cauchy problem

x(0) = x̄, ẋ(t) = g (x(t)) t ∈ [0, T ](13)

with continuous right hand side. As a result, the same topological obstructions found in Ex-
amples 1 and 2 will again be encountered in connection with Krasovskii or Filippov solu-
tions. Namely [10, 17], for the system (4) one can show that for every discontinuous feedback
u = U(x) there will be some Filippov solution of the corresponding discontinuous O.D.E. (2)
which does not approach the origin ast → ∞. Similarly, for the system (5), whenε > 0 is
small enough there exists no feedbacku = U(x) such that every Filippov solution of (2) starting
from some point̄x ∈ R(1) reaches the ballBε within time T(x̄)+ ε.

The above considerations show the necessity of a new definition of “generalized solution”
for a discontinuous O.D.E. which will allow the solution setto be possibly disconnected. The
next paragraph describes a step in this direction.

(B) Following a second approach, one defines an algorithm which constructs a family ofε-
approximate solutionsxε. Letting the approximation parameterε → 0, every uniform
limit x(·) = limε→0 xε(·) is defined to be a generalized solution of (8).

Of course, there is a wide variety of techniques [8, 13, 14] for constructing approximate
solutions to the Cauchy problem (13). We describe here two particularly significant procedures.

Polygonal Approximations. By a generalpolygonalε-approximatesolution of (13) we mean
any functionx : [0, T ] 7→ �n constructed by the following procedure. Consider a parti-
tion of the interval [0, T ], say 0= t0 < t1 < · · · < tm = T , whose mesh size satisfies

max
i
(ti − ti−1) < ε .
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For i = 0, . . . ,m − 1, choose arbitrary outer and inner perturbationsei ,e
′
i ∈ �n , with

the only requirement that|ei | < ε, |e′
i | < ε. By induction oni , determine the valuesxi

such that

|x0 − x̄| < ε, xi+1 = xi + (ti+1 − ti )
(
ei + g(xi + e′

i )
)

(14)

Finally, definex(·) as the continuous, piecewise affine function such thatx(ti ) = xi for
all i = 0, . . . ,m.

Forward Euler Approximations. By a forward Eulerε-approximatesolution of (13) we mean
any polygonal approximation constructed without taking any inner perturbation, i.e. with
e′
i ≡ 0 for all i .

In the following, the trajectories of the differential inclusion (12), withG given by (10) or
(11) will be called respectivelyKrasovskiior Filippov solutionsof (13). By a forward Euler
solutionwe mean a limit of forward Eulerε-approximate solutions, asε → 0. Some relations
between these different concepts of solutions are illustrated below.

THEOREM 2. The set of Krasovskii solutions of (13) coincides with the set of all limits of
polygonalε-approximate solutions, asε → 0.

For a proof, see [2, 9].

EXAMPLE 3. On the real line, consider the vector field (fig. 2)

g(x) =
{

1 if x ≥ 0 ,
−1 if x < 0 .

The corresponding multifunctionG, according to both (10) and (11) is

G(x) =





{1} if x > 0 ,
[−1, 1] if x = 0 ,
{−1} if x < 0 .

The set of Krasovskii (or Filippov) solutions to (13) with initial data x̄ = 0 thus consists of all
functions of the form

x(t) =
{

0 if t ≤ τ ,

t − τ if t > τ ,

together with all functions of the form

x(t) =
{

0 if t ≤ τ ,

τ − t if t > τ ,

for anyτ ≥ 0. On the other hand, there are only two forward Euler solutions:

x1(t) = t, x2(t) = −t .

In particular, this set of limit solutions is not connected.

EXAMPLE 4. On
�2 consider the vector field (fig. 3)

g(x1, x2)
.=




(0,−1) if x2 > 0 ,
(0,1) if x2 < 0 ,
(1,0) if x2 = 0 .
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0

figure 2 figure 3

The corresponding Krasovskii multivalued regularization(10) is

GK (x1, x2) =





{(0,−1)} if x2 > 0 ,
{(0, 1)} if x2 < 0 ,
co{(0,−1), (0,1), (1, 0)} if x2 = 0 .

Given the initial conditionx̄ = (0, 0), the corresponding Krasovskii solutions are all the func-
tions of the formt 7→ (x1(t),0), with ẋ1(t) ∈ [0,1] almost everywhere. These coincide with
the limits of forward Euler approximations. On the other hand, since the line{x2 = 0} is a null
set, the Filippov multivalued regularization (11) is

GF (x1, x2) =





{(0,−1)} if x2 > 0 ,
{(0,1)} if x2 < 0 ,
co{(0,−1), (0,1)} if x2 = 0 .

Therefore, the only Filippov solution starting from the origin is the functionx(t) ≡ (0, 0) for all
t ≥ 0.

4. Patchy vector fields

For a general discontinuous vector fieldg, the Cauchy problem for the O.D.E.

ẋ = g(x)(15)

may not have any Carathéodory solution. Or else, the solution set may exhibit very wild behavior.
It is our purpose to introduce a particular class of discontinuous mapsg whose corresponding
trajectories are quite well behaved. This is particularly interesting, because it appears that various
stabilization problems can be solved by discontinuous feedback controls within this class.

DEFINITION 1. By apatchwe mean a pair(�, g) where� ⊂ �n is an open domain with
smooth boundary and g is a smooth vector field defined on a neighborhood of� which points
strictly inward at each boundary point x∈ ∂�.

Callingn(x) the outer normal at the boundary pointx, we thus require

〈g(x), n(x)〉 < 0 for all x ∈ ∂� .(16)
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DEFINITION 2. We say that g: � 7→ �n is a patchy vector fieldon the open domain� if
there exists a family of patches{(�α, gα) : α ∈ � } such that
- � is a totally ordered set of indices,
- the open sets�α form a locally finite covering of�,
- the vector field g can be written in the form

g(x) = gα(x) if x ∈ �α \
⋃

β>α

�β .(17)

By defining

α∗(x)
.= max{α ∈ � : x ∈ �α} ,(18)

we can write (17) in the equivalent form

g(x) = gα∗(x)(x) for all x ∈ � .(19)

We shall occasionally adopt the longer notation
(
�, g, (�α, gα)α∈�

)
to indicate a patchy

vector field, specifying both the domain and the single patches. Of course, the patches(�α, gα)
are not uniquely determined by the vector fieldg. Indeed, wheneverα < β, by (17) the values
of gα on the set�β \�α are irrelevant. This is further illustrated by the following lemma.

LEMMA 1. Assume that the open sets�α form a locally finite covering of� and that, for
eachα ∈ � , the vector field gα satisfies the condition (16) at every point x∈ ∂�α \ ∪β>α�β .
Then g is again a patchy vector field.

Proof. To prove the lemma, it suffices to construct vector fieldsg̃α which satisfy the inward
pointing property (16) at every pointx ∈ ∂�α and such that̃gα = gα on�α \ ∪β>α�β . To
accomplish this, for eachα we first consider a smooth vector fieldvα such thatvα(x) = −n(x)
on ∂�α . The mapg̃α is then defined as the interpolation

g̃α(x)
.= ϕ(x)gα(x)+ (1 − ϕ(x)) vα(x) ,

whereϕ is a smooth scalar function such that

ϕ(x) =
{

1 if x ∈ �α \ ∪β>α�β ,
0 if x ∈ ∂�α and〈g(x), n(x)〉 ≥ 0 .

The main properties of trajectories of a patchy vector field (fig. 4) are collected below.

THEOREM 3. Let
(
�, g, (�α, gα)α∈�

)
be a patchy vector field.

(i ) If t → x(t) is a Carathéodory solution of (15) on an open interval J , then t → ẋ(t) is
piecewise smooth and has a finite set of jumps on any compact subinterval J′ ⊂ J . The
function t 7→ α∗(x(t)) defined by (18) is piecewise constant, left continuous and non-
decreasing. Moreover there holds

ẋ((t−)) = g (x(t)) for all t ∈ J .(20)

(i i ) For each x̄ ∈ �, the Cauchy problem for (15) with initial condition x(0) = x̄ has at
least one local forward Carathéodory solution and at most one backward Carathéodory
solution.



94 A. Bressan
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figure 4

(i i i ) The set of Carathéodory solutions of (15) is closed. More precisely, assume that xν :
[aν ,bν ] 7→ � is a sequence of solutions and, asν → ∞, there holds

aν → a, bν → b, xν(t) → x̂(t) for all t ∈]a, b[ .

Thenx̂(·) is itself a Carathéodory solution of (15).

(i v) The set of a Carathéodory solutions of the Cauchy problem (13) coincides with the set of
forward Euler solutions.

Proof. We sketch the main arguments in the proof. For details see [1].

To prove(i ), observe that on any compact interval [a, b] a solutionx(·) can intersect only
finitely many domains�α , say those with indicesα1 < α2 < · · · < αm. It is now convenient
to argue by backward induction. Since�αm is positively invariant for the flow ofgαm, the
set of times

{
t ∈ [a, b] : x(t) ∈ �αm

}
must be a (possibly empty) interval of the form ]tm,b].

Similarly, the set
{
t ∈ [a, b] : x(t) ∈ �αm−1

}
is an interval of the form ]tm−1, tm]. After m

inductive steps we conclude that

ẋ(t) = gα j (x(t)) t ∈]t j , t j +1[

for some timest j with a = t1 ≤ t2 ≤ · · · ≤ tm+1 = b. All statements in(i ) now follow from
this fact. In particular, (20) holds because each set�α is open and positively invariant for the
flow of the corresponding vector fieldgα.

Concerning(i i ), to prove the local existence of a forward Carathéodory solution, consider
the index

ᾱ
.= max

{
α ∈ � : x̄ ∈ �α

}
.

Because of the transversality condition (16), the solutionof the Cauchy problem

ẋ = gᾱ(x), x(0) = x̄



Singularities of Stabilizing Feedbacks 95

remains inside�ᾱ for all t ≥ 0. Hence it provides also a solution of (15) on some positive
interval [0, δ].

To show the backward uniqueness property, letx1(·), x2(·) be any two Carathéodory solu-
tions to (15) withx1(0) = x2(0) = x̄. For i = 1, 2, call

α∗
i (t)

.= max{α ∈ � : xi (t) ∈ �α} .

By (i ), the mapst 7→ α∗
i (t) are piecewise constant and left continuous. Hence there existsδ > 0

such that
α∗

1(t) = α∗
2(t) = ᾱ

.= max{α ∈ � : x̄ ∈ �α} for all t ∈] − δ,0] .

The uniqueness of backward solutions is now clear, because on ] − δ,0] both x1 and x2 are
solutions of the same Cauchy problem with smooth coefficients

ẋ = gᾱ(x), x(0) = x̄ .

Concerning(i i i ), to prove that̂x(·) is itself a Carathéodory solution, we observe that on any
compact subintervalJ ⊂]a, b[ the functionsuν are uniformly continuous and intersect a finite
number of domains�α , say with indicesα1 < α2 < · · · < αm. For eachν, the function

α∗
ν (t)

.= max{α ∈ � : xν(t) ∈ �α}

is non-decreasing and left continuous, hence it can be written in the form

α∗
ν (t) = α j if t ∈]tνj , t

ν
j +1] .

By taking a subsequence we can assume that, asν → ∞, tνj → t̂ j for all j . By a standard

convergence result for smooth O.D.E’s, the functionx̂ provides a solution tȯx = gα j (x) on
each open subintervalI j

.=] t̂ j , t̂ j +1[. Since the domains�β are open, there holds

x̂(t) /∈ �β for all β > α j , t ∈ I j .

On the other hand, sincegα j is inward pointing, a limit of trajectorieṡxν = gα j (xν) taking
values within�α j must remain in the interior of�α j . Henceα∗

(
x̂(t)

)
= α j for all t ∈ I j ,

achieving the proof of(i i i ).

Regarding(i v), letxε : [0, T ] 7→ � be a sequence of forward Eulerε-approximate solutions
of (13), converging tôx(·) asε → 0. To show that̂x is a Carathéodory solution, we first observe
that, forε > 0 sufficiently small, the mapst 7→ α∗ (xε(t)) are non-decreasing. More precisely,
there exist finitely many indicesα1 < · · · < αm and times 0= tε0 ≤ tε1 ≤ · · · ≤ tεm = T such
that

α∗ (xε(t)) = α j t ∈]tεj −1, t
ε
j ] .

By taking a subsequence, we can assumetεj → t̂ j for all j , asε → 0. On each open interval

] t̂ j −1, t̂ j [ the trajectoryx̂ is thus a uniform limit of polygonal approximate solutions of the
smooth O.D.E.

ẋ = gα j (x) .(21)

By standard O.D.E. theory,x̂ is itself a solution of (21). As in the proof of part(i i i ), we conclude
observing thatα∗

(
x̂(t)

)
= α j for all t ∈] t̂ j −1, t̂ j ].

To prove the converse, letx : [0, T ] 7→ � be a Carathéodory solution of (13). By(i ), there
exist indicesα1 < · · · < αm and times 0= t0 < t1 < · · · < tm = T such thaṫx(t) = gα j (x(t))
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for t ∈]t j −1, t j [. For eachn ≥ 1, consider the polygonal mapxn(·) which is piecewise affine
on the subintervals [t j ,k, t j ,k+1], j = 1, . . . ,m, k = 1, . . . ,n and takes valuesxn(t j ,k) = x j ,k.
The timest j ,k and the valuesx j ,k are here defined as

t j ,k
.= t j −1 + k

n
(t j − t j −1), x j ,k

.= x(t j ,k + 2−n) .

As n → ∞, it is now clear thatxn → x uniformly on [0, T ]. On the other hand, for a fixed
ε > 0 one can show that the polygonalsxn(·) are forward Eulerε-approximate solutions, for all
n ≥ Nε sufficiently large. This concludes the proof of part(i v).

0

x

x(2)

x(1)

(3)

figure 5

EXAMPLE 5. Consider the patchy vector field on the plane (fig. 5) definedby (17), by
taking

�1
.= �2, �2

.= {x2 > x2
1}, �3

.= {x2 < −x2
1},

g1(x1, x2) ≡ (1, 0), g2(x1, x2) ≡ (0,1), g3(x1, x2) ≡ (0,−1).

Then the Cauchy problem starting from the origin at timet = 0 has exactly three forward
Carathéodory solutions, namely

x(1)(t) = (t,0), x(2)(t) = (0, t), x(3)(t) = (0,−t) t ≥ 0 .

The only backward Carathéodory solution is

x(1)(t) = (t,0) t ≤ 0 .

On the other hand there exist infinitely many Filippov solutions. In particular, for everyτ < 0<
τ ′, the function

x(t) =




(t − τ,0) if t < τ ,

(0,0) if t ∈ [τ, τ ′] ,
(t − τ ′, 0) if t > τ ′

provides a Filippov solution, and hence a Krasovskii solution as well.
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5. Directionally continuous vector fields

Following [3], we say that a vector fieldg on
�n is directionally continuousif, at every pointx

whereg(x) 6= 0 there holds

lim
n→∞

g(xn) = g(x)(22)

for every sequencexn → x such that
∣∣∣∣

xn − x

|xn − x| − g(x)

|g(x)|

∣∣∣∣ < δ for all n ≥ 1 .(23)

Hereδ = δ(x) > 0 is a function uniformly positive on compact sets. In other words (fig. 6),
one requiresg(xn) → g(x) only for the sequences converging tox contained inside a cone with
vertex atx and openingδ around an axis having the direction ofg(x).

x

g(x)
xn

figure 6

For these vector fields, the local existence of Carathéodory trajectories is known [16]. It
seems natural to ask whether the stabilization problems (AS) or (SOC) can be solved in terms
of feedback controls generating a directionally continuous vector field. The following lemma
reduces the problem to the construction of a patchy vector field.

LEMMA 2. Let
(
�, g, (�α, gα)α∈�

)
be a patchy vector field. Then the mapg̃ defined by

g̃(x) = gα(x) if x ∈ �α \
⋃

β>α

�β(24)

is directionally continuous. Every Carathéodory solution of

ẋ = g̃(x)(25)

is also a solution oḟx = g(x). The set of solutions of (25) may not be closed.

Since directionally continuous vector fields form a much broader class of maps than patchy
vector fields, solving a stabilization problem in terms of patchy fields thus provides a much better
result. To see that the solution set of (25) may not be closed,consider
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EXAMPLE 6. Consider the patchy vector field on
�2 defined as follows.

�1
.= �2, �2

.= {x2 < 0}, g1(x1, x2) = (1,0), g2(x1, x2) = (0,−1) .

g(x1, x2) =
{
(1, 0) if x2 ≥ 0 ,
(0,−1) if x2 < 0 .

(26)

The corresponding directionally continuous field is (fig. 7)

g̃(x1, x2) =
{
(1, 0) if x2 > 0 ,
(0,−1) if x2 ≤ 0 .

(27)

The functionst 7→ xε(t) = (t, ε) are trajectories of both (26) and (27). However, asε → 0, the
limit function t 7→ x(t) = (t,0) is a trajectory of (26) but not of (27).

g g~

figure 7

6. Stabilizing feedback controls

In this section we discuss the applicability of the previoustheory of discontinuous O.D.E’s to-
ward the construction of a stabilizing feedback. We first recall a basic definition [7, 18].

DEFINITION 3. The system (1) is said to be globallyasymptotically controllableto the
origin if the following holds.

1 - Attractivity. For eachx̄ ∈ �n there exists some admissible control u= ux̄(t) such that the
corresponding solution of

ẋ(t) = f
(

x(t), ux̄(t)
)
, x(0) = x̄(28)

either tends to the origin as t→ ∞ or reaches the origin in finite time.

2 - Lyapunov stability. For eachε > 0 there existsδ > 0 such that the following holds. For
everyx̄ ∈ �n with |x̄| < δ there is an admissible control ux̄ as in1. steering the system
from x̄ to the origin, such that the corresponding trajectory of (28) satisfies|x(t)| < ε for
all t ≥ 0.

The next definition singles out a particular class of piecewise constant feedback controls,
generating a “patchy” dynamics.

DEFINITION 4. Let
(
�, g, (�α, gα)α∈�

)
be a patchy vector field. Assume that there exist

control values kα ∈ K such that, for eachα ∈ �

gα(x)
.= f (x, kα) for all x ∈ �α \

⋃

β>α

�β .(29)
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Then the piecewise constant map

U(x)
.= kα if x ∈ �α \

⋃

β>α

�β(30)

is called apatchy feedbackcontrol on�.

The main results concerning stabilization by discontinuous feedback controls can be stated
as follows. For the proofs, see [7] and [1] respectively.

THEOREM 4. If the system (1) is asymptotically controllable, then there exists a feedback
control U :

�n \ {0} 7→ K such that every uniform limit of sampling solutions eithertends
asymptotically to the origin, or reaches the origin in finitetime.

THEOREM 5. If the system (1) is asymptotically controllable, then there exists a patchy
feedback control U such that every Carathéodory solution of (2) either tends asymptotically to
the origin, or reaches the origin in finite time.

Proof. In view of part(i v) of Theorem 3, the result stated in Theorem 4 can be obtained asa
consequence of Theorem 5. The main part of the proof of Theorem 5 consists in showing that,
given two closed ballsB′ ⊂ B centered at the origin, there exists a patchy feedback that steers
every pointx̄ ∈ B insideB′ within finite time. The basic steps of this construction are sketched
below. Further details can be found in [1].

1. By assumption, for each pointx̄ ∈ B, there exists an open loop controlt 7→ ux̄(t) that steers
the system from̄x into a pointx′ in the interior ofB′ at some timeτ > 0. By a density
and continuity argument, we can replaceux̄ with a piecewise constant open loop control
ū (fig. 8), say

ū(t) = kα ∈ K if t ∈]tα, tα+1] ,

for some finite partition 0= t0 < t1 < · · · < tm = τ . Moreover, it is not restrictive to
assume that the corresponding trajectoryt 7→ γ (t)

.= x(t; x̄, ū) has no self-intersections.

B’

B

γx--x

figure 8

2. We can now define a piecewise constant feedback controlu = U(x), taking the constant
valueskα1, . . . , kαm on a narrow tube0 aroundγ , so that all trajectories starting inside
0 eventually reach the interior ofB′ (fig. 9).
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Γ
B’

γ

x-

figure 9

3. By slightly bending the outer surface of each section of the tube0, we can arrange so that
the vector fieldsgα(x)

.= f (x, kα) point strictly inward along the portion∂�α \ �α+1.
Recalling Lemma 1, we thus obtain a patchy vector field (fig. 10) defined on a small
neighborhood of the tube0, which steers all points of a neighborhood ofx̄ into the interior
of B′.

Ω Ω1
2

B’
x
_

figure 10

4. The above construction can be repeated for every pointx̄ in the compact setB. We now se-

lect finitely many pointsx1, . . . , xN and patchy vector fields,
(
�i , gi , (�i,α , gi,α)α∈� i

)

with the properties that the domains�i cover B, and that all trajectories of each fieldgi
eventually reach the interior ofB′. We now define the patchy feedback obtained by the
superposition of thegi , in lexicographic order:

g(x) = gi,α(x) if x ∈ �i,α \
⋃

( j ,β)�(i,α)

� j ,β .

This achieves a patchy feedback control (fig. 11) defined on a neighborhood ofB \ B′

which steers each point ofB into the interior ofB′.

5. For every integerν, call Bν be the closed ball centered at the origin with radius 2−ν . By the
previous steps, for everyν there exists a patchy feedback controlUν steering each point
in Bν insideBν+1, say

Uν(x) = kν,α if x ∈ �ν,α \
⋃

β>α

�ν,β .(31)

The property of Lyapunov stability guarantees that the family of all open sets{�ν,α :
ν ∈ �

, α = 1, . . . , Nν } forms a locally finite covering of
�n \ {0}. We now define the

patchy feedback control

Uν(x) = kν,α if x ∈ �ν,α \
⋃

(µ,β)�(ν,α)

�µ,β ,(32)
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figure 11

where the set of indices(ν, α) is again ordered lexicographically. By construction, the
patchy feedback (32) steers each pointx ∈ Bν into the interior of the smaller ballBν+1

within finite time. Hence, every trajectory either tends to the origin ast → ∞ or reaches
the origin in finite time.

7. Some open problems

By Theorem 5, the asymptotic stabilization problem can be solved within the class of patchy
feedback controls. We conjecture that the same is true for the problem of suboptimal controlla-
bility to zero.

Conjecture 1. Consider the smooth control system (1). For a fixedτ > 0, call R(τ) the set of
points that can be steered to the origin within timeτ . Then, for everyε > 0, there exists
a patchy feedbacku = U(x), defined on a neighborhoodV of R(τ), with the following
property. For everȳx ∈ V , every trajectory of (2) starting at̄x reaches a point insideBε
within time T(x̄)+ ε.

Although the family of patchy vector fields forms a very particular subclass of all discon-
tinuous maps, the dynamics generated by such fields may stillbe very complicated and
structurally unstable. In this connection, one should observe that the boundaries of the
sets�α may be taken in generic position. More precisely, one can slightly modify these
boundaries so that the following property holds. Ifx ∈ ∂�α1 ∩ · · · ∩ ∂�αm , then the unit
normalsnα1, . . . ,nαm are linearly independent. However, since no assumption is placed
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on the behavior of a vector fieldgα at boundary points of a different domain�β with
β 6= α, even the local behavior of the set of trajectories may be quite difficult to classify.
More detailed results may be achieved for the special case ofplanar systems with control
entering linearly:

ẋ =
m∑

i=1

fi (x) ui , u = (u1, . . . ,um) ∈ K ,(33)

whereK ⊂ �m is a compact convex set. In this case, it is natural to conjecture the exis-
tence of stabilizing feedbacks whose dynamics has a very limited set of singular points.
More precisely, consider the following four types of singularities illustrated in fig. 12. By
a cut we mean a smooth curveγ along which the fieldg has a jump, pointing outward
from both sides. At points at the of a cut, the fieldg is always tangent toγ . We call the
endpoint anincoming edgeor anoutgoing edgedepending on the orientation ofg. A point
where three distinct cuts join is called atriple point. Notice that the Cauchy problem with
initial data along a cut, or an incoming edge of a cut, has two forward local solutions.
Starting from a triple point there are three forward solutions.

cut point
triple point

outgoing cut edgeincoming cut edge

figure 12

Conjecture 2. Let the planar control system (33) be asymptotically controllable, with smooth
coefficients. Then both the asymptotic stabilization problem (AS) and the suboptimal
zero controllability problem (SOC) admit a solution in terms of a feedbacku = U(x) =
(U1(x), . . . ,Un(x)) ∈ K , such that the corresponding vector field

g(x)
.=

m∑

i=1

fi (x)Ui (x)

has singularities only of the four types described in fig. 12.
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THE NON-STANDARD LQR PROBLEM

FOR BOUNDARY CONTROL SYSTEMS †

Abstract.
An overview of recent results concerning the non-standard,finite horizon Lin-

ear Quadratic Regulator problem for a class of boundary control systems is pro-
vided.

1. Introduction

In the present paper we give an account of recent results concerning the regulator problem with
non-coercive, quadratic cost functionals over a finite timeinterval, for a class of abstract linear
systems in a Hilbert spaceX, of the form

{
x′(t) = Ax(t)+ Bu(t), 0 ≤ τ < t < T
x(τ) = x0 ∈ X .

(1)

Here,A (free dynamics operator) is at least the generator of a strongly continuous semigroup on
X, and B (input operator) is a linear operator subject to a suitable regularity assumption. The
control functionu is L2 in time, with values in a Hilbert spaceU . Through the abstract assump-
tions on the operatorsA and B, a class of partial differential equations, with boundary/point
control, is identified. We shall mostly focus our attention on systems which satisfy condition
(H2) = (8), see §1.2 below. It is known ([13]) that this condition amounts to a trace regularity
property which is fulfilled by the solutions to a variety of hyperbolic (hyperbolic-like) partial
differential equations.

With system (1), we associate the following cost functional

Jτ,T (x0; u) =
∫ T

τ
F(x(t),u(t))dt + 〈PT x(T), x(T)〉 ,(2)

whereF is a continuous quadratic form onX × U ,

F(x, u) = 〈Qx, x〉 + 〈Su, x〉 + 〈x, Su〉 + 〈Ru, u〉 ,(3)

andx(t) = x(t; τ, x0, u) is the solution to system (1) due tou(·) ∈ L2(τ, T;U). It is asked to
provide conditions under which, for eachx0 ∈ X, a constantcτ,T (x0) exists such that

inf
u∈L2(τ,T;U )

Jτ,T (x0; u) ≥ cτ,T (x0) .(4)

†This research was supported by the Italian Ministero dell’Università e della Ricerca Scientifica e Tec-
nologica within the program of GNAFA–CNR.
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The special, important case, where

S= 0, Q, PT ≥ 0, R ≥ γ > 0 ,(5)

is now referred to as the classical (or,standard) LQR problem. We can say that this problem
is now pretty well understood even for boundary control systems: the corresponding Riccati
operator yields the synthesis of the optimal control (see [13]).

Functionals which do not display property (5) arise in different fields of systems/control
theory. To name a few, the study of dissipative systems ([25]), where typical cases are

F(x, u) = |u|2 − |x|2 , F(x, u) = 〈x, u〉 ;

the analysis of second variations of nonlinear control problems;H∞ theory. It is worth recalling
that the theory of infinite horizon linear quadratic controldeveloped in [17], including the case
of singular functionals, withR = 0, has more recently provided new insight in the study of the
standard LQR problem for special classes of boundary control systems, see [21, 12].

In conclusion, the characterization of property (4), in a more general framework than the
one defined by (5), is the object of thenon-standardLinear Quadratic Regulator (LQR) problem.

Most results of the theory of the non-standard LQR problem for finite dimensional sys-
tems have been extended to the boundary control setting. We shall see that in particular, neces-
sary conditions or sufficient conditions in order that (4) issatisfied can be provided, in term of
non-negativity of suitable functionals. Unlike the infinite time horizon case, a gap still remains
between necessary (non-negativity) conditions and sufficient (non-negativity) conditions, even
when system (1) is exactly controllable. We shall examine this issue more in detail in §3.

The infinite dimensional problem reveals however new distinctive features. It is well known
that in the finite dimensional case, the conditionR ≥ 0 has long been recognized as necessary
in order that (4) is fulfilled; this applies even to time-dependent systems, see [7]. This property
extends to infinite dimensional systems, whenPT = 0 (see [14, 6]). In contrast, in [6] an
example is provided where, in spite of the fact thatR is negative definite, the cost functional is
coercive inL2(0, T;U), so that (4) is obviously satisfied. Crucially in that example PT 6= 0,
while the dynamics is given by a first order hyperbolic equation in one dimension, with control
acted on the boundary.

Finally, we note that over an infinite horizon, the non-negativity condition which is neces-
sary (and sufficient, under controllability of system (1)) for boundedness from below of the cost,
is in fact equivalent to a suitable frequency domain inequality, (15) in §2, whose validity can be
easily checked. In contrast, whenT is finite, there is a lack of a frequency domain interpretation
of the conditions provided.

The plan of the paper is the following. In §1.1 we provide a brief outline of the literature
concerning the non-standard, finite horizon LQR problem forinfinite dimensional systems. In
§1.2 we introduce the abstract assumptions which characterize the class of dynamics of inter-
est. In §2 we derive necessary conditions in order that (4) issatisfied, whereas §3 contains the
statement of sufficient conditions. Most results of §2 and §3are extracted from [6].

1.1. Literature

In this section we would like to provide a broad outline of contributions to the non-standard,
finite horizon LQR problem for infinite dimensional systems. For a review of the richest liter-
ature on the same problem over aninfinite horizon, we refer to [20]. We just recall that most
recent extensions to the boundary control setting are givenin [11], [14, Ch. 9], [18, 22, 23, 24].
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Application to stability of holomorphic semigroup systemswith boundary input is obtained, e.g.,
in [4].

The LQR problem with non-coercive functionals over a finite time interval has been the
object of research starting around the 1970s. The most noticeable contribution to the study of
this problem has been given, in our opinion, in [19]. For a comprehensive account of the theory
developed in a finite dimensional context, and an extensive list of references, we refer to the
monography [7].

The first paper which deals with the non-standard LQR problemover a finite time interval
in infinite dimensions is, to our knowledge, [27]. The authorconsiders dynamics of the form
(1), which model distributed systems, with distributed control. Partial results are provided in
order to characterize (4), without constraints on the form (3), except forS = 0. Moreover, the
issue of the existence (and uniqueness) of an optimal control is considered, under the additional
assumption thatR is coercive.

A paper which deals with minimization of possible non-convex and non-coercive function-
als, in a context which is more general than ours, is [1]. Necessary conditions or sufficient
conditions for the existence of minimizers are stated therein, which involve a suitable ‘recession
functional’ associated with the original functional.

In [9], the analysis is again restricted to cost functionalsfor which R = I , S = 0 (Q, PT
are allowed indefinite). SinceR is coercive, the issue of the existence of solutions to the Riccati
equation associated with the control problem is investigated. A new feature of the non-standard
problem is pointed out, that the existence of an optimal control is not equivalent to the existence
of a solution to the Riccati equation on [0, T ].

The study of the LQR problem with general cost functionals, still in the case of distributed
systems with distributed control, has been carried out in [5]. Extensions of most finite dimen-
sional results of [19] are provided. The application of the Bellman optimality principle to the
infimization problem leads to introduce a crucial integral operator inequality, the so called ‘Dis-
sipation Inequality’,

〈P(a)x(a), x(a)〉 ≤ 〈P(b)x(b), x(b)〉 +
∫ b

a
F(x(s), u(s)) ds , τ ≤ a < b ≤ T ,

whose solvability is equivalent to (4). Moreover, in [5] theregularity properties of the value
function

V(τ ; x0) = inf
u∈L2(τ,T;U )

Jτ,T (x0; u)(6)

of the infimization problem are investigated, and new results are provided in this direction. In
particular, it is showed that – unlike the standard case – thefunctionτ → V(τ ; x0) is in general
only upper semicontinuous on [0, T ], and that lack of continuity in the interior of [0, T ] may
occurr, for instance, in the case of delay systems.

We remark that in all the aforementioned papers [27, 9, 5], among necessary conditions for
finiteness of (6), a basic non-negativity condition is provided, namely (13) below, which in turn
implies R ≥ 0. On the other hand, sufficient conditions are so far given ina form which requires
coercivity of the operatorR.

Finally, more recently, extensions to the boundary controlsetting have been provided for a
class of holomorphic semigroup systems ([14, Ch. 9], [26]),and for a class of ‘hyperbolic-like’
dynamics ([6]), respectively. We note that in [14] and [26] agreater emphasis is still placed on
thenon-singularcase, sinceR is assumed coercive.
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1.2. Notations, basic assumptions and abstract classes of dynamics

As explained in the introduction, we consider systems of theform (1) in abstract spaces of infinite
dimension. A familiarity with the representation of controlled infinite dimensional systems is
assumed, compatible with, e.g., [2].

Most notation used in the paper is standard. We just point outthat inner products in any
Hilbert space are denoted by〈·, ·〉; norms and operator norms are denoted by the symbols| · |
and‖ · ‖, respectively. The linear space of linear, bounded operators from X to Y is denoted by
�
(X,Y) (

�
(X), if X = Y).

Throughout the paper we shall make the following standing assumptions on the state equa-
tion (1) and the cost functional (2):

(i ) A : D(A) ⊂ X → X is the generator of a strongly continuous (s.c.) semigroupeAt on
X, t > 0;

(i i ) B ∈ �
(U, (D(A∗))′); equivalently,

A−γ B ∈ �
(U, X) for some constantγ ∈ [0, 1] .(7)

(i i i ) Q, PT ∈ �
(X), S∈ �

(U, X), R ∈ �
(U); Q, PT , R are selfadjoint.

REMARK 1. Assumptions(i )-(i i ) identify dynamics which model distributed systems with
distributed/boundary/point control. More specifically, the case of distributed control leads to a
bounded input operatorB, namelyγ = 0 in (i i ), whereasγ > 0 refers to the more challenging
case of boundary/point control.

In order to characterize two main classes of partial differential equations problems of inter-
est, roughly the ‘parabolic’ class and the ‘hyperbolic’ class, we follow [13] and introduce two
distinct abstract conditions:

(H1) the s.c. semigroup eAt is analytic on X, t> 0, and the constantγ appearing in (7) is
strictly< 1;

(H2) there exists a positive constant kT such that

∫ T

0
|B∗eA∗ t x|2 dt ≤ kT |x|2 ∀x ∈ D(A∗) .(8)

It is well known that under either(H1) or (H2), the (input-solution) operator

Lτ : u → (Lτu)(t) :=
∫ t

τ
eA(t−s)Bu(s) rmds,(9)

is continuous fromL2(τ, T;U) to L2(τ, T; X). Consequently, system (1) admits a uniquemild
solution on(τ, T) given by

x(t) = eA(t−τ )x0 + (Lτu)(t) ,(10)

which is (at least)L2 in time. For a detailed analysis of examples of partial differential equations
with boundary/point control which fall into either class, we refer to [13].

Let us recall that(H2) is in fact equivalent to ([8])

Lτ continuous: L2(τ, T;U) → C(τ, T; X) ,(11)
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and that the following estimate holds true, for a positive constantCτ,T and for anyu(·) in
L2(τ, T; U):

|(Lτu)(t)| ≤ Cτ,T |u|L2(τ,T;U ) ∀t ∈ [τ, T ](12)

Therefore, for any initial datumx0 ∈ X, the unique mild solutionx(·; τ, x0,u) to equation
(1), given by (10), is continuous on [τ, T ], in particular att = T . Thus, the term〈x(T), PT x(T)〉
makes sense for every controlu(·) ∈ L2(τ, T;U).

REMARK 2. We note that(H2), hence (11), follows as well from(H1), whenγ ∈ [0,1/2[.
Instead, when(H1) holds withγ ∈ [1/2, 1[, counterexamples can be given to continuity of
solutions att = T , see [15, p. 202]. In that case, unless smoothing propertiesof PT are required,
the class of admissible controls need to be restricted. Comprehensive surveys of the theory of the
standard LQR problem for systems subject to(H1) are provided in [13] and [3]. Partial results
for the corresponding non-standard regulator can be found in [14, Ch. 9].

In the present paper we shall mainly consider systems of the form (1) which satisfy assump-
tion (H2). This model covers many partial differential equations with boundary/point control,
including, e.g., second order hyperbolic equations, Euler–Bernoulli and Kirchoff equations, the
Schrödinger equation (see [13]).

2. Necessary conditions

In this section we are concerned with necessary conditions in order that (4) is satisfied, with
special regard to the role of conditionR ≥ 0.

We begin with the statement of two basic necessary conditions, in the case of distributed sys-
tems withdistributedcontrol. For the sake of completeness, an outline of the proof is given; we
refer to [5] for details. Condition (13) below is often referred to as thenon-negativity condition.

THEOREM 1. Assume that B∈ �
(U, X) (equivalently,(H2) holds, withγ = 0). If there

exist a0 ≤ τ < T and an x0 ∈ X such that (4) is satisfied, then

Jτ,T (0; u) ≥ 0 ∀u ∈ L2(τ, T;U) ,(13)

which in turn implies

R ≥ 0 .(14)

Sketch of the proof.For simplicity of exposition we assume that (4) is satisfied,with τ = 0. In
order to show that this implies (13), one first derives a representation of the costJ0,T (x0; u) as
a quadratic functional onL2(0, T;U), whenx0 is fixed, namely

J0,T (x0; u) = 〈� x0, x0〉X + 2 Re〈� x0,u〉L2(0,T;U ) + 〈�u, u〉L2(0,T;U ) ,

with � , � and� suitable bounded operators. Readily〈�u, u〉 = J0,T (0; u), and condition
(13) follows from general results pertaining to infimization of quadratic functionals (see [5]).

Next, we use the actual expression of the operator� and the regularity of the input-solution
operatorL0 defined by (9). Boundedness of the input operatorB has here a crucial role. Pro-
ceeding by contradiction, (14) follows as a consequence of (13).
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REMARK 3. A counterpart of Theorem 1 can be stated in infinite horizon, namely when
T = +∞ in (2) (setPT = 0). In this case, if the semigroupeAt is not exponentially stable,
the cost is not necessarily finite for an arbitrary controlu(·) ∈ L2(0,∞;U). Consequently, the
class of admissible controls need to be restricted. However, under stabilizability of the system
(1), a non-negativity condition and (14) follow as well from(4). Even more, as remarked in the
introduction, the non-negativity condition has a frequency domain counterpart ([17]), which in
the stable case reads as

5(iω) :=B∗(−iωI − A∗)−1Q(iωI − A)−1B + S∗(iωI − A)−1B

+ B∗(−iωI − A∗)−1S+ R ≥ 0 ∀ω ∈ �
.

(15)

Theorem 1 can be extended to boundary control systems only inpart.

THEOREM 2 ([6]). Assume(H2). Then the following statements hold true:

(i ) if there exists an x0 ∈ X such that (4) is satisfied, then (13) holds;

(i i ) if PT = 0, then (13) implies (14); hence (14) is a necessary conditionin order that (4) is
satisfied.

(i i i ) if PT 6= 0, then (14) is not necessary in order that (13) is satisfied.

Sketch of the proof.Item (i ) can be shown by using essentially the same arguments as in the
proof of Theorem 1, which still apply to the present case, dueto assumption(H2). Similarly,
whenPT = 0, (i i ) follows as well.

The following example ([6, Ex. 4.4]) illustrates the third item. Let us consider, for a fixed
T ∈ (0, 1) andε > 0, the cost functional

J0,T (x0(·); u) =
∫ T

0

{∫ 1

T
|x(t, ξ)|2 dξ − ε|u(t)|2

}
dt +

∫ T

0
|x(T, ξ)|2 dξ ,

wherex(t, ξ) solves the boundary value problem




xt (t, ξ) = −xξ (t, ξ)
x(0, ξ) = x0(ξ) 0< ξ < 1
x(t,0) = u(t) 0< t < T .

(16)

Note that hereR = −ε I , PT = I .

The solution to (16), corresponding tox0 ≡ 0, is given by

x(t, ξ) =
{

0 t < ξ

u(t − ξ) t > ξ ,
(17)

so that

J0,T (x0 ≡ 0; u) = −ε
∫ T

0
|u(t)|2 dt +

∫ T

0
|u(T − ξ)|2 dξ

= (1 − ε)

∫ T

0
|u(t)|2 dt .

Therefore, if 0< ε < 1, J0,T (0; u) is not only positive but even coercive inL2, which implies
(4). Nevertheless,R< 0.
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A better result can be provided in the case of holomorphic semigroup systems, by using the
smoothing properties of the operatorLτ . Somehow the ‘analytic case’ parallels the case when
the input operator is bounded. See [14, Ch. 9, Theorem 3.1] for the proof.

THEOREM 3. Assume that(H1) holds, withγ < 1/2. Then (14) is a necessary condition
in order that (4) is satisfied, even when PT 6= 0.

3. Sufficient conditions

In this section we provide sufficient conditions in order that (4) is satisfied. Let us go back to the
non-negativity conditions of Theorem 1. It can be easily shown that neither (14), nor (13), are,
by themselves, sufficient to guarantee that the cost functional is bounded from below.

EXAMPLE 1. Let X = U = �
, and setτ = 0, A = −1, B = 0 in (1); moreover, let

F(x, u) = xu. Note that hereR = 0. For anyx0, the solution to (1) is given byx(t) = x0e−t ,
so that

J0,T (x0; u) = x0

∫ T

0
e−t u(t)dt

for any admissible controlu. ThereforeJ0,T (0; u) ≡ 0, and (13) holds true, whereas it is readily
verified that whenx0 6= 0, infu J0,T (x0; u) = −∞ (if x0 > 0 take, for instance, the sequence
uk(t) = −k on [0, T ]).

If T = +∞, the same example shows that Theorem 1 cannot be reversed without further
assumptions. However it turns out that, over an infinite horizon, the necessary non-negativity
condition (13) is also sufficient in order that (4) is satisfied, if system (1) is completely control-
lable. This property is well known in the finite dimensional case, since the early work [10].

Recently, the aforementioned result has been extended to boundary control systems, under
the following assumptions:

(i ′) A : D(A) ⊂ X → X is the generator of a s.c. group eAt on X, t ∈ �
;

(H2′) there exists a T> 0 and a constant kT > 0 such that

∫ T

0
|B∗eA∗ t x|2 dt ≤ kT |x|2 ∀x ∈ D(A∗) ;(18)

(H3′) system (1) is completely controllable, namely for each pairx0, x1 ∈ X there is a T and
an admissibile controlv(·) such that x(T; 0, x0, v) = x1.

For simplicity of exposition, we state the theorem below under the additional condition thateAt

is exponentially stable.

THEOREM 4 ([22]). Assume(i ′)–(H2′)–(H3′). If

J∞(0; u) ≥ 0 ∀u ∈ L2(0,∞;U) ,

then for each x0 ∈ X there exists a constant c∞(x0) such that

inf
L2(0,∞;U )

J∞(x0; u) ≥ c∞(x0) ∀u ∈ L2(0,∞;U) .
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We now return to the finite time interval [0, T ] and introduce the assumption that the system
is exactly controllable on a certain interval [0, r ] (see, e.g., [3]):

(H3) there is an r> 0 such that, for each pair x0, x1 ∈ X, there exists an admissibile control
v(·) ∈ L2(0, r ;U) yielding x(r ; 0, x0, v) = x1. Equivalently,

∃ r, cr > 0 :
∫ r

0
|B∗eA∗ t x|2 dt ≥ cr |x|2 ∀x ∈ D(A∗) .(19)

On the basis of Theorem 4, one would be tempted to formulate the following claim.

CLAIM 5. Assume(i ′)–(H2)–(H3). If

J0,T (0; u) ≥ 0 ∀u ∈ L2(0, T;U) ,

then (4) is satisfied for 0≤ τ ≤ T .

It turns out that this claim is false, as it can been shown by means of examples: see [7, 6].

A correct counterpart of Theorem 4 over a finite time intervalhas been given in [6].

THEOREM 6 ([6]). Assume(i ′)–(H2)–(H3). If

J0,T+r (0; u) ≥ 0 ∀u ∈ L2(0, T + r ;U) ,(20)

then (4) is satisfied for0 ≤ τ ≤ T .

We point out that in fact a proof of Theorem 6 can be provided which does not makeexplicit
use of assumption(i )′, see Theorem 7 below. Let us recall however that, when the input oper-
ator B is bounded, controllability of the pair(A, B) on [0, r ], namely assumption(H3) above,
implies that the semigroupeAt is right invertible, [16]. Therefore, the actual need of some kind
of ‘group property’ in Theorem 6 is an issue which is left for further investigation.

THEOREM 7. Assume(H2)–(H3). If (20) holds, then (4) is satisfied for0 ≤ τ ≤ T .

Proof. Let x1 ∈ X be given. By(H3) there exists a controlv(·) ∈ L2(0, r ;U) steering the
solution of (1) fromx0 = 0 to x1 in time r , namelyx(r ; 0,0, v) = x1. Obviously,v depends
on x1: more precisely, it can be shown that, as a consequence of assumptions(H2) and(H3), a
constantK exists such that

|v|L2(0,r ;U ) ≤ K |x1| ,

see [6]. For arbitraryu ∈ L2(r, T + r ;U), set now

uv(t) =
{
v(t) 0 ≤ t ≤ r
u(t) r < t ≤ T + r .

Readilyuv(·) ∈ L2(0, T + r ;U), andJ0,T+r (0; uv) ≥ 0 due to (20). On the other hand,

J0,T+r (0; uv) =
∫ r

0
F(x(s; 0,0, v), v(s)) ds + Jr,T+r (x1; u) ,
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where the first summand is a constant which depends only onx1. A straightforward computa-
tion shows that the second summand equalsJ0,T (x1; ur ), with ur (t) = u(t + r ) an arbitrary
admissible control on [0, T ]. In conclusion,

J0,T (x1; ur ) ≥ −
∫ r

0
F(x(s; 0,0, v), v(s)) ds =: c(x1) ,

and (4) holds forτ = 0. The caseτ > 0 can be treated by using similar arguments.

REMARK 4. In conclusion, we have provided the sufficiency counterpart of item (i ) of
Theorem 2, under the additional condition that system (1) isexactly controllable in timer > 0.
Apparently, in order that (4) is satisfied, the non-negativity condition need to be required on
a larger interval than [0, T ], precisely on an interval of lenghtT + r . This produces a gap
between necessary conditions and sufficient conditions, which was already pointed out in finite
dimensions ([7]).

Finally, we stress that the exact controllability assumption cannot be weakened to null con-
trollability, as pointed out in [6, Ex. 4.5].
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1995.

[15] L IONS J. L., Optimal control of systems governed by Partial Differential Equations,
Springer Verlag, Berlin 1971.

[16] LOUIS J-CL ., WEXLER D., On exact controllability in Hilbert spaces, J. Differ. Equations
49 (1983), 258–269.

[17] LOUIS J-CL ., WEXLER D., The Hilbert space regulator problem and operator Riccati
equation under stabilizability, Ann. Soc. Sci. Bruxelles, Ser.I,105(1991), 137–165.

[18] MCM ILLAN C., Equivalent conditions for the solvability of non-standardLQ-problems
with applications to partial differential equations with continuous input-output solution
map, J. Math. Syst. Estim. Control7 (3) (1997), 379–382 (short printed version); full
electronic version 27 pages (retrieval code: 71413).

[19] MOLINARI B. P., Nonnegativity of a quadratic functional, SIAM J. Control13 (1975),
92–806.

[20] PANDOLFI L., The Kalman–Yakubovich–Popov Theorem: an overview and new results for
hyperbolic control systems, Nonlinear Anal.30 (1997), 735–745.

[21] PANDOLFI L., The standard regulator problem for systems with input delays: an approach
through singular control theory, Appl. Math. Optim.31 (1995), 119–136.

[22] PANDOLFI L., The Kalman–Yakubovich–Popov Theorem for stabilizable hyperbolic
boundary control systems, Integral Equations Operator Theory, to appear.

[23] PANDOLFI L., Dissipativity and the Lur’e problem for parabolic boundarycontrol systems,
SIAM J. Control Optim.36 (1998), 2061–2081.

[24] WEISS M., WEISS G., Optimal control of stable weakly regular linear systems, Math.
Control Signal Systems10, 287–330.

[25] WILLEMS J. C.,Dissipative dynamical systems, Part I: General theory, Part II: Linear
systems with quadratic supply rates, Arch. Ration. Mech. Anal.45 (1972), 321–351 and
352–392.

[26] WU H., LI X., Linear quadratic problem with unbounded control in Hilbertspaces, Chin.
Sci. Bull.43 (20) (1998), 1712–1717.

[27] YOU Y., Optimal control for linear system with quadratic indefinitecriterion on Hilbert
spaces, Chin. Ann. Math., Ser. B 4, (1983), 21–32.

AMS Subject Classification: 49N10, 49J20.

Francesca BUCCI
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EXTERNAL STABILIZATION OF DISCONTINUOS SYSTEMS

AND NONSMOOTH CONTROL LYAPUNOV-LIKE

FUNCTIONS

Abstract.
The main result of this note is an external stabilizability theorem for discontin-

uous systems affine in the control (with solutions intended in the Filippov’s sense).
In order to get it we first prove a sufficient condition for external stability which
makes use of nonsmooth Lyapunov-like functions.

1. Introduction

In this note we deal with discontinuous time-dependent systems affine in the control:

ẋ = f (t, x) + G(t, x)u = f (t, x)+
m∑

i=1

ui gi (t, x)(1)

wherex ∈ �n, u ∈ �m, f ∈ L∞
loc(

�n+1;�n), for all i ∈ {1, . . . ,m}, gi ∈ C(
�n+1;�n) andG

is the matrix whose columns areg1, . . . , gm.

Admissible inputs areu ∈ L∞
loc(

� ; �m).

Solutions of system (1) (as well as solutions of all the systems considered in the following)
are intended in the Filippov’s sense. In other words, for each admissible inputu(t), (1) is replaced
by the differential inclusion

ẋ ∈ K ( f + Gu)(t, x) =
⋂

δ>0

⋂

µ(N)=0

co{( f + Gu)(t, B(x, δ)\N)} ,

whereB(x, δ) is the ball of centerx and radiusδ, co denotes the convex closure andµ is the
usual Lebesgue measure in

�n .

For the general theory of Filippov’s solutions we refer to [6]. We denote bySt0,x0,u the set
of solutionsϕ(·) of system (1) with the initial conditionϕ(t0) = x0 and the functionu :

� → �m

as input.

We are interested in the external behaviour of system (1), inparticular in its uniform bounded
input bounded state (UBIBS) stability.

Roughly speaking a system is said to be UBIBS stable if its trajectories are bounded when-
ever the input is bounded. More precisely we have the following definition.

DEFINITION 1. System (1) is said to beUBIBS stableif for each R> 0 there exists S> 0
such that for each(t0, x0) ∈ �n+1, t0 ≥ 0, and each input u∈ L∞

loc(
� ; �m) one has

‖x0‖ < R, ‖u‖∞ < R ⇒ ∀ϕ(·) ∈ St0,x0,u ‖ϕ(t)‖ < S ∀t ≥ t0 .
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We associate to system (1) the unforced system

ẋ = f (t, x)(2)

obtained from (1) by settingu = 0. We denoteSt0,x0,0 = St0,x0.

DEFINITION 2. System (2) is said to beuniformly Lagrange stableif for each R> 0 there
exists S> 0 such that for each(t0, x0) ∈ �n+1, t0 ≥ 0, one has

‖x0‖ < R ⇒ ∀ϕ(·) ∈ St0,x0 ‖ϕ(t)‖ < S ∀t ≥ t0 .

If system (1) is UBIBS stable, then system (2) is uniformly Lagrange stable, but the converse
is not true in general. In Section 3 we prove that, if not only system (2) is uniformly Lagrange
stable, but some additional conditions onf andG are satisfied, then there exists an externally
stabilizing feedback law for system (1), in the sense of the following definition.

DEFINITION 3. System (1) is said to beUBIBS stabilizableif there exists a function k∈
L∞

loc(
�n+1;�m) such that the closed loop system

ẋ = f (t, x) + G(t, x)k(t, x)+ G(t, x)v(3)

(with v as input) is UBIBS stable.

The same problem has been previously treated in [1, 2, 4, 9]. We give our result (Theorem
2) and discuss the differences with the results obtained in the mentioned papers in Section 3.

In order to achieve Theorem 2 we need a preliminary theorem (Theorem 1 in Section 2).
It is a different version of Theorem 1 in [13] and Theorem 6.2 in [4]. It provides a sufficient
condition for UBIBS stability of system (1) by means of a nonsmooth control Lyapunov-like
function. Finally the proof of the main result is given in Section 4.

2. UBIBS Stability

In this section we give a sufficient condition for UBIBS stability of system (1) by means of a
nonsmooth control Lyapunov-like function. (See [11, 12] for control Lyapunov functions).

The following Theorem 1 (and also its proof) is analogous to Theorem 1 in [13] and Theo-
rem 6.2 in [4]. It differs from both for the fact that it involves a control Lyapunov-like function
which is not of classC1, but just locally Lipschitz continuous and regular in the sense of Clarke
(see [5], page 39).

DEFINITION 4. We say that a function V:
�n+1 → �

is regularat (t, x) ∈ �n+1 if

(i ) for all v ∈ �n there exists the usual right directional derivative V′
+((t, x), (1, v)),

(i i ) for all v ∈ �n , V′
+((t, x), (1, v)) = lim sup(s,y)→(t,x) h↓0

V(s+h,y+hv)−V(s,y)
h .

The fact that the control Lyapunov-like function for system(1) is regular allows us to char-
acterize it by means of its set-valued derivative with respect to the system instead of by means
of Dini derivatives.

Let us recall the definition of set-valued derivative of a function with respect to a system
introduced in [10] and then used (with some modifications) in[3]. Let us denote by∂V(t, x)
Clarke generalized gradient ofV at (t, x) (see [5], page 27).
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DEFINITION 5. Let t > 0, x ∈ �n, u ∈ �m be fixed, V:
�n+1 → �

. We callset-valued
derivative ofV with respect to system (1)the set

V̇
(1)
(t, x, u) = {a ∈ �

: ∃v ∈ K ( f (t, x)+ G(t, x)u) such that∀p ∈ ∂V(t, x) p · (1, v) = a} .

Analagously, if t> 0, x ∈ �n , u ∈ L∞
loc(

�
,
�m) are fixed, we set

V̇
(1)
u(·)(t, x) = {a ∈ �

: ∃v ∈ K ( f (t, x)+ G(t, x)u(t)) such that∀p ∈ ∂V(t, x) p · (1, v) = a}

and, if t> 0 and x∈ �n are fixed, we define

V̇
(2)
(t, x) = {a ∈ �

: ∃v ∈ K f (t, x) such that∀p ∈ ∂V(t, x) p · (1, v) = a} .

Let us remark thaṫV
(1)
(t, x, u) is a closed and bounded interval, possibly empty and

maxV̇
(1)
(t, x, u) ≤ max

v∈K ( f (t,x)+G(t,x)u)
D+V((t, x), (1, v)) ,

whereD+V((t, x), (1, v)) is the Dini derivative ofV at (t, x) in the direction of(1, v).

LEMMA 1. Letϕ(·) be a solution of the differential inclusion (1) corresponding to the input
u(·) and let V :

�n+1 → �
be a locally Lipschitz continuous and regular function. Then

d
dt V(t, ϕ(t)) exists almost everywhere andddt V(t, ϕ(t)) ∈ V̇

(1)
u(·)(t, ϕ(t)) almost everywhere.

We omit the proof of the previous lemma since it is completelyanalogous to the proofs of
Theorem 2.2 in [10] (which involves a slightly different kind of set-valued derivative with respect
to the system) and of Lemma 1 in [3] (which is given for autonomous differential inclusions and
V not depending on time).

We can now state the main theorem of this section.

THEOREM 1. Let V :
�n+1 → �

be such that there exists L> 0 such that

(V0) there exist two continuous, strictly increasing, positivefunctions a, b :
� → �

such that
limr→+∞ a(r ) = +∞ and for all t > 0 and for all x

‖x‖ > L ⇒ a(‖x‖) ≤ V(t, x) ≤ b(‖x‖)

(V1) V is locally Lipschitz continuous and regular in
�+ × {x ∈ �n : ‖x‖ > L}.

If

(fG) for all R > 0 there existsρ > L such that for all x∈ �n and for all u ∈ �m the following
holds:

‖x‖ > ρ, ‖u‖ < R ⇒ maxV̇
(1)
(t, x, u) ≤ 0 for a.e. t≥ 0

then system (1) is UBIBS stable.

Proof. We prove the statement by contradiction, by assuming that there existsR such that for all
S> 0 there existx0 andu : [0,+∞) → �m such that‖x0‖ < R, ‖u‖∞ < R and there exist
ϕ(·) ∈ St0,x0,u, andt > 0 such that‖ϕ(t)‖ ≥ S.
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Let us chooseρ corresponding toR as in (fG). Without loss of generality we can suppose
thatρ > R. Because of (V0), there existsSM > 0 such that if‖x‖ > SM , thenV(t, x) > M =
b(ρ) ≥ max{V(t, x), ‖x‖ = ρ, t ≥ 0} for all t .

Let us considerS > ρ, SM . There existt1, t2 > 0 such thatt ∈ [t1, t2], ‖ϕ(t1)‖ = ρ,
‖ϕ(t)‖ ≥ ρ in [t1, t2], ‖ϕ(t2)‖ ≥ S. Then

V(t2, ϕ(t2)) > M ≥ V(t1, ϕ(t1)) .(4)

On the other hand, by Lemma 1,d
dt V(t, ϕ(t)) ∈ V̇

(1)
u(·)(t, ϕ(t)) a.e. It is clear thaṫV

(1)
u(·)(t, ϕ(t))

⊆ V̇
(1)
(t, ϕ(t),u(t)). Since|u(t)| < R a.e. and‖ϕ(t)‖ > ρ for all t ∈ [t1, t2], by virtue of (fG)

we have d
dt V(t, ϕ(t)) ≤ 0 for a.e.t ∈ [t1, t2]. By [7] (page 207) we get thatV ◦ ϕ is decreasing

in [t1, t2], then
V(t2, ϕ(t2)) ≤ V(t1, ϕ(t1))

that contradicts (4).

REMARK 1. In order to get a sufficient condition for system (2) to be uniformly Lagrange
stable, one can state Theorem 1 in the caseu = 0. In this case the control Lyapunov-like function
simply becomes a Lyapunov-like function.

REMARK 2. For sake of simplicity we have given the definition of UBIBSstability and
stated Theorem 1 for systems affine in the control. Let us remark that exactly analogous defini-
tion, theorem and proof hold for more general systems of the form

ẋ = f (t, x, u)

where f :
�m+n+1 → �n is locally bounded and measurable with respect to the variablest and

x and continuous with respect tou.

REMARK 3. If system (1) is autonomous it is possible to state a theorem analogous to
Theorem 1 for a control Lyapunov-like functionV not depending on time.

3. The Main Result

The main result of this note is the following Theorem 2. It essentially recalls Theorem 6.2 in [4]
and Theorem 5 in [9], with the difference that the control Lyapunov-like function involved is not
smooth.

We don’t give a unique condition for system (1) to be externally stabilizable, but some
alternative conditions which, combined together, give theexternal stabilizability of the system.
Before stating the theorem we list these conditions. Note that the variablex is not yet quantified.
Since its role depend on different situations, it is convenient to specify it later.

(f1) maxV̇
(2)
(t, x) ≤ 0;

(f2) for all z ∈ K f (t, x) there existsp ∈ ∂V(t, x) such thatp · (1, z) ≤ 0;

(f3) for all z ∈ K f (t, x) and for allp ∈ ∂V(t, x), p · (1, z) ≤ 0;

(G1) for eachi ∈ {1, . . . ,m} there existsci
t,x ∈ �

such that for allp ∈ ∂V(t, x), p ·
(1, gi (t, x)) = ci

t,x;
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(G2) for eachi ∈ {1, . . . ,m} only one of the following mutually exclusive conditions holds:

– for all p ∈ ∂V(t, x) p · (1, gi (t, x)) > 0,

– for all p ∈ ∂V(t, x) p · (1, gi (t, x)) < 0,

– for all p ∈ ∂V(t, x) p · (1, gi (t, x)) = 0;

(G3) there existsı ∈ {1, . . . ,m} such that for eachi ∈ {1, . . . ,m}\{ı} only one of the following
mutually exclusive conditions holds:

– for all p ∈ ∂V(t, x) p · (1, gi (t, x)) > 0,

– for all p ∈ ∂V(t, x) p · (1, gi (t, x)) < 0,

– for all p ∈ ∂V(t, x) p · (1, gi (t, x)) = 0;

Let us remark that (f3)⇒ (f2) ⇒ (f1) and (G1)⇒ (G2)⇒ (G3).

THEOREM 2. Let V :
�n+1 → �

be such that there exists L> 0 such that(V0) and (V1)
hold.

If for all x ∈ �n with ‖x‖ > L one of the following couples of conditions holds for a.e.
t ≥ 0:

(i ) (f1) and(G1), (i i ) (f2) and(G2), (i i i ) (f3) and(G3),

then system (1) is UBIBS stabilizable.

Let us make some remarks.

If for all x ∈ �n with ‖x‖ > L assumption (f1) (or (f2) or (f3)) holds for a.e.t ≥ 0, then, by
Theorem 1 in Section 2, system (2) is uniformly Lagrange stable. Actually in [4] the authors
introduce the concept of robust uniform Lagrange stabilityand prove that it is equivalent to the
existence of a locally Lipschitz continuous Lyapunov-likefunction. Then assumption (f1) (or
(f2) or (f3)) implies more than uniform Lagrange stability of system (2). In [9], the author has
also proved that, under mild additional assumptions onf , robust Lagrange stability implies the
existence of aC∞ Lyapunov-like function, but the proof of this result is not actually constructive.
Then we could still have to deal with nonsmooth Lyapunov-like functions even if we know that
there exist smooth ones.

Moreover Theorem 2 can be restated for autonomous systems with the functionV not de-
pending on time. In this case the feedback law is autonomous and it is possible to deal with a
situation in which the results in [9] don’t help.

Finally let us remark that iff is locally Lipschitz continuous, then, by [14] (page 105),
the Lagrange stability of system (2) implies the existence of a time-dependent Lyapunov-like
function of classC∞. In this case, in order to get UBIBS stabilizability of system (1), the
regularity assumption onG can be weakened toG ∈ L∞

loc(
�n+1;�m) (as in [2]).

4. Proof of Theorem 2

We first state and prove a lemma.

LEMMA 2. Let V :
�n+1 → �

be such that there exists L> 0 such that(V0) and (V1)
hold. If (t, x), with ‖x‖ > L, is such that, for all p∈ ∂V(t, x) p · (1, gi (t, x)) > 0, then there
existsδx > 0 such that, for all x∈ B(x, δx), for all p ∈ ∂V(t, x), p · (1, gi (t, x)) > 0.
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Analagously if(t, x), with ‖x‖ > L, is such that for all p∈ ∂V(t, x), p · (1, gi (t, x)) < 0,
then there existsδx > 0 such that, for all x∈ B(x, δx), for all p ∈ ∂V(t, x), p·(1, gi (t, x)) < 0.

Proof. Let γ > 0 be such that‖x‖ > L + γ , and letLx > 0 be the Lipschitz constant ofV in
the set{t} × B(x, γ ). For all(t, x) ∈ {t} × B(x, γ ) and for allp ∈ ∂V(t, x) ‖p‖ ≤ Lx (see [5],
page 27).

Sincegi is continuous there existη andM such that‖(1, gi (t, x))‖ ≤ M in {t} × B(x, η).

Let d = min{p · (1, gi (t, x)), p ∈ ∂V(t, x)}. By assumptiond > 0.

Let us considerε < d
2(Lx+M) .

By the continuity ofgi , there existsδi such that, if‖x − x‖ < δi , then‖(1, gi (t, x)) −
(1, gi (t, x))‖ < ε.

By the upper semi-continuity of∂V (see [5], page 29), there existsδV > 0 such that, if
‖x − x‖ < δV , then∂V(t, x) ⊆ ∂V(t, x) + εB(0,1), i.e. for all p ∈ ∂V(t, x) there exists
p ∈ ∂V(t, x) such that‖p − p‖ < ε.

Let δx = min{γ, η, δi , δV }, x be such that‖x − x‖ < δx and p ∈ ∂V(t, x), p ∈ ∂V(t, x)
be such that‖p − p‖ < ε.

It is easy to see that|p · (1, gi (t, x)) − p · (1, gi (t, x))| < d
2 , hencep · (1, gi (t, x)) >

p · (1, gi (t, x))− d
2 = d

2 > 0.

The second part of the lemma can be proved in a perfectly analogous way.

Proof of Theorem 2.For eachx ∈ �n , let Nx be the zero-measure subset of
�+ in which no

one of the couples of conditions(i ), (i i ) and (i i i ) holds. Letk :
�n+1 → �m, k(t, x) =

(k1(t, x), . . . , km(t, x)), be defined by

ki (t, x) =





−‖x‖ if ∀p ∈ ∂V(t, x) p · (1, gi (t, x)) > 0
0 if ∀p ∈ ∂V(t, x) p · gi (t, x) = 0 ,

or (f3) and (G3) hold andi = ı , or t ∈ Nx
‖x‖ if ∀p ∈ ∂V(t, x) p · (1, gi (t, x)) < 0 .

It is clear thatk ∈ L∞
loc(

�n+1,
�m).

By Theorem 1 it is sufficient to prove that for allR> 0 there existsρ > L , R such that for
all x ∈ �n andv ∈ �m the following holds:

‖x‖ > ρ, ‖v‖ < R ⇒ maxV̇
(3)
(t, x) ≤ 0 for all t ∈ �+\Nx

whereV̇
(3)
(t, x) = {a ∈ �

: ∃w ∈ K ( f (t, x) + G(t, x)k(t, x) + G(t, x)v) such that∀p ∈
∂V(t, x) p · (1, w) = a}.

Let x be fixed andt ∈ �+\Nx . Let a ∈ V̇
(3)
(t, x), w ∈ K ( f (t, x) + G(t, x)k(t, x) +

G(t, x)v) be such that for allp ∈ ∂V(t, x) p ·w = a.

By Theorem 1 in [8] we have that
K ( f (t, x) + G(t, x))(k(t, x) + v)(x) ⊆ K f (t, x) +∑m

i=1 gi (t, x)K (ki (t, x) + vi ), then there
existsz ∈ K f (t, x), zi ∈ K (ki (t, x)+ vi ), i ∈ {1, . . . ,m}, such thatw = z +∑m

i=1 gi (t, x)zi .

Let us show thata ≤ 0. We distinguish the three cases(i ), (i i ), (i i i ).

(i ) b = p · (1, z) = a −∑m
i=1 ci

t,xzi does not depend onp, thenb ∈ V̇
(2)
(t, x) and, by (f1),

b ≤ 0.
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Let us now show that for eachi ∈ {1, . . . ,m} ci
t,xzi ≤ 0. If i is such thatci

t,x = 0,

obviouslyci
t,xzi ≤ 0. If i is such thatci

t,x > 0 then, by Lemma 1, there existsδx such
thatki (t, y) = −‖y‖ in {t} × B(x, δx), thenki is continuous atx with respect toy. This
implies thatK (ki (t, x)+vi ) = −‖x‖+vi , i.e. zi = −‖x‖+vi andci

t,xzi ≤ 0, provided
that‖v‖ > ρ ≥ max{L , R}.
The case in whichi is such thatci

t,x < 0 can be treated analogously. We finally get that

a = b +∑m
i=1 ci

t,xzi ≤ 0.

(i i ) By (f2) there existsp ∈ ∂V(t, x) such thatp · (1, z) ≤ 0. a = p · (1, z) + ∑m
i=1 p ·

(1, gi (t, x))zi . The fact that for eachi ∈ {1, . . . ,m} we havep · (1, gi (t, x))zi ≤ 0 can
be proved as in(i ) we have proved that for eachi ∈ {1, . . . ,m} ci

t,xzi ≤ 0. We finally
get thata ≤ 0.

(i i i ) Let us remark that if (G2) is not verified, i.e. we are not in thecase(i i ), there exists
p ∈ ∂V(t, x) corresponding toı such thatp · (1, gı (t, x)) = 0. Indeed, because of the
convexity of∂V(t, x), for all v ∈ �n, if there existp1, p2 ∈ ∂V(t, x) such thatp1 ·v > 0
and p2 · v < 0, then there also existsp3 ∈ ∂V(t, x) such thatp3 · v = 0.

Let p ∈ ∂V(t, x) be such thatp·(1, gı (t, x)) = 0. For all p ∈ ∂V(t, x) a = p·(1, w). In
particular we havea = p·(1, w) = p·(1, z)+∑i 6=ı p·(1, gi (t, x))zi + p·(1, gı (t, x))zı .
By (f3), p · (1, z) ≤ 0. If i 6= ı the proof thatp · (1, gi (t, x))zi ≤ 0 is the same as in(i i ).
If i = ı , because of the choice ofp, p · (1, gı (t, x)) = 0. Also in this case we can then
conclude thata ≤ 0.
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L. Pandolfi∗

ON THE SOLUTIONS

OF THE DISSIPATION INEQUALITY

Abstract.
We present some recent results on the existence of solutionsto the Dissipation

Inequality.

1. Introduction

In this review paper we outline recent results on the properties of theDissipation Inequality,
shortly(DI) . The(DI) is the following inequality in the unknown operatorP:

(DI) 2<e〈Ax, P(x + Du)〉 + F(x + Du,u) ≥ 0 .

HereA is the generator of aC0-semigroupeAt on a Hilbert spaceX andD ∈ �
(U, X) whereU

is a second Hilbert space;F(x, u) is a continuous quadratic form onX × U ,

F(x, u) = 〈x, Qx〉 + 2<e〈Sx, u〉 + 〈u, Ru〉 .

Positivity of F(x, u) is not assumed.

We require thatP = P∗ ∈ �
(X).

We note that the unknownP appears linearly in the(DI) , which is also calledLinear Op-
erator Inequality for this reason.

The (DI) has a central role in control theory. We shortly outline the reason by noting the
following special cases:

• The caseD = 0, S = 0, R = 0. In this case,(DI) takes the form of a Lyapunov type
inequality,

2<e〈Ax, Px〉 ≥ −〈x, Qx〉 .

• If Q = 0 andR = 0 (but S 6= 0) and if B = −AD ∈ �
(U, X) we get the problem

2<e〈Ax, Px〉 ≥ 0 B∗P = −S.(1)

This problem is known asLur’e Problemand it is important for example in stability
theory, network theory and operator theory.

• The caseS = 0, R = I and Q = −I is encountered in scattering theory while the case
S = 0, Q ≥ 0 and coerciveR corresponds to thestandard regulator problem of control
theory.

* Paper written with financial support of the Italian MINISTERO DELLA RICERCA SCIENTIFICA
E TECNOLOGICA within the program of GNAFA–CNR.
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We associate to(DI) the following quadratic regulator problem “with stability”: we consider
the control system

ẋ = A(x − Du) .(2)

We call a pair(x(·),u(·)) an evolution of system (2) with initial datum x0 whenx(·) is a
(mild) solution to (2) with inputu(·) andx(0) = x0.

We associate to control system (2) the quadratic cost

J(x0; u) =
∫ +∞

0
F(x(t), u(t))dt .(3)

The relevant problem is the following one: we want to characterize the conditionV(x0) > −∞
for eachx0 where V(x0) is the infimum of (3) over the class of those square integrable
evolutions which have initial datum x0. (The term “with stability” refers to the fact that we
only consider the square integrable evolutions of the system).

Of course, Eq. (2) has no meaning in general. One case in whichit makes sense is the case
that B = −AD is a bounded operator (distributedcontrol action). In this case the problem has
been essentially studied in [7] but for one crucial aspect that we describe below.

More in general, large classes of boundary control systems can be put in the form (2), as
shown in [6], where two main classes have been singled out, the first one which corresponds to
“hyperbolic” systems and the second one which corresponds to “parabolic” systems.

We illustrate the two classes introduced in [6]:

• The class that models in particular most control problems for the heat equation: the semi-
groupeAt is holomorphic (we assume exponentially stable for simplicity) and imD =
im[−A−1B] ⊆ dom(−A)γ̃ , γ̃ < 1.

• The class that models in particular most control problems for string and membrane equa-
tions: eAt is aC0-semigroup,A−1B ∈ �

(X) and
∫ T

0
‖B∗eA∗t x‖2 dt ≤ kT‖x‖2 .(4)

It is sufficient to assume that the previous inequality holdsfor one value ofT since then
it holds for everyT .

As we said, for simplicity of exposition, we assume exponential stability. The simplification
which is obtained when the semigroup is exponentially stable is that the class of the controls is
L2(0,+∞; U), independent ofx0. However, this condition can be removed.

The crucial result in the case ofdistributed control actionis as follows (see [14] for the
finite dimensional theory and [7] for distributed systems with distributed control action):

THEOREM 1. If AD ∈ �
(U, X), then V(x0) is finite for every x0 if and only if there exists a

solution to(DI) and in this case V(x0) is a continuous quadratic form on X: V(x0) = 〈x0, Px0〉.
The operator P of the quadratic form is themaximalsolution to(DI) .

The result just quoted can be extended to both the classes of boundary control systems
introduced in [6], see [9, 11]. Rather than repeating the very long proof, it is possible to use a
device, introduced in [10, 8], which associates to the boundary control system an “augmented”
system, with distributed control action. From this distributed system it is possible to derive many
properties of the(DI) of the original boundary control system. This device is illustrated in sect. 2.

With the same method it is possible to extend the next result:
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THEOREM 2. If V (x0) > −∞, i.e. if (DI) is solvable, then

5(iω) = F(−iω(iωI − A)−1Du + Du,u) ≥ 0 ∀ω ∈ �
.(5)

The function5(iω) was introduced in [12] and it is called thePopov function.

As the numberiω are considered “frequencies”, condition (5) is a special “frequency do-
main condition”.

At the level of the frequency domain condition we encounter acrucial difference between
the class of “parabolic” and “hyperbolic” systems:

THEOREM 3. In the parabolic case if V(x0) > −∞, then R≥ 0. Instead, in the “hyper-
bolic” case, we can have V(x0) > −∞ even if R= −α I , α > 0.

Proof. It is clear that
5(iω) = F((iωI − A)−1Bu,u)

(B = −AD) and lim|ω|→+∞(iωI − A)−1Bu = 0 because imD = im[−A−1B] ⊆ dom(−A)γ

(here we use exponential stability, but the proof can be adapted to the unstable case.) Hence,
0 ≤ lim|ω|→+∞5(iω) = 〈u, Ru〉 for eachu ∈ U . This proves thatR ≥ 0.

Clearly an analogous proof cannot be repeated in the “hyperbolic” case; and the analogous
result does not hold, as the following example shows:

the system is described by

xt = −xθ 0< θ < 1, t > 0 x(t, 0) = u(t)

(this system is exponentially stable since the free evolution is zero fort > 1).

The functionalF(x, u) is

F(x, u) = ‖x(·)‖2
L2(0,1)

− α|u|2

so that

J(x0; u) =
∫ +∞

0
{‖x(t, ·)‖2

L2(0,1) − α|u(t)|2} dt .

If x(0, θ) ≡ 0 then
x̂(z, θ) = e−zθ û(z)

so that
〈u, 5(iω)u〉 = [1 − α]|u|2 .

This is nonnegative for eachα ≤ 1 in spite of the fact thatR = −α I can be negative. Hence, in
the hyperbolic boundary control case,the condition R ≥ 0 does not follows from the positivity
of the Popov function.

It is clear that the frequency domain condition may hold evenif the (DI) is not solvable, as
the following example shows:

EXAMPLE 1. The example is an example of a scalar system,

ẋ = −x + 0u y = x .

It is clear that5(iω) ≥ 0, is nonnegative; butP B = C, i.e. P0 = 1, is not solvable.
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A problem that has been studied in a great deal of papers is theproblem of finding additional
conditions which imply solvability of the(DI) in the case that the frequency domain condition (5)
holds. A special instance of this problem is the important Lur’e problem of stability theory.

This problem is a difficult problem which is not completely solved even for finite dimen-
sional systems. Perhaps, the most complete result is in [2]:if a system is finite dimensional and
5(iω) ≥ 0, then a sufficient condition for solvability of(DI) is the existence of a numberω0
such that det5(iω0) 6= 0.

It is easy to construct examples which show that this condition is far from sufficient.

In the context of hyperbolic systems, the following result is proved in [11].

THEOREM 4. Let condition (4) hold and let the system beexactly controllable.Under these
conditions, if the Popov function is nonnegative then thereexists a solution to(DI) and, moreover,
themaximalsolution P of(DI) is the strong limit of the decreasing sequence{Pn}, where Pn is
the maximal solution of the(DI)

2<e〈Ax, P(x + Du)〉 + F(x + Du,u)+ 1

n
{‖u‖2 + ‖x‖2} ≥ 0 .(6)

The last statement is important because it turns out thatPn solves a Riccati equation, while
there is no equation solved byP in general.

The proof of Theorem 4 essentially reproduces the finite dimensional proof in [14]. Hence,
the “hyperbolic” case is “easy” since the finite dimensionalproof can be adapted. In contrast
with this, the “parabolic” case requires new ideas and it is “difficult”. Consistent with this, only
very partial results are available in this “parabolic” case, and under quite restrictive conditions.
These results are outlined in sect. 3.

Before doing this we present, in the next section, the key idea that can be used in order to
pass from a boundary control system to an“augmented”butdistributedcontrol system.

2. The augmented system

A general model for the analysis of boundary control systemswas proposed by Fattorini ([4]).
Let X be a Hilbert space andσ a linear closed densely defined operator,σ : X → X. A second
operatorτ is linear fromX to a Hilbert spaceU .

We assume:

AssumptionWe have: domσ ⊆ domτ andτ is continuous on the Hilbert space domσ with the
graph norm.

The “boundary control system” is described by:

{
ẋ = σ x
τx = u

x(0) = x0(7)

whereu(·) ∈ L2
loc(0,+∞; U).

We must define the “strong solutions”x(·; x0,u) to system (7). Following [3] the function
x(·) = x(·; x0,u) is a strong solution if there exists a sequence{xn(·)} of C1-functions such that
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xn(t) ∈ domσ for eacht ≥ 0 and:




ẋn(·)− σ xn(·) → 0 in L2
loc(0,+∞; X)

xn(0) → x0 in X
τxn(·) → u(·) in L2

loc(0,+∞;U)
(8)

and

• xn(·) converges uniformly tox(·) on compact intervals in[0,+∞).

In the special case that the sequencexn(·) is stationary,xn(·) = x(·), we shall say thatx(·) is a
classicalsolution to problem (7).

Assumption 1. Let us consider the “elliptic” problemσ x = u. We assume that it is “well
posed”, i.e. that there exists an operatorD ∈ �

(U, X) such that

x = Du iff {σ x = 0 andτx = u} .

Moreover we assume that the operatorA defined by

domA = domσ ∩ kerτ Ax = σ x

generates a strongly continuous semigroup onX.

As we said already, for simplicity of exposition, we assume that the semigroupeAt is expo-
nentially stable.

Now we recall the following arguments from [1]. Classical solutions to Eq. (7) solve

ẋ = A(x − Du) x(0) = x0 .(9)

Let u(·) be an absolutely continuous control andξ(t) = x(t) − Du(t). Then,ξ(·) is a classical
solution to

ξ̇ = Aξ − Du̇ ξ0 = ξ(0) = x(0) − Du(0)(10)

and conversely.

As the operatorA generates aC0-semigroup, it is possible to write a “variation of constants”
formula for the solutionξ . “Integration by parts” produces a variation of constants formula,
which contains unbounded operators, for the functionx(·). This is the usual starting point for
the study of large classes of boundary control systems. Instead, we “augment” system (9) and
we consider the system:

{
ξ̇ = Aξ − Dv
u̇ = v

(11)

Here we consider formallyv(·) as a new “input”, see [10, 8].

Moreover, we note that it is possible to stabilize the previous system with the simple feed-
backv = −u, sinceeAt is exponentially stable.

The cost that we associate to (11) is the cost

J(x0; u) =
∫ +∞

0
F(ξ(t)+ Du(t),u(t))dt .(12)
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This cost does not depend explicitly on the new inputv(·): it is a quadratic form of the state,
which is now4 = [ξ,u].

It is proved in [9] that the value function
�
(ξ0,u0) of the augmented system has the follow-

ing property: �
(ξ0 + Du0,u0) = V(x0) .

We apply the stabilizing feedbackv = −u and we write down the(DI) and the Popov
function for the stabilized augmented system. The(DI) is

2<e〈�4,W4〉 + 〈4, �4〉 ≥ 0 ∀4 ∈ dom� , W� = 0 .(13)

where

� =
[

A −D
0 I

]
, 4 =

[
ξ

u

]
,

� =
[

Q S∗ + QD
D∗Q + S R+ D∗S∗ + SD+ D∗QD

]
, � =

[ −D
I

]
.

The Popov function is:

P(iω) = 5(iω)

1 + ω2
(14)

It is clear that the transformations outlined above from theoriginal to the augmented system do
not affect the positivity of the Popov function and that ifωs5(iω) is bounded from below, then
ωs+2P(iω) is bounded from below.

In the next section we apply the previous arguments to the case that the operatorA generates
a holomorphic semigroup and imD ⊆ (dom(−A)γ ), γ < 1.

3. “Parabolic” case: from the Frequency domain condition tothe (DI)

We already said that in the parabolic case only partial results are available. In particular, available
results require that the control be scalar so thatS is an element ofX. This we shall assume in
this section. We assume moreover that the operatorA has only point spectrum with simple
eigenvalueszk and the eigenvectorsvk form a complete set inX. Just for simplicity we assume
that the eigenvalues are real (hence negative). Moreover, we assume that we already wrote the
system in the form of a distributed (augmented and stabilized) control system. Hence we look
for conditions under which there exists a solutionW to (13).

We note that� ∈ X × U and thatP(iω) is a scalar function: it is the restriction to the
imaginary axis of the analytic function

P(z) = −� (z I + �∗)−1�(z I − � )−1� .

The functionP(z) is analytic in a strip which contains the imaginary axis in its interior.

We assume thatP(iω) ≥ 0 and we want to give additional conditions under which (13)
is solvable. In fact, we give conditions for the existence ofa solution to the following more
restricted problem: to find an operatorW and a vectorq ∈ (domA)′ such that

2<e〈�4,W4〉 + 〈4, �4〉 = |〈〈4, q〉〉‖2 ∀4 ∈ dom� .(15)

The symbol〈〈·, ·〉〉 denotes the pairing of(domA)′ and domA.
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The previous equation suggests a form for the solutionW:

〈4,W4〉 =
∫ +∞

0
〈e� t4, �e� t4〉 dt −

∫ +∞

0
|〈〈4, e� t q〉〉‖2 dt .(16)

However, it is clear that in general the operatorW so defined will not be continuous, unlessq
enjoys further regularity. We use known properties of the fractional powers of the generators of
holomorphic semigroups and we see thatW is bounded ifq ∈ [dom(−�α)]′ with α < 1/2.

It is possible to prove that if a solutionW to (15) exists then there exists a factorization

P(iω) = m∗(iω)m(iω)

and m(iω) does not have zeros in the right half plane. This observationsuggests a method
for the solution of Eq. (15), which relies on the computationof a factorization ofP(iω). The
factorization of functions which takes nonnegative valuesis a classical problem in analysis. The
key result is the following one:

LEMMA 1. If P(iω) ≥ 0 and if | ln P(iω)|/(1 + ω2) is integrable, then there exists a
function m(z) with the following properties:

• m(z) is holomorphic and bounded in<e z> 0;

• P(iω) = m(−iω)m(iω);

• let z = x + i y, x > 0. The following equality holds:

ln |m(z)| = 1

2π

∫ +∞

−∞
ln P(iω)

x

x2 + (ω − y)2
dω ∀z = x + i y, x > 0 .(17)

See [13, p. 121], [5, p. 67].

A function which is holomorphic and bounded in the right halfplane and which satisfies (17)
is called anouter function.

The previous arguments show that an outer factor ofP(z) exists whenP(iω) ≥ 0 and when
P(iω) decays for|ω| → +∞ of the order 1/|ω|β , β < 1. Let us assume this condition (which
will be strengthened below). Under this conditionP(z) can be factorized and, moreover,

ln |m(z)| = 1

2π

∫ +∞

−∞
ln P(iω)

x

x2 + (ω − y)2
dω

≤ 1

2π

∫ +∞

−∞
ln

M

1 + ω2

x

x2 + (ω − y)2
dω

= ln | 1

1 + z2
| .

This estimates implies in particular that the integrals
∫ +∞
−∞ |m(x+i y)|2 dy are uniformly bounded

in x > 0. Paley Wiener theorem (see [5]) implies that

m(iω) =
∫ +∞

0
e−iωt m̌(t)dt, m̌(·) ∈ L2(0,+∞) .

The functionm̌(t) being square integrable, we can write the integral
∫ +∞

0
eA∗sqm̌(t)dt
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and we can try to solve the following equation forq:

∫ +∞

0
eA∗sqm̌(t)dt = −s =

∫ +∞

0
e� ∗t �e� t� dt .(18)

This equation is suggested by certain necessary conditionsfor the solvability of (1) which are
not discussed here.

We note that

s ∈ dom(−� )1−ε for eachε > 0 .(19)

It turns out that equation (18) can always beformally solved, a solution being

qk = 〈vk, q〉 = − 〈vk, s〉
m(−z̄k)

sincem(z) does not have zeros in the right half plane.

Moreover, we can prove that the operatorW defined by (16)formally satisfies the condition
W� = 0. Hence, this operatorW will be the required solution of (15) if it is a bounded operator,
i.e. if q ∈ [dom(−�α)]′.

An analysis of formula (17) shows the following result:

THEOREM 5. The vector q belongs to(dom(−�∗)1/2−ε)′ for someε > 0 if there exist
numbersγ < 1 and M> 0 such that

|ω|γ5(iω) > M

for |ω| large.

Examples in which the condition of the theorem holds exist, see [9].

Let ζk = −zk ∈ �
. The key observation in the proof of the theorem is the following

equality, derived from (17):

log |ζ | 3
2−εm(ζk) = 1

2π

∫ +∞

−∞
[log |ζk|3−2εP(i ζks)]

1

1 + s2
ds

= 1

2π

∫ +∞

−∞
[log ζ3−γ−2ε

k
1

|s|γ ]
1

1 + s2
ds

+ 1

2π

∫ +∞

−∞
[log ζk|s|γ P(i ζks)]

1

1 + s2
ds .

The first integral is bounded below ifγ ≤ 3 − 2ε and the second one is bounded below in
any case.

We recapitulate: the conditionq ∈ (dom(−�∗)1/2−ε)′ holds if P(iω) decays at∞ of order
less than 3. We recall (14) and we get the result.

Acknowledgment.The author thanks the referee for the carefull reading of this paper.
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ON PERTURBATIONS OF MINIMUM PROBLEMS

WITH UNBOUNDED CONTROLS

Abstract.
A typical optimal control problem among those considered inthis work in-

cludes dynamics of the formf (x, c) = g0(x)+ g̃0(x)|c|α (herex andc represent
the state and the control, respectively) and a Lagrangian ofthe form l (x, c) =
l0(x) + l̃0(x)|c|β , with α ≤ β, and c belonging to a closed, unbounded sub-
set of

�m. We perturb this problem by considering dynamics and Lagrangians
fn(x, c) = gn(x) + g̃n(x)|c|αn , andln(x, c) = l0n(x) + l̃0n(x)|c|β respectively,
with αn ≤ β, and fn andln approachingf andl . We show that the value functions
of the perturbed problems converge, uniformly on compact sets, to the value func-
tion of the original problem. For this purpose we exploit some comparison results
for Bellman equations with fast gradient-dependence whichhave been recently es-
tablished in a companion paper. Of course the fast growth in the gradient of the
involved Hamiltonians is connected with the presence of unbounded controls. As
an easy consequence of the convergence result, an optimal control for the original
problem turns out to be nearly optimal for the perturbed problems. This is true in
particular, for very general perturbations of the LQ problem, including cases where
the perturbed problem isnot coercive, that is,αn = β(= 2).

1. Introduction

Let us consider a Boltz optimal control problem,

(P)
minimize

∫ T
t̄ l (t, x, c) dt + g(x(T))

ẋ = f (t, x, c) x(t̄) = x̄
(t̄, x̄) ∈ [0, T ] × �k ,

wherec = c(t) is a control which takes values in
�m. Let us also consider a sequence of

perturbationsof this problem,

(Pn)
minimize

∫ T
t̄ ln(t, x, c)dt + gn(x(T))

ẋ = fn(t, x, c) x(t̄) = x̄

where the triples( fn, ln, gn) converge to( f, l , g), in a sense to be made precise.

In the present note we address the following question:

Q1. Assume that for every initial data(t̄, x̄) an optimal control c(t̄,x̄) : [ t̄, T ] → �m is
known. Are these controls nearly optimal for the problem(Pn)?

(Herenearly optimalmeans that the value of the cost functional of (Pn) when the control
c(t̄,x̄) is implemented differs from the optimal value by an error which approaches zero whenn
tends to∞).
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An analogous question can be posed when an optimal feedback control c = c(t, x) of
problem(P) is known:

Q2. Is the feedback control c(t, x) nearly optimal for the problem(Pn)?

The practical usefulness of studying such a theoretical problem is evident: it may happen
that the construction of an optimal control for problem(P) is relatively easy, while the same
task for the perturbed problem(Pn) might result hopeless. In this case, one could be tempted to
implement the(P) optimal control for problem(Pn) as well. And positive answers to questions
like Q1 andQ2 would guarantee that these strategies would be safe. (For a general account on
perturbation theory see e.g. [3]).

Since we are interested in the case when the controlsc are unbounded, questions concerning
the growth inc of f andl turn out to be quite relevant. The crucial hypotheses (seeA1-A5 in
Section 2) here assumed on the dynamicsf and the Lagrangianl are as follows: there existα,
β, both greater than or equal to 1, such that ifQ ⊂ �k is a compact subset andx, y ∈ Q, then

| f (t, x, c)− f (t, y, c)| ≤ L(1 + |c|α)|x − y|(1)

|l (t, x, c)| ≥ l0|c|β − C(2)

for all c ∈ �m, whereL depends only onQ. The same kind of hypotheses are assumed on
the perturbed pairsfn, ln, with the same growth-exponentβ for the Lagrangiansln, while the
growth-exponentsαn of the fn are allowed to depend onn. Moreover,weak coercivityrelations,
namelyαn ≤ β, α ≤ β, are assumed. Let us observe that whenα < β (strict coercivity) the
optimal trajectories turn out to be (absolutely) continuous, while, ifα = β, an optimal path may
containjumps(in a non trivial sense whichcannotbe resumed by a distributional approach, see
e.g. [7, 8]).

Answers to questionsQ1 andQ2 are given in Theorems 6, 7 below, respectively. The main
theoretical tool on which these results rely consists in a so-called stability theorem (see Theorem
1) for a class of Hamilton-Jacobi-Bellman equations with fast gradient-dependence. In order to
prove the stability theorem we exploit some uniqueness and regularity results for this class of
equations that have been recently established in a companion paper [8] (see also [1] and [6]).
Let us notice that questions likeQ1 andQ2 can be approached with more standard uniqueness
results as soon as the controlsc are bounded.

Similar questions were addressed in a paper by M. Bardi and F.Da Lio [1], where the
authors assumed the following stronger hypothesis onf :

| f (x, c)− f (y, c)| ≤ L |x − y|(3)

(actually a monotonicity hypothesis, weaker than (3) is assumed in [1]; however this is irrelevant
at this stage, while the main point in assuming (3) consists in the fact that it is Lipschitz inx
uniformly with respect to c). Observe that hypothesis (3) still allows for fields growing as|c|α in
the variablec. Yet, while a field of the formf (x, c)

.= g0(x)+ g1(x)|c|α agrees with hypothesis
(1), it does not satisfy hypothesis (3) unlessg1(x) is constant. Furthermore, in [1] the exponent
α is required to be strictly less thanβ (strict coercivity).

The relevance of weakening hypothesis (3) (and the positionα < β) is perhaps better un-
derstood by means of an application to a perturbation question for the linear quadratic problem.
In this case one has:α = 1, β = 2, f (x, c) = Ax + Bc, l (x, c) = x∗ Dx + x∗Ec + c∗Fc,
g(x) = x∗Sx. Here the coercivity hypothesis reduces to the fact thatF is positive definite. As
it is well known, (see e.g. [4]) under suitable hypotheses onA, B, D, E and F , this problem
admits a smooth optimal feedback, which can be actually computed by solving the correspond-
ing Riccati equation. It is obvious that a crucial point in questionsQ1 andQ2 consists in the
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specification ofwhichclass of perturbation problems(Pn) has to be considered. Of course, since
in practical situations the nature of the perturbation is only partially known, the larger this class
is the better. In [1] a positive answer toQ1 is provided when the perturbed fields are of the form

fn(x) = Ax + Bx + ε(n)ϕ(x, c)

with ϕ verifying (3)andε(n) infinitesimal. So, for instance, a perturbed dynamics like

fn = Ax + Bx + 1

n
xc

is not allowed. On the contrary, hypothesis (1) assumed in the present paper is not in contrast
with this (and much more general) kind of perturbation. A further improvement is represented
by the fact that thefn’s growth exponentsαn are allowed to be different from thef ’s growth
exponentα (=1, in this case), and moreover, they can be less than orequal to β (which in this
example is equal to 2). So, for example, perturbed dynamics like

fn = Ax + Bc+ ε(n)(g(x)c + h(x)|c|2)
may be well considered. In this case, the possibility of implementing a(P)-optimal controlc in
the perturbed problem (Pn) may be of particular interest. Indeed, the problems (Pn) are quite
irregular, in that the lack of a sufficient degree of coercivity may give rise to optimal trajectories
with jumps(see Remark 2).

The general approach of the present paper, which is partially inspired by [1], relies on prov-
ing the convergence of the value functions of the problems (Pn) to the value function of(P) via a
PDE argument. However, the enlarged generality of the considered problems makes the exploita-
tion of very recent results on Hamilton-Jacobi-Bellman equations with fast gradient-dependence
crucial (see [8]). In particular, by allowing mixed type boundary conditions, these results cover
the weak coercivity case (α = β). Moreover they do not require an assumption of local Lip-
schitz continuity of the solution of the associated dynamicprogramming equation. Actually,
as a consequence of the fact that we allow value functions which are not equicontinuous, the
Ascoli-Arzelà argument exploited in the stability theorem of [1] does not work here. In order to
overcome this difficulty we join ordinary convergence arguments originally due to G. Barles and
B. Perthame [2] with the reparameterization techniques introduced in [8].

2. A convergence result

For everyt̄ ∈ [0, T ], let � (t̄) denote the set of Borel-measurable maps which belong toLβ([ t̄, T ],
�m). � (t̄) is called the set of controls starting att̄ . Let us point out that the choice of the whole
�m as the set where the controls take values is made just for the sake of simplicity. Indeed,
in view of the Appendix in [8] it is straightforward to generalize the results presented here to
situations where the controls can take values in a (possiblyunbounded) closed subset of

�m. For
every(t̄, x̄) ∈ [0, T ] × �k and everyc ∈ � (t̄), by the assumptionsA1-A5 listed below, there
exists a unique solution of the Cauchy problem

(E)

{
ẋ = f (t, x, c) for t ∈ [ t̄, T ]
x(t̄) = x̄ ,

(where the dot means differentiation with respect tot). We will denote this solution byx(t̄,x̄)[c](·)
(or by x[c](·) if the initial data are meant by the context). For every(t̄, x̄) ∈ [0, T ] × �k let us
consider the optimal control problem

(P) minimize
c∈� (t̄)

J(t̄, x̄, c)
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where

J(t̄, x̄, c)
.=
∫ T

t̄
l (t, x[c](t), c(t))dt + g(x[c](T)) ,

and let us define thevalue function V: [0, T [×�k → �
, by setting

V(t̄, x̄)
.= inf

c∈� (t̄)
J(t̄, x̄, c) .

We consider also a sequence ofperturbedproblems

(Pn) minimize
c∈� (t̄)

Jn(t̄, x̄, c)

where

Jn(t̄, x̄, c)
.=
∫ T

t̄
ln(t, xn[c](t), c(t))dt + gn(xn[c](T)) ,

wherexn[c] (or xn
(t̄,x̄)

[c] if one wishes to specify the initial data), denotes the solution – existing

unique by hypothesesA1-A5 below – of

(En)

{
ẋ = fn(t, x, c) for t ∈ [ t̄, T ]
x(t̄) = x̄

Let us define the value functionVn of (Pn) by setting

Vn(t̄, x̄)
.= inf

c∈� (t̄)
Jn(t̄, x̄, c) .

We assume that there exist numbersα,αn, β satisfying 1≤ α ≤ β, 1 ≤ αn ≤ β, such that the
following hypotheses hold true:

A1 the maps f and fn are continuous on[0, T ] × �k × �m and, for every compact subset
Q ⊂ �k , there exists a positive constant L and a modulusρ f verifying

| f (t1, x1, c)− f (t2, x2, c)| ≤ (1 + |c|α)(L |x1 − x2| + ρ f (|t1 − t2|) ,
| fn(t1, x1, c)− fn(t2, x2, c)| ≤ (1 + |c|αn )(L |x1 − x2| + ρ f (|t1 − t2|)

for all (t1, x1, c), (t2, x2, c) ∈ [0, T ] × Q × �m and n ∈ � , (by moduluswe mean a
positive, nondecreasing function, null and continuous at zero);

A2 there exist two nonnegative constants M1 and M2 such that

| f (t, x, c)| ≤ M1(1 + |c|α)(1 + |x|) + M2(1 + |c|α)
| fn(t, x, c)| ≤ M1(1 + |c|αn )(1 + |x|) + M2(1 + |c|αn )

for every(t, x, c) ∈ [0, T ] × �k × �m;

A3 the maps l and ln are continuous on[0, T ] × �k × �m and, for every compact subset
Q ⊂ �k , there is a modulusρl satisfying

|l (t1, x1, c)− l (t2, x2, c)| ≤ (1 + |c|β )ρl (|(t1, x1)− (t2, x2)|)
|ln(t1, x1, c) − ln(t2, x2, c)| ≤ (1 + |c|β )ρl (|(t1, x1)− (t2, x2)|)

for every(t1, x1, c), (t2, x2, c) ∈ [0, T ] × Q × �m and n∈ � ;
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A4 there exist positive constants30 and31 such that the followingcoercivity conditions

l (t, x, c) ≥ 30|c|β −31

ln(t, x, c) ≥ 30|c|β −31 ,

are verified for every(t, x, c) ∈ [0, T ] × �k × �m and every n∈ � ;

A5 the maps g, gn are bounded below by a constantG and, for every compact Q⊂ �k , there
is a modulusρg such that

|gn(x1)− gn(x2)| ≤ ρg(|x1 − x2|) ,
|g(x1)− g(x2)| ≤ ρg(|x1 − x2|)

for every x1, x2 ∈ Q.

Whenα = β, we also assume a condition of regularity off andl at infinity in the variable
c. Precisely, we posit the existence of continuous functionsf ∞ andl∞, therecessions functions
of f andl , respectively, verifying

lim
r→0

r β f (t, x, r −1w)
.= f ∞(t, x, w)

lim
r→0

r β l (t, x, r −1w)
.= l∞(t, x, w) ,

on compact sets of [0, T ] × �k × �m (e.g., if f (t, x, c) = f0(t, x) + f1(t, x)|c| + f2(t, x)|c|2
then f ∞(t, x, w) = f2(t, x)|w|2). Whenαn = β we likewise assume the existence of the
recession functionsf ∞

n , l∞n , respectively.

Theorem 1 below is the main result of the paper and concerns the convergence of the value
functionsVn to V . We point out that, unlike previous results on this subject (see [1]), the triples
( fn, ln, gn) are allowed to tend to( f, l , g) not uniformly with respect tox andc.

THEOREM 1. Let us assume that for every set[0, T ] × Q, where Q is a compact subset of
�k , there exists a functionε : � → [0,∞) infinitesimal for n→ ∞ such that

| fn(t, x, c) − f (t, x, c)| ≤ ε(n)(1 + |c|β ) ,(4)

|ln(t, x, c)− l (t, x, c)| ≤ ε(n)(1 + |c|β )(5)

for (t, x, c) ∈ [0, T ] × Q × �m and

|gn(x) − g(x)| ≤ ε(n)

for every x ∈ Q. Then the value functions Vn converge uniformly, as n tends to∞, to V on
compact subsets of[0, T ] × �k .

This theorem will be proved in Section 4 via some arguments which rely on the fact that the
considered value functions are solutions of suitable Hamilton-Jacobi-Bellman equations. Actu-
ally, due to the non standard growth properties of the data, the Hamiltonians involved in these
equations do not satisfy a uniform growth assumption in the adjoint variable which is shared by
most of the uniqueness results existing in literature. In a recent paper [8] we have established
some uniqueness and regularity results for this kind of equations. In the next section we recall
briefly the points of this investigation that turn out to be essential in the proof of Theorem 1.
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3. Reparameterizations and Bellman equations

The contents of this section thoroughly relies on the results of [8]. Let us embed the unperturbed
and the perturbed problems in a class of extended problems which have the advantage of involv-
ing only bounded controls. There is a reparameterization argument behind this embedding which
allows one to transform aLβ constraint (implicitly imposed by the coercivity assumptions) into
a L∞ constraint.

Let us introduce the extended fields

f (t, x, w0, w)
.=
{

f
(
t, x, ww0

)
· wβ0 if w0 6= 0

f ∞(t, x, v,w) if w0 = 0 andα = β

and

l (t, x, w0, w)
.=
{

l
(
t, x, ww0

)
· wβ0 if w0 6= 0

l∞(t, x, v, w) if w0 = 0 andα = β .

Similarly, for everyn we define the extended fieldsfn and ln of fn and ln, respectively. Hy-
pothesesA1-A5 imply the following properties for the mapsfn, ln, f , andl .

PROPOSITION1. (i) The functionsfn, ln, f , and l are continuous on[0, T ] × �k ×
[0,+∞[×�m and for every compact Q⊂ �k we have

(Ae1)

| f (t1, x1, w0, w)− f (t2, x2, w0, w)| ≤ (wα0 + |w|α)wβ−α
0 (L |x1 − x2|

+ ρ f (|t1 − t2|)) ,
| f n(t1, x1, w0, w)− f n(t2, x2, w0, w)| ≤ (w

αn
0 + |w|αn)w

β−αn
0 (L |x1 − x2|

+ ρ f (|t1 − t2|))

and

(Ae3)
|l (t1, x1, w0, w)− l (t2, x2, w0, w)| ≤ (w

β

0 + |w|β )ρl (|(t1, x1)− (t2, x2)|) ,
|l n(t1, x1, w0, w)− ln(t2, x2, w0, w)| ≤ (w

β
0 + |w|β )ρl (|(t1, x1)− (t2, x2)|)

∀(t1, x1, w0, w), (t2, x2, w0, w) ∈ [0, T ] × �k × [0,+∞[×�m, whereα, αn, β, L, ρ f ,
andρl are the same as in assumptionsA1 andA3.

Moreover,

(Ae2)
| f (t, x, w0, w)| ≤ (wα0 + |w|α)wβ−α

0 (M1(1 + |x|) + M2) ,

| f n(t, x, w0, w)| ≤ (w
αn
0 + |w|αn )w

β−αn
0 (M1(1 + |x|) + M2)

and

(Ae4)
l (t, x, w0, w) ≥ 30|w|β −31|w0|β ,

ln(t, x, w0, w) ≥ 30|w|β −31|w0|β

∀(t, x, w0, w) ∈ [0, T ] × �k × [0,+∞[×�m, where M1, M2,30 and31 are the same
as inA2 andA4.
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(ii) (Positive homogeneity in(w0, w)). The mapf , l, f n, andl n are positively homogeneous
of degreeβ in (w0, w), that is,

f (t, x, rw0, rw) = r β f (t, x, w0, w),

f n(t, x, rw0, rw) = r β f n(t, x, w0, w),

l (t, x, rw0, rw) = r β l (t, x, w0, w)

l n(t, x, rw0, rw) = r β l n(t, x, w0, w)

∀r > 0, ∀(t, x, w0, w) ∈ [0, T ] × �k×]0,+∞[×�m.

For everyt̄ ∈ [0, T ] let us introduce the following sets ofspace-time controls

0(t̄)
.=
{
(w0, w) ∈ � ([0, 1], [0,+∞)× �m) such that̄t +

∫ 1

0
w
β
0 (s) ds = T

}

and
0+(t̄)

.=
{
(w0, w) ∈ 0(t̄) such thatw0 > 0 a.e.

}

where� ([0, 1], [0,+∞)×�m) is the set ofL∞, Borel maps, which take values in [0,+∞[×�m.
If α < β [resp.α = β], for every (t̄, x̄) ∈ [0, T ] × �k and every(w0, w) ∈ 0+(t̄) [resp.
(w0, w) ∈ 0(t̄)], let us denote by(t, y)(t̄,x̄)[w0, w](·) the solution of the (extended) Cauchy
problem

(Ee)





t ′(s) = w
β

0 (s)
y′(s) = f (t (s), y(s), w0(s), w(s))
(t (0), y(0)) = (t̄, x̄) ,

where the parameters belongs to the interval [0, 1] and the prime denotes differentiation with
respect tos. When the initial conditions are meant by the context we shall write (t, y)[w0, w](·)
instead of(t, y)(t̄,x̄)[w0, w](·). Let us consider the following (extended) cost functional

Je(t̄, x̄, w0, w)
.=
∫ 1

0
l ((t, y)[w0, w], w0, w) (s) ds+ g(y[w0, w](1))

and the corresponding (extended) value function

Ve : [0, T ] × �k → �

Ve(t̄, x̄)
.= inf
(w0,w)∈0(t̄)

Je(t̄, x̄, w0, w) .

Similarly, for everyn ∈ � , for every(t̄, x̄) ∈ [0, T ] × �k and every(w0, w) ∈ 0(t̄) let us
introduce the system

(Een)





t ′(s) = w
β
0 (s)

y′(s) = f n(t (s), y(s), w0(s), w(s)) s ∈ [0, 1]
(t (0), y(0)) = (t̄, x̄) ,

and let us denote its solution by(t, y)n
(t̄,x̄)

[w0, w](·). Let us introduce the cost functionals

Jen(t̄, x̄, w0, w)
.=
∫ 1

0
l n
(
(t, y)n

(t̄,x̄), w0, w
)
(s) ds+ gn(yn[w0, w](1))
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and the corresponding value functions

Ven : [0, T ] × �k → �

Ven(t̄, x̄)
.= inf
(w0,w)∈0(t̄)

Jen(t̄, x̄, w0, w) .

Next theorem establishes the coincidence of the value functions of the original problems
with those of the extended problems.

THEOREM 2. AssumeA1-A5.

(i) For every (t, x) ∈ [0, T [×�k and for every n∈ � one has Ve(t, x) = V(t, x); and
Ven(t, x) = Vn(t, x);

(ii) the maps Ve and Ven are continuous on[0, T ] × �k .

Thanks to this theorem – which, in particular, implies thatV andVn can be continuously
extended on [0, T ] × �k – the problem of the convergence of theVn is transformed in the
analogous problem for theVen .

We now recall that each of these value functions is the uniquesolution of a suitable boundary
value problem. This is a consequence of the comparison theorem below. To state these results,
let us introduce theextended Hamiltonians

He(t, x, p0, p)
.= sup
(w0,w)∈([0,+∞[×

�m)∩S+
m

{−p0w
β
0 − 〈p, f (t, x, w0, w)〉 − l (t, x, w0, w)}

(6)

whereS+
m
.= {(w0, w) ∈ [0,+∞[×�m : |(w0, w)| = 1},

Hen(t, x, p0, p)
.= sup
(w0,w)∈([0,+∞[×

�
m)∩S+

m

{−p0w
β
0 −〈p, fn(t, x, w0, w)〉− ln(t, x, w0, w)} ,

and the corresponding Hamilton-Jacobi-Bellman equations

(H Je) He(t, x, ut ,ux) = 0 ,

(H Jen) Hen(t, x, ut ,ux) = 0 .

For the sake of self consistency let us recall the definition of (possibly discontinuous) vis-
cosity solution, which was introduced by H. Ishii in [5].

Given a functionF : � → �
, � ⊆ �k , let us consider theupper and lower semicontinuous

envelopes,defined by

F∗(x)
.= lim

r→0+
sup{F(y) : y ∈ �, |x − y| ≤ r } ,

F∗(x)
.= lim

r→0+
inf{F(y) : y ∈ �, |x − y| ≤ r } , x ∈ � ,

respectively. Of course,F∗ is upper semicontinuous andF∗ is lower semicontinuous.

DEFINITION 1. Let E be a subset of
�s and let G be a real map, theHamiltonian, defined

on E × � × �s. An upper[resp. lower]-semicontinuous function u is a viscosity subsolution
[resp. supersolution] of

G(y,u,uy) = 0(7)
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at y ∈ E if for everyφ ∈ �1(
�s) such that y is a local maximum [resp. minimum] point of u−φ

on E one has
G∗(y, φ(y), φy(y)) ≤ 0

[resp.
G∗(y, φ(y), φy(y)) ≥ 0] .

A function u is a viscosity solution of (7) at y∈ E if u∗ is a viscosity subsolution at y and u∗ is
a viscosity supersolution at y.

THEOREM 3 (COMPARISON). AssumeA1-A5. Let u1 : [0, T ] × �k → �
be an upper

semicontinuous, bounded below, viscosity subsolution of(H Je) in ]0, T [×�k , continuous on
({0}×�k)∪ ({T}×�k). Let u2 : [0, T ] ×�k → �

be a lower semicontinuous, bounded below,
viscosity supersolution of(H Je) in [0, T [×�k . For every x∈ �k , assume that





u1(T, x) ≤ u2(T, x)
or

u2 is a viscosity supersolution of(H Je) at (T, x) .

Then
u1(t, x) ≤ u2(t, x) ∀(t, x) ∈ [0, T ] × �k .

The same statement holds true for the equations(H Jen).

As a consequence of this theorem and of a suitable dynamic programming principle for the
extended problems one can prove the following:

THEOREM 4. The value function Ve is the unique map which

i) is continuous on({0} × �k) ∪ ({T} × �k);

ii) is a viscosity solution of(H Je) in ]0, T [×�k ;

iii) satisfies the following mixed type boundary condition:

(BCem)





Ve(T, x) ≤ g(x) ∀x ∈ �k and





Ve(T, x) = g(x)
or

Ve is a viscosity supersolution of(H Je) at (T, x) .

Once we replace(H Je) by (H Jen), the same statement holds true for the maps Ven .

Finally let us recall a regularity result which will be useful in the proof of Theorem 1.

THEOREM 5. AssumeA1-A5 and fix R> 0. Then there exists R′ ≥ R and positive con-
stants C1, C2 such that

|Ve(t, x1)− Ve(t, x2)| ≤ C1ρl (C2|x2 − x1|)+ ρg(C2|x2 − x1|)

for every(t, x1) (t, x2) ∈ [0, T ] × B[0; R], whereρl andρg are the modulus appearing inA3
and the modulus of uniform continuity of g, respectively, corresponding to the compact[0, T ] ×
B[0; R′]. Moreover for everyt ∈ [0, T [ one has

|Ve(t, x)− Ve(t, x)| ≤ ηt (|t − t |)



142 F. Rampazzo – C. Sartori

for every(t, x) ∈ [0, T [×B[0; R], whereηt is a suitable modulus, and for every s,t → ηt (s) is
an increasing map. The same statement holds true for the mapsVen , with the sameηt .

REMARK 1. We do not need, for our purposes, an explicit expression ofηt , which, how-
ever, can be found in [8]. Also in that paper sharper regularity results are established. Finally let
us point out that though an estimate like the second one in Theorem 5 is not available fort = T
the mapVe is continuous on{T} × �k , (see Theorem 2).

4. Proof of the convergence theorem

Proof of Theorem 1.In view of Theorem 2 it is sufficient to show that the mapsVen converge to
Ve. Observe that the assumptions (4), (5) imply

| f n(t, x, w0, w)− f (t, x, w0, w)| ≤ ε(n)(wβ0 + |w|β )(8)

and

|l n(t, x, w0, w)− l (t, x, w0, w)| ≤ ε(n)(wβ0 + |w|β ) ,(9)

for every(t, x, w0, w) ∈ [0, T ] × Q × [0,∞[×�m and everyn ∈ � .

Moreover, by the coercivity conditionAe4 and by the obvious local uniform boundedness of
Ven, andVe when the initial conditions are taken in a ballB[0, R] it is not restrictive to consider
only those space time controls such that

∫ 1

0
(w0(s)+ |w(s)|)β ds ≤ KR(10)

whereKR is a suitable constant depending onR. By Hölder’s inequality we have also that

∫ 1

0
(w0(s)+ |w(s)|)αnw0(s)

β−αn ds ≤ (T + 1)(KR + 1) .

Hence by Gronwall’s Lemma, we can assume that there exists a ball B[0, R′] ⊂ �k containing
all the trajectories issuing fromB[0, R].

Let us fix T < T : by Theorem 5 the mapsVen are equicontinuous and equibounded on
[0, T ] × B[0, R], so we can apply Ascoli-Arzela’s Theorem to get a subsequence of Ven , still
denoted byVen , converging to a continuous function. Actually by takingR larger and larger,
via a standard diagonal procedure we can assume that theVen converge to a continuous function�

: [0, T ] × �k → �
, uniformly on compact sets of [0, T ] × �k . Now, for every(t, x) ∈

[0, T ] × �k , let us consider theweak limits

V(t, x)
.= lim sup

n→∞

(s,y)→(t,x)

(s,y)∈[0,T ]×�k

Ven(s, y)

and
V(t, x)

.= lim inf
n→∞

(s,y)→(t,x)

(s,y)∈[0,T ]×�k

Ven(s, y) .
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Our goal is to apply a method (see [2]) based on the application of the comparison theorem
(see Theorem 3) to these weak limits. Let us observe that bothV andV coincide with

�
on the

boundary{0} × �k : in particular they are continuous on{0} × �k . Since the HamiltoniansHen

converge toHe uniformly on compact subsets of [0, T ]×�k ×�×� k , standard arguments imply
that V is a (upper semicontinuous) viscosity subsolution of(H Je) in [0, T) × �k , while V is a
(lower semicontinuous) viscosity supersolution of(H Je) in [0, T)×�k . Hence the convergence
result is proven as soon as one shows thatV ≤ V in [0, T ] × �k . For this purpose it is sufficient
to show thatV andV verify the hypotheses of Theorem 3. Actually the only hypothesis which
is left to be verified is the one concerning the boundary subset {T} × �k . We claim that

lim
n→∞

(s,y)→(T,x)

(s,y)∈[0,T ]×�k

Ven(s, y) = Ve(T, x)(11)

which impliesV(T, ·) = V(T, ·) = Ve(T, ·). In particular the mapsV(T, ·) andV(T, ·) turn out
to be continuous, so all assumptions of Theorem 3 are verified. The remaining part of this proof
is thus devoted to prove (11). Let us considerx1, x2 ∈ B[0, R] and controls(0, wn) ∈ 0(T)
such that, setting(tn, xn)

.= (t, y)n
(T,x1)

[0, wn](·), we have

Ven(T, x1) ≥
∫ 1

0
l n(tn, xn,0, wn)(s)ds+ gn(xn(1))− ε .

Hence, setting(t̃n, x̃n)
.= (t, y)(T,x2)[0, wn](·) and noticing that̃tn(s) = tn(s) = T ∀s ∈ [0, 1],

we have

Ve(T, x2)− Ven(T, x1) ≤
∫ 1

0
l (T, x̃n,0, wn)(s)ds+ gn(x̃n(1))

−
∫ 1

0
l n(T, xn,0, wn)(s) ds− gn(xn(1))+ ε

≤
∫ 1

0
|wn(s)|β [ε(n)+ ρl (|x̃n(s)− xn(s)|)] ds

+ρg(|x̃n(1)− xn(1)|)+ ε(n)+ ε ,

whereε(n), ρl andρg (seeA3 andA5) are determined with reference to the compact subset
Q = B[0, R′]. If L R′ is the determination ofL in (Ae1) for B[0, R′] then

|x̃n(s)− xn(s)| ≤ (|x1 − x2| + ε(n)(T + 1)(KR + 1))eL R′ (T+1)(K R+1) .

This, together with the fact that a similar inequality can beproved (in a similar way) when the
roles ofVe andVen are interchanged, implies

|Ve(T, x2)− Ven(T, x1)| ≤ KRρl
[
(|x1 − x2|

+ ε(n)(T + 1)(KR + 1))eL R′ (T+1)(K R+1)
]

+ ρg

[
(|x1 − x2| + ε(n)(T + 1)(KR + 1))eL R′ (T+1)(K R+1)

]

+ (KR + 1)ε(n) .

(12)
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Now, for τ ≤ T , let us estimate the differenceVen(τ, x) − Ve(T, x), assuming that this
difference is non negative. Let us set(tn, xn)(·) .= (t, y)n

(τ,x)(w̃0,0)(·) with w̃0(s)
.= (T −

τ)
1
β ∀s ∈ [0, 1]. Then the Dynamic Programming Principle

Ven(τ, x)− Ve(T, x) ≤
∫ 1

0
ln(tn, xn, w̃0,0)(s) ds+ Ven(T, xn(1))− Ve(T, x) .

If M
.= max{M1 + M2,1}, by (Ae2) we have|xn(1) − x| ≤ M(1 + R′)|T − τ |. Hence, if

K ′
R ≥ max

(t,x)∈[0,T]×B[0,R′]
n∈�

l n(t, x, 1, 0), by the positive homogeneity ofl n and by the first part of

the proof we obtain

Ven(τ, x)− Ve(T, x) ≤ K ′
R|T − τ | + σn(|T − τ |)(13)

where

σn(s) =KRρl [(M(1 + R′)s + ε(n)(T + 1)(KR + 1))eL R′ (T+1)(K R+1)]

+ ρg[(M(1 + R′)s + ε(n)(T + 1)(KR + 1))eL R′ (T+1)(K R+1)] + (KR + 1)ε(n) .

Now let us estimate the differenceVe(T, x)−Ven (τ, x), assuming it non negative. Let us consider
a sequence of controls(w0n, wn) ∈ 0(τ) such that, setting(tn, xn)

.= (t, y)n
(τ,x)[w0n, wn](·),

one has

Ven(τ, x) ≥
∫ 1

0
ln(tn, xn, w0n, wn)(s)ds+ gn(xn(1))− ε .

Then the controls(0, wn) belong to0(T), and, setting(t̃n, x̃n)
.= (t, y)[0, wn](·), we obtain

Ve(T, x)− Ven(τ, x) ≤
∫ 1

0
l (t̃n, x̃n,0, wn)(s)ds+ g(x̃n(1))

−
∫ 1

0
ln(tn, xn, w0n, wn)(s)ds− gn(xn(1))+ ε

(14)

for everyn ∈ � . Now one has

|xn(s)− x̃n(s)| ≤
∫ 1

0
| f n(tn, xn, w0n, wn)(s)− f (t̃n, x̃n, 0, wn)(s)| ds

≤
∫ 1

0
| f n(tn, xn, w0n, wn)(s)− f (tn, xn, w0n, wn)(s)| ds

+
∫ 1

0
| f (tn, xn, w0n, wn)(s)− f (t̃n, xn, w0n, wn)(s)| ds

+
∫ 1

0
| f (t̃n, xn, w0n, wn)(s)− f (t̃n, x̃n, w0n, wn)(s)| ds

+
∫ 1

0
| f (t̃n, x̃n, w0n, wn)(s)− f (t̃n, x̃n,0, wn)(s)| ds.

(15)

for all s ∈ [0,1]. In view of the parameter-free character of the system (see e.g. [7] for the case
α = β = 1), it is easy to show that one can transform the integral bound (10) into the pointwise
bound

|(w0, w)(s)| ≤ K̃R ∀s ∈ [0, 1] ,
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whereK̃R is a constant depending onR. Therefore, in view of basic continuity properties of the
composition operator, there exists a modulusρ such that the last integral in the above inequality
is smaller than or equal toρ(|T − τ |). Therefore, applying Gronwall’s inequality to (15) we
obtain

|xn(s)− x̃n(s)| ≤(T + 1)(KR + 1)[ε(n)+ ρ f (|T − τ |)
+ ρ(|T − τ |)]eL R′ (T+1)(K R+1) .

(16)

Hence (14) yields

Ve(T, x) − Ven(τ, x) ≤
∫ 1

0
|l (t̃n, x̃n,0, wn)(s)− l (t̃n, xn,0, wn)(s)| ds

+
∫ 1

0
|l (t̃n, xn,0, wn)(s)| ds− l (tn, xn,0, wn)(s)| ds

+
∫ 1

0
|l (tn, xn,0, wn)(s)− l (tn, xn, w0n, wn)(s)ds

+
∫ 1

0
|l (tn, xn, w0n, wn)(s)− ln(tn, xn, w0n, wn)(s)| ds

+ ρg(|xn(1)− x̃n(1)|) .

(17)

Again, an argument based on the continuity properties of thecomposition operator allows one to
conclude that there exists a modulusρ̃ such that

∫ 1

0
|l (tn, xn,0, wn)(s)− l (tn, xn, w0n, wn)(s)| ds ≤ ρ̃(|T − τ |)

Therefore, plugging (15) into (16), we obtain

Ve(T, x) − Ven(τ, x) ≤PR(ρl + ρg)[ PR(ε(n)+ ρ f (|T − τ |)+ ρ(|T − τ |))eL R′ PR]

+ PR[ρl (|T − τ |)+ ε(n)] + ρ̃(|T − τ |) ,
(18)

wherePR
.= (T + 1)(KR + 1).

Estimates (12), (13) and (18) imply the claim, so the theoremis proved.

5. Implementing optimal controls in the presence of perturbations

As an application of Theorem 1, Theorems 6 and 7 below provide, for the special case of the
linear quadratic problem, an answer to the general questions Q1 andQ2, respectively. Let us re-
mark that the perturbation we consider is not the most general among those allowed by Theorem
1. However, it well illustrates the degree of improvement with respect to previous results con-
cerning questions likeQ1 andQ2 (see Introduction). Let us also remark that the linear-quadratic
problem is just a model case. Indeed, it is evident that Theorem 6 below holds also if we replace
the linear-quadratic problem with a problem that (satisfy hypothesesA1-A5, (4), and (5) and)
admits an optimalLβ control, while Theorem 7 is still valid for any problem for which ( f is Lip-
schitz inc uniformly for (t, x) in a compact subset of [0, T ] × �k and) a Lipschitz continuous
feedback controlc(x) does exist.
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Let us be more precise by stating that by linear-quadratic problem we mean here an optimal
control problem as the ones considered in the previous sections, with

f = f (x, c)
.= Ax + Bc l(x, c)

.= xt Dx + ct Ec g(x) = xt Sx,

whereD, E, S are symmetric matrices (of suitable dimensions),D andS are nonnegative defi-
nite, F is positive definite, while no assumptions are made onA, B,C. Let us observe that the
fields f, l , g satisfies hypothesesA1-A5. In particular, one hasα = 1, β = 2, and30 is the
smallest eigenvalue ofE.

Let us consider the following perturbations of the mapsf, l , g:

fn
.= Ax + Bc+ ϕn(t, x, c)

ln
.= xt Dx + ct Ec+ θn(t, x, c)

gn
.= xt Sx+ ψn(x) .

We assume that for each compact subsetQ ⊂ �k there exist a constantλ and moduliρ andρ
such that:

i) For every n, the mapϕn : [0, T ] × �k × �m → �k is continuous and verifies

|ϕn(t1, x1, c)− ϕn(t2, x2, c)| ≤ (1 + |c|αn )(3|x1 − x2| + ρ(|t1 − t2|)

for all (t1, x1, c), (t2, x2, c) ∈ [0, T ] × Q × �m and for a suitableαn ∈ [1, 2] (varying
with n and independent of Q).

ii) There exist constantsµ1, µ2 such that for every n∈ � one has

|ϕn(t, x, c)| ≤ µ1(1 + |c|αn )(1 + |x|) + µ2(1 + |c|αn )

for every(t, x, c) ∈ [0, T ] × �k × �m.

iii) For every n∈ � , θn : [0, T ] × �k × �m → �k is continuous and verifies

|θn(t1, x1, c)− θn(t2, x2, c)| ≤ (1 + |c|2)ρ(|(t1, x1)− (t2, x2)|)

for every(t1, x1, c), (t2, x2, c) ∈ [0, T ] × Q × �m.

iv) There exist a (possibly negative) constantλ0, strictly larger than the opposite of the small-
est eigenvalue of E, and a positive constantλ1 such that

θn(t, x, c) ≥ λ0|c|2 − λ1

for every n and every(t, x, c) ∈ [0, T ] × �k × �m.

v) ψn :
�k → �

is continuous andψn ≥ 0.

Moreover we assume that for every compact Q⊂ �k there exists a functionε : � → � ,
infinitesimal as n→ ∞ such that

|φn(x, c)| ≤ ε(n)(1 + |c|2) ,
|θn(x, c)| ≤ ε(n)(1 + |c|2)

for every(x, c) ∈ Q × �m and
|ψn(x)| ≤ ε(n)

for every x∈ Q.
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REMARK 2. Let us observe that the above assumptions imply that the hypotheses of the
convergence theorem (Theorem 1) are verified. Let us also point out that we allowαn to be
equalto β(= 2) (see Remark 1).

THEOREM 6 (OPEN LOOP). Fix (t̄, x̄) ∈ [0, T ] × �k . Assume thatc is an optimal control
for the unperturbed problem that is J(t̄, x̄, c) = V(t̄, x̄). Thenc is nearly optimal for the
perturbed problem, i.e.,

lim
n→∞

|Jn(t̄, x̄, c)− Ven(t̄, x̄)| = 0 .(19)

Proof. As in the proof of Theorem 1, when the initial condition are taken in a ballB[0, R], by
the coercivity conditionA4 we can consider only controls such that

∫ T

0
(1 + |c(s)|)2 ds ≤ KR ,

whereKR is a suitable constant depending onR. Then, by Hölder’s inequality we have also,

∫ T

0
(1 + |c(s)|)αn ds ≤ (KR + 1)(T + 1)

which, by Gronwall’s inequality, implies that there is a ball B[0, R′] which contains all the
trajectories issuing fromB[0, R]. Settingx(·) .= x(t̄ ,x̄)[c](·) andxn(·) .= xn

(t̄,x̄)
[c](·), we have

|xn(t)− x(t)| ≤
∫ T

t̄
| fn(s, xn(s), c(s))− f (s, x(s), c(s))| ds

≤
∫ T

t̄
|Axn(s)− Ax(s) + φn(xn, c)(s)| ds

≤ (T + 1)(KR + 1)ε(n)+ ‖A‖
∫ T

t̄
(|xn(s)− x(s)|) ds

(20)

whereε(n) is relative toB[0, R] and‖A‖ is the operator norm of the matrixA. Hence, Gron-
wall’s Lemma implies

|xn(s)− x(s)| ≤ (T + 1)(KR + 1)ε(n)e‖A‖T ,(21)

for everyt ∈ [ t̄, T ]. Since

|Jn(t, x, c)− J(t, x, c)| ≤
∫ T

t̄
|xn(s)

t Dxn(s)− x(s)t Dx(s)| ds

+
∫ T

t̄
|θn(xn(s), c(s))| ds

+ |xn(T)
t Sxn(T)− x(T)t Sx(T)| + |ψn(xn(T))|

≤ ‖D‖
∫ T

t̄
|xn(s)− x(s)|(|xn(s|)+ |x(s)|) ds

+ ‖S‖|xn(s)− x(s)|(|xn(T)| + |x(T)|)+ ε(n)(1 + KR) ,

(22)

in view of estimate (22) and of Theorem 1, the theorem is proven.
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THEOREM 7. Let c(x) be a locally Lipschitz continuous optimal feedback controlfor the
unperturbed problem. Then this control is nearly optimal for the perturbed problem, that is

lim
n→∞

|Jn(t̄, x̄, c) − Ven(t̄, x̄)| = 0 .

Proof. If we denote byx(·) andxn(·) the solutions to (E) to (En), respectively, corresponding
to the feedback controlc(x), we obtain

|xn(t)− x(t)| ≤
∫ T

t̄
| fn(s, xn(s), c(xn(s)))− f (s, x(s), c(x(s)))| ds

≤
∫ T

t̄
|Axn(s)+ Bc(xn(s))− Ax(s)− Bc(x(s))| ds

+
∫ T

t̄
|φn(xn(s), c(xn(s))| ds

≤
∫ T

t̄
(‖A‖ + ‖B‖γ )(|xn(s)− x(s)| ds+ (T + 1)(KR + 1)ε(n)

whereγ is the Lipschitz constant of the mapc(x) corresponding to the compact setB[0, R′].
Hence one has

|xn(s)− x(s)| ≤ (T + 1)(KR + 1)ε(n)eT‖A‖+‖B‖γ ,

and from here on one can proceed as in the proof of Theorem 6.

REMARK 3. As we have mentioned in the Introduction, whenαn = β it may happen that
a perturbed problem (Pn) does not possess a minimum in the class of absolutely continuous
trajectories. Indeed, due to the fact that the growth ratioβαn

(= 1) is not greater than 1, the
minimizing sequences could converge to adiscontinuous trajectory. In this case, the possibility
of implementing a control that is optimal for the unperturbed system – which is now assumed
sufficiently coercive, that is, satisfyingα < β – turns out to be of some interest whenever one is
worried to avoid a discontinuous performance of the system under consideration.

To be more concrete, let us consider the very simple (linear-quadratic) minimum-problem
wherel = x2 + 30c2 and f = 0. In this caseβ = 2 andα can be taken equal to 1. Let us

perturb this problem by takingln = l and fn = f + ϕn = ϕn
.= −c2

n . Observe that these
perturbations give rise toquadratic-quadraticproblems, that is problems whereαn = β = 2.
Let us consider the initial datāt = 0 and x̄ > 0. The constant mapx(t) = x̄ is the unique
trajectory of the unperturbed system, so the controlĉ(t) = 0∀t ∈ [0, T ] turns out to be optimal.
In view of Theorem 6 this control is nearly optimal for the perturbed problems as well. However,
as soon̄x is sufficiently large and30 is sufficiently small with respect to1n , an application of the
Maximum Principle to the space-time extension of the perturbed system shows that the “optimal
trajectory” of the perturbed problem is the concatenation of an “initial jump” (from x̄ to a point
xn ∈]0, x̄[) and a suitable absolutely continuous map.
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