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Abstract

In this paper we introduce a kind of asymmetric distribution for non-
negative data called log-proportional hazard distribution (LPHF). This new
distribution is used to study an asymmetrical regression model for data with
limited responses (censored) through the mixture of a Bernoulli distribution
with logit link and the LPHF distribution. Properties of the LPHF distribu-
tion are studied, maximum likelihood parameter estimation and information
matrices are addressed. An illustration with real data shows that the model
is a new alternative for studies with positive data censored.

Key words: Censoring, Fisher information matrix, Maximum likelihood es-
timators, Proportional hazard.

Resumen

En este artículo se introduce una forma de distribución asimétrica para
datos no-negativos llamada distribución log hazard proporcional (LPHF).
Esta nueva distribución es usada para estudiar un modelo de regresión asimé-
trico para datos con respuestas limitadas (censuradas) a través de mezclas
de una distribución Bernoulli con función link logit y la distribución LPHF.
Propiedades de la distribución LPHF son estudiadas, se abordan las estima-
ciones de máxima verosimilitud de los parámetros y las matrices de informa-
ción. Se presenta una ilustración con datos reales, donde se muestra que el
modelo propuesto es una nueva alternativa para estudios con datos positivos
censurados.

Palabras clave: censura, estimadores de máxima verosimilitud, hazard pro-
porcional, matriz de información de Fisher.

aProfessor. E-mail: gmartinez@correo.unicordoba.edu.co
bAssociate professor. E-mail: carlosbarrera@itm.edu.co

181



182 Guillermo Martínez-Flórez & Carlos Barrera

1. Introduction

The fundamental law of geochemistry enunciated by Ahrens (1954), “the con-
centration of a chemical element in a rock is distributed log-normal”, is an ap-
plication of the log-normal distribution. This distribution is also widely used to
model different types of information, including income in the economy and lifetime
distributions from materials, among others.

In many of these situations, both the kurtosis and the asymmetry of the dis-
tribution are above or below the expected for the log-normal model, reason why
it is necessary to think in a more flexible model that achieves such deviation in
modeling positive data.

In the case of positive data, Azzalini, dal Cappello & Kotz (2003), Mateu-
Figueras & Pawlosky-Glanh (2003) and Mateu-Figueras, Pawlosky-Glanh & Barcelo-
Vidal (2004) introduce the univariate distribution log-skew-normal (LSN), which
contains as special case, the log-normal model.

Its density function is given by:

φLSN (y; ξ, η, λ) =
2

ηy
φ

(
log(y)− ξ

η

)
Φ

(
λ

log(y)− ξ
η

)
, y ∈ R+

where ξ ∈ R, is a location parameter, η ∈ R+, is a scale parameter, λ is an asym-
metry parameter, φ(·) is the density function of a standard normal distribution
and Φ(·) is the respective cumulative distribution function. Notice that if λ = 0
then the ordinary log-normal distribution follows as it is the case with the ordinary
skew-normal model. Also, the information matrix is singular, thus regularity con-
ditions are no longer satisfied. One consequence of this fact is that likelihood ratio
statistics is no longer distributed according to the central chi-square distribution
(Arellano-Valle & Azzalini 2008).

Moreover, in many cases the asymmetrical positive random variable in the
study is limited, and in turn this is explained by a set of auxiliary covariates
X1, X2, ..., Xp, thus extensions to the censured case with covariates should be
addressed. The study of random variables with limited responders with covariates
was presented by Tobin (1958) who studied the model popularly known as Tobit.

This model has been extensively studied in the case of normally distributed
errors and is defined by considering that the observed random variable yi =
max{y∗i , 0} with y∗i = x′iβ+εi, i = 1, 2, . . . , n; where the error term εi ∼ N(0, σ2),
i = 1, . . . , n, xi is a p× 1 vector of known independent variables and β is a p× 1
unknown parameter vector.

Although the Tobit model is an alternative for censoring data; in some situa-
tions the proportion of censored data cannot be well explained by the normal
model since the tail of this distribution is more or less heavier than the proportion
of censored data.

For instance, Moulton & Halsey (1995) show an application with 330 children
in Haiti during 1987-1990 (see Job, Halsey, Boulos, Holt, Farrell, Albrecht, Brutus,
Adrien, Andre, Chan, Kissinger, Boulos & the CiteSoleil/JHU 1991) which exami-
nes the; Immunogenecity of children before the implementation of a vaccine, here
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the number of observations below the detection limit was 86 observations (26.1%),
which exceeds the expected value with a normal model, whereby the proportion of
censure cannot be explained by the Tobit model. These authors use asymmetric
models such as log-normal model.

In this sense, other works have been published, for instance, other distributions:
such as the log-skew-normal has been implemented by Chai & Bailey (2008) and
recently, Martínez-Florez, Bolfarine & Gómez (2013) implemented the model log-
alpha-power-normal.

The model proposed by Moulton & Halsey (1995) is a generalization of the
Cragg (1971) model, that in the classical literature is known as the two-part model,
which is an alternative to Tobit when the data rate below or above the threshold
is quite different from the probability of the tail obtained with the normal model.

The probability density function of yi under Cragg (1971) model can be ex-
pressed as

g(yi) = piIi + (1− pi)f(yi)(1− Ii)

where pi is the probability determining the relative contribution made by the
point distribution to the overall mixture distribution, f is a density function with
positive support, and Ii = 0 if yi > T and Ii = 1 if yi ≤ T.

Given the nature of the random variables involved in the Cragg (1971) model,
different processes determine the respective components of the model.

A positive response necessarily comes from f, on the other hand, a T value
comes from the point mass distribution. This model, however, does not consider
the situation of a lower limit and that part of the observations may be below this
lower limit.

If allowed to some limiting responses are the result of interval censored to f ,
we have the generalization of the two-part model exposed by Moulton & Halsey
(1995). This means that an observed T value can be either a realization from
the point-mass distribution or a partial observation from f with critical value not
precisely known but lying somewhat in (0, T ) for a small pre-specified constant T .
Formally,

g(yi) = [pi + (1− pi)F (T )]Ii + (1− pi)f(yi)(1− Ii)

where F is the cumulative distribution corresponding to f. If we vary the ba-
sic density f and the link function corresponding to pi, we can generate a large
family of mixed models. Models such as probit/trucated-normal, logit/lognormal,
logit/log-gamma, probit/log-skew-normal and logit/log-alpha-power normal have
been considered in practical applications in biology, economy, agricultural and so
on (Chai & Bailey 2008, Martínez-Florez, Bolfarine & Gómez 2013). Notice that
for pi = 0, i = 1, . . . , n, Moulton & Halsey (1995) model reduces to the Tobit
model (Tobin 1958).

This is an extension of the log-normal distribution allowing for one extra pa-
rameter which will be presented in the next section.
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2. Proportional Hazard Distribution

Recently, Martínez-Florez, Moreno-Arenas & Vergara-Cardozo (2013) intro-
duced a new asymmetric model which is called proportional hazard model, this
model is defined as follows:

Let F be a continuous cumulative distribution function with probability density
function f , and hazard function h = f/(1−F ). We say that Z has a proportional
hazard distribution associated with F , f and the parameter α > 0 if its probability
density function is

ϕF (z;α) = αf(z){1− F (z)}α−1, z ∈ R,

where α is a positive real number. We use the notation Z ∼ PHF (α). The
distribution function of the PHF model is given by

F(z) = 1− {1− F (z)}α, z ∈ R.

This is why this type of distribution can also be regarded as an exponentia-
ted distribution or a fractional order statistic distribution, widely studied in the
literature.

If Z is a random variable from a standard PHF (α) distribution then the
location-scale extension of Z is obtained from the transformation X = ξ + ηZ,
where ξ ∈ R and η ∈ R+, is a scale parameter.

In the particular case where F = Φ(·), we have the family of distributions
called proportional hazard normal (PHN) and denoted PHN(ξ, η, α).

In Martínez-Florez, Moreno-Arenas & Vergara-Cardozo (2013), we can see the
behavior of the PHN(0, 1, α) density and the model hazard function for some
values of the α parameter.

2.1. Log Proportional-Hazard Distribution

Let Y be a random variable with support in R+, we say that Y follows a uni-
variate log-proportional-hazard distribution with parameter α, if the transformed
variable X = log(Y ) ∼ PHF (α). We denote Y ∼ LPHF (α).

Then, the pdf for the random variable Y can be written as

ϕLF (y;α) =
α

y
f(log(y)) {1− F (log(y))}α−1

, y ∈ R+

where F is an absolutely continuous distribution function with density function
f = dF . This model is called standard log proportional-hazard distribution.

Let X ∼ PHF (ξ, η, α), where ξ ∈ R is a location parameter and η ∈ R+ is a
scale parameter. Hence, the transformation X = ln(Y ) leads to the location-scale
log proportional-hazard model, with pdf given by

ϕLF (y; ξ, η, α) =
α

ηy
f

(
log(y)− ξ

η

){
1− F

(
log(y)− ξ

η

)}α−1

, y ∈ R+
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We use the notation Y ∼ LPHF (ξ, η, α), so that LPHN(α) = LPHN(0, 1, α).
Its cumulative distribution function can be written as

FF (y;α) = 1− {1− F (log(y))}α , y ∈ R+. (1)

According to (1), the inversion method can be used for generating from a
random variable with distribution LPHF (ξ, η, α). That is, if U ∼ U(0, 1), then,
random variable Y = eξ+ηF

−1(1−(1−U)1/α) is distributed according to the LPHF
distribution with vector of parameters θ = (ξ, η, α)′.

In the special case where f = φ(·) and F = Φ(·), the density and distribution
functions of the standard normal distribution, respectively, we have the standard
log proportional-hazard-normal distribution.

We will denote this extension by using the notation Y ∼ LPHN(ξ, η, α).
Figure 1 shows the pdf’s for the LPHN distribution for α equals 0.75, 1, 2 and

3. Is clearly seen that the shape of the distribution is affected when changes the
value of α. For the log-normal case, when α = 1, the kurtosis is smaller than
when α = 2 and, similarly, for the log-skew case, when α = 3. Furthermore,
when α = 0.75 the kurtosis for the log-normal is greater. Asymmetry is always
positive and also controlled by parameter α. Hence, α controls asymmetry as well
as kurtosis for the LPHN distribution.
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Figure 1: Plots of pdf ϕLΦ(y; 0.5, 0.75, α), for α equals to 3 (solid line), 2 (dashed line),
1 (dotted line) and 0.75 (dashed and dotted line).

The r-th moment for the random variable Y ∼ LPHN is calculated numer-
ically. Using the results of the central moments µ́r, the coefficients of variation,
asymmetry and kurtosis are obtained.

Figure 2 shows the behavior of the mean and the coefficients of asymmetry and
kurtosis of the LPHN model.

The survival and hazard functions for the LPHN model are, respectively, given
by

S(t) = {1− Φ(log(t))}α and r(t) =
α

t

φ(log(t))

1− Φ(log(t))
= αrLN (t)
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Figure 2: Behavior of some characteristic values of the LPHN model. (a) mean, (b)
asymmetry coefficient and (c) coefficient of kurtosis.

where rLN (·) is the hazard function of the log-normal distribution. Then, the
hazard index T is proportional to the hazard index of the log-normal distribution.

2.2. Inference for Log Proportional-Hazard-Normal Model

For a random sample of size n, Y = (Y1, Y2, . . . , Yn)′ with Yi ∼ LPHN(ξ, η, α),
the log-likelihood function of θ = (ξ, η, α)′ given Y is

`(θ; Y) = n log(α)−n log(η)−
n∑
i=1

log(y)+

n∑
i=1

log(φ(zi))+(α−1)

n∑
i=1

log(1− Φ(zi)),

where zi = log(yi)−ξ
η . The corresponding score equations are similar to the obtained

in Martínez-Florez, Moreno-Arenas & Vergara-Cardozo (2013), we only need to
consider the change in the log-likelihood function and obtain the MLE estimators
using numerical methods.
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The observed information matrix for location-scale PHN follows from minus
the second derivatives of the log-likelihood function. This result is similar to that
obtained by Martínez-Florez, Moreno-Arenas & Vergara-Cardozo (2013) but with
minor changes due to the difference in the log-likelihood function.

2.2.1. Expected Information Matrix for the Location-Scale PHN

Considering akj = E{zki w
j
i }, where wi = φ(zi)

1−Φ(zi)
, the expected information

matrix entries are:

Iξξ =
1

η2
[1 + (α− 1)(a02 − a11)] Iηξ =

2

η2
a10 +

α− 1

η2
[a01 − a02 + a12]

Iηη = − 1

η2
+

3

η2
a20 +

α− 1

η2
[a22 + 2a11 − a31]

Iαξ = −1

η
a01 Iαη = −1

η
a11 Iαα =

1

α2

The expected values of the above variables are generally calculated using nu-
merical integration. When α = 1, ϕLΦ(x; ξ, η, 1) = 1

ηyφ
(

log(y)−ξ
η

)
, the location-

scale log-normal density function. Thus, the information matrix becomes

I(θ) =

 1/η2 0 −a01/η

0 2/η2 −a11/η

−a01/η −a11/η 1


Numerical integration shows that the determinant is |I(θ)| = 1

η4 [2 − a2
11 −

2a2
01] 6= 0, so in the case of a log-normal distribution the model’s information ma-

trix is nonsingular. The upper left 2×2 submatrix is the log-normal distribution’s
information matrix.

For large n and under regularity conditions we have

θ̂
A→ N3(θ, I(θ)−1)

and the conclusion follows that θ̂ is consistent and asymptotically approaches the
normal distribution with I(θ)−1 as covariance matrix, for large samples.

This result shows that the information matrix for the LPHN model is nonsin-
gular and therefore the inference for large samples can be made, contrary to the
log-skew-normal model, whose information matrix is singular when λ = 0, that
consequently resulting likelihood ratio statistic is not distributed as a chi-square.

Note that as in the LPHN model, the information matrix of the log-skew-
normal model has the same structure or shape that the location-scale skew-normal
model, SN(ξ, η, λ), where now Z = (log(y)−ξ)/η. Is well known and was demons-
trated by Azzalini (1985), that the information matrix of the skew-normal model
is singular when its parameter of asymmetry λ = 0.
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3. Asymmetric Regression Model Logit/LPHN

We now extend the LPHN model to the case of random variables with a limit of
detection and the presence of covariates. Specifically, we consider the case of mo-
dels with limited response and excess zeros in the response variable. Considering
extensions of the generalized the two-part model of Moulton & Halsey (1995) to the
situations logit/log proportional hazard-normal model, jointly with covariates at
each step of the model. Initially, we develop the case of censored random variables
LPHN. Thus, calling p0 the proportion of observations at or below threshold point
T , the censored model LPHN(ξ, η, α) is represented by the probability density
function

g(yi) =

p0i + (1− p0i)
[
1−

{
1− Φ

(
log(T )−ξ

η

)}α]
, if yi ≤ T

(1− p0i)
α
ηyφ

(
log(yi)−ξ

η

){
1− Φ

(
log(yi)−ξ

η

)}α−1

, if yi > T

Now we extend this model to the case of presence of covariates in limited
response and when the response is not limited.

The above model can be extended to the situation where only a proportion
100p0% of censored observations comes from the censored LPHN, with the re-
maining 100(1 − p0)% of the observations coming from the population of low
responders, located below or at the point T.

Modeling this mixture as the outcome of a Bernoulli random variable D with

pr(D = 1) = 1− p0

while for D = 0, Y ≤ T with probability one. The contribution of yi to the
likelihood conditioning on D = 1 when Y is assumed to follow a LPHN model can
be written as[

1− (1− p0)

{
1− Φ

(
log(T )− ξ

η

)}α]Ii
[

(1− p0)α

ηyi
φ

(
log(yi)− ξ

η

){
1− Φ

(
log(yi)− ξ

η

)}α−1
]1−Ii

Then, assuming that the response yi = T is explained by the set of explana-
tory variables X11, X12, . . . , X1p, then we model this mixture as the outcome of a
Bernoulli random variable with logit link function with

p0i = prob(yi = T ) =
exp (x′(1)iβ(1))

1 + exp (x′(1)iβ(1))

and
1− p0i =

1

1 + exp (x′(1)iβ(1))

Revista Colombiana de Estadística 37 (2014) 181–196



Asymmetric Regression Models 189

where x(1)i = (1, x1i1, . . . , x1ip)
′, is a covariate vector of dimension p+1 associated

with the parameter vectors β(1) = (β10, β11, . . . , β1p)
′.

Taking into account the LPHN model, we have a covariate vector x(2) =
(1, X21, X22, . . . , X2r)

′ of dimension r, possibly different from x(1) and parameter
vector β(2) = (β20, β21, . . . , β2r)

′, for which

log(yi) ∼ PHN(x′(2)iβ(2), η, α), yi > T

where x(2)i = (1, x2i1, . . . , x2ir)
′.

This mixture of distributions we will call “linear logistic regression model” with
proportional hazard-normal distribution and will be denoted by

RLLPHN(β(1), β(2), η, α)

The logarithm of the likelihood function for θ = (β′(1),β
′
(2), η, α)′ given X(1),

X(2) and Y, is given by

`(θ) =
∑
i

Ii log
[
1 + exp(x′(1)iβ(1)) [1− {1− Φ(zTi)}α]

]
−

n∑
i=1

log
[
1 + exp(x′(1)iβ(1))

]
+
∑
i

(1− Ii)
{

log(α)− log(ηyi) + x′(1)iβ(1) + log(φ(zi)) + (α− 1) log(1− Φ(zi))
}

where zTi =
log(T )−x′(2)iβ(2)

η and zi =
log(yi)−x′(2)iβ(2)

η .

We denote by
∑

0 the sum over censored observations and
∑

1 the sum over
noncensored observations. The score function corresponding to the log-likelihood
function is given by (for j = 1, 2, . . . , p and k = 1, 2, . . . , r)

U(β(1)j) =
∑

0

x1ij exp(x′(1)iβ(1)) [1− {1− Φ(zTi)}
α

]

1 + exp(x′(1)iβ(1)) [1− {1− Φ(zTi)}
α

]

−
n∑
i=1

x1ij exp(x′(1)iβ(1))

1 + exp(x′(1)iβ(1))
+
∑

1

x1ij
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U(β(2)k) = −
∑

0

x2ik exp(x′(1)iβ(1))ϕLΦ(T, x′(2)iβ(2), η, α)

1 + exp(x′(1)iβ(1)) [1− {1− Φ(zTi)}
α

]

− 1

η

∑
1

x2ik

[
−zi − (α− 1)

φ (zi)

1− Φ (zi)

]

U(η) = −
∑

0

zTi exp(x′(1)iβ(1))ϕLΦ(T, x′(2)iβ(2), η, α)

1 + exp(x′(1)iβ(1)) [1− {1− Φ(zTi)}
α

]

− 1

η

∑
1

[
1− z2

i − (α− 1)zi
φ (zi)

1− Φ (zi)

]

U(α) = −
∑

0

exp(x′(1)iβ(1)) {1− Φ (zTi)}
α

log (1− Φ(zTi))

1 + exp(x′(1)iβ(1)) [1− {1− Φ(zTi)}
α

]

+
∑

1

[
1

α
+ log (1− Φ(zi))

]

The system of equations obtained by equating the score to zero has no solution
in closed form, and tends to be solved using iterative numerical methods.

The resulting equations require numerical procedures such as the Newton-
Raphson or quasi-Newton method. These optimization algorithms can be found
in the packages maxLik or optimx of the R software.

The observed information matrix is given by J(θ) = −H(θ) = − ∂2`(θ)

∂θ∂θT
, where

H(θ) is the hessian matrix, which is obtained in the Appendix for the vector of
parameters θ. In addition can be obtained information matrix defined as less n−1

times the expected value of the observed information matrix.

4. Numerical Illustration

The application of the logit/LPHN model, is carried out using the data des-
cribed by Moulton & Halsey (1995) in a study of measles vaccines conducted in
Haiti during 1987-1990. The detection limit was 0.1 international units (UI), or
log(0.1) = −2.306 in the natural log-scale. The codification for the covariates
involved in the study were X1 = EZ (vaccine type; 0:Schwarz , 1:Edmonston-
Zagreb); X2 = HI (vaccine dose; 0:medium, 1:high) and X3 = FEM (gender;
0:male, 1:female).

Such as Moulton & Halsey (1995), the aim in the present analysis is to study the
immunogenicity differential between boys and girls using the logit/ log-proportional-
hazard-normal (logit/LPHN) model.
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4.1. Models

A variety of models can be adjusted given the covariates in the study. We adjust
some of these models were carefully chosen from the cases studied by Moulton &
Halsey (1995).

Model 1: Covariates and censored data in limited response, without censored
data and covariates in the point-mass distribution located at zero;

Model 2: Censored data and covariates in limited response, without covariates
in the point-mass distribution located at zero;

Model 3: Censored data, covariates in limited response and in the point-mass
distribution located at zero;

Model 4: Censored data, covariates in limited response and in the point-mass
distribution located at zero, a particular model.

The summary statistics we have log(y) = −0.1793, s2 = 1.1055,
√
b1 = 0.7521

and b2 = 2.6286 where the quantities
√
b1 and b2 correspond to the sample coe-

fficients of asymmetry and kurtosis for values above 0.1. The high asymmetry
degree indicated by the sample coefficient of asymmetry (

√
b1) reveals that it

seems worthwhile trying to fit an asymmetric model for this data set.

Moulton & Halsey (1995), and Moulton & Halsey (1996) modeled this data
using the hybrids logit/log-normal (logit/LN) and logit/log-gamma (logit/LGM)
models.

As a first attempt, we fitted the ordinary Tobit model with covariates (model
1), which resulted in a poor fit to the data set under study. Here β̂(2)0 = 0.565,

β̂(2)1 = 0.248, β̂(2)2 = −0.191 and β̂(2)3 = 0.262, and AIC = 1291.81.

We adjust the mixtures logit/LN and logit/LGM, for 1-4 models, finding in
both cases the model 4 presents the best fit. The estimates for these models are
given in the Table 1. Note that δ is the shape parameter of the LGM model.

Table 1: Parameter estimation (standard error) and model fitting for one and two com-
ponents hybrid Bernoulli/log-distributions.

Bernoulli component Log-distributions components
density AIC INT EZ HI δ INT FEM
LN 986.19 0.652 0.808 0.422 −0.401 0.264

(0.220) (0.304) (0.288) (0.112) (0.155)
LGM 1022.43 0.572 0.656 0.374 −2.833 −1.179 0.053

(0.201) (0.261) (0.255) (0.510) (0.088) (0.056)

Hence, there is a clear indication that the conditions under which the Tobit
model is adequate, are not satisfied for the measles vaccine data set.

Estimates (MLEs) for the model parameters 1-4, were obtained, and the results
are shown in Tables 2.

To compare model fit, we computed the AIC criterion (Akaike 1974).
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Table 2: Parameter estimation (standard error) and model fitting for one and two com-
ponents hybrid logit/LPHN.

Bernoulli component Log-distributions components
Model AIC INT EZ HI FEM INT EZ HI FEM α

(1) 1022.95 2.418 0.256 0.081 0.180 6.669
(0.966) (0.192) (0.191) (0.191) (2.661)

(2) 992.17 1.051 -1.014 -0.162 -0.012 0.271 0.391
(0.138) (0.379) (0.148) (0.148) (0.149) (0.229)

(3) 979.98 0.875 1.027 0.385 -0.612 -1.514 -0.241 -0.104 0.142 0.074
(0.258) (0.330) (0.273) (0.291) (0.480) (0.178) (0.153) (0.143) (0.152)

(4) 975.44 0.488 0.911 0.368 -1.609 0.286 0.152
(0.203) (0.275) (0.262) (0.002) (0.060) (0.010)

We started by fitting the censored LPHN model with covariates (Model 1). It
is also fitted by the Bernoulli/LPHN model with covariates and logit link (models
2-4), for which the results are presented in the Table 2. According to the criterion
AIC, the best fit clearly is presented by the hybrid logit/LPHN model.

In the case of the Bernoulli/LPHN model, we found that of all hybrid models
fitted, the best is the Model 4.

In the continuous component we has that E(Y ) 6= X(2)β(2) since E(ε) 6= 0.
In order to have E(Y ) = X(2)β(2) we must correct the intercept taking β∗(2)0 =

β(0) + E(ε), where ε ∼ LPN(0, η, α), That is, the corrected estimator for the
intercept of the regression model corresponding to the continuous part. Therefore,
for model 4, we found that β̂∗(2)0 = −0.333.

Here, covariates EZ and HI entered only in the Bernoulli component, and
covariate FEM is the only associated with the LPHN component. Based on the
Model 4, for those observations above the detection limit, the girls had exp(0.286) =
1.331, and hence greater measles antibody concentration than boys.

As mentioned at the beginning of this illustration, the goal was to show that
the model censored logit/LPHN was a good alternative to adjust the data set
vaccine now we are going to show that this model is indeed different from the
model censored logit/LN, so, we test the hypothesis

H0 : α = 1 versus H1 : α 6= 1

Using the likelihood ratio statistics, we have that

−2 log(Λ) = −2(−511.18 + 480.72) = 60.91

which is greater than the 5% critical chi-square value 3.84, then we conclude that
the logit/LPHN model fits the data better than the logit/LN model.

As a proof of good fit of the proposed model, we can confirm that the proportion
of observations below the detection limit is 26.1% and the estimated proportion
from model 2 with the hybrid model logit/LPHN is 25.90%.

Finally, in order to check the fit of the model estimates, we make the QQplot of
the standardized residuals or scaled residuals of the continuous part, ei = (log(yi)−
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Figure 3: QQ-plot of the scaled residuals ei, from the fit of Model 4. (a) log-normal
(b)log-gamma and (c) log-proportional hazard-normal.

x′(2)iβ̂(2))/η̂ based on the model and to the LN, LGM and LPHN distributions.
Figure 3 presents QQplots for the scaled residuals.

Here, we can see that for vaccine data, the model LPHN fits better than the LN
and LGM models, and thus, the mixed model logit/LPHN may be a new option
to adjust censored data with covariates.

5. Conclusions

We proposed a new distribution that is used to study an asymmetrical regre-
ssion model for data with limited responses through the mixture of a Bernoulli
distribution with logit link and the LPHF distribution. Additionally, we made an
illustration with real data and showed that the proposed model is an alternative
for censored positive data.[

Recibido: noviembre de 2013 — Aceptado: abril de 2014
]
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Appendix

In this appendix we present the Hessian matrix for the logit/LPHN model. Its
elements are given by

U(β(1)jβ(1)r) =
∑

0

x1ijx1ir

[
exp(x′(1)iβ(1))[1− {1− Φ(zTi)}α]

{1 + exp(x′(1)iβ(1))[1− {1− Φ(zTi)}α]}2

]

−
n∑
i=1

x1ijx1ir exp(x′(1)iβ(1))

[1 + exp(x′(1)iβ(1))]2
,

U(β(2)kβ(1)j) =
−α
η

∑
0

x2ikx1ijφ(zTi) exp(x′(1)iβ(1)){1− Φ(zTi)}α−1

{1 + exp(x′(1)iβ(1))[1− {1− Φ(zTi)}α]}2

U(β(1)jη) =
−α
η

∑
0

x1ijzTiφ(zTi) exp(x′(1)iβ(1)){1− Φ(zTi)}α−1

{1 + exp(x′(1)iβ(1))[1− {1− Φ(zTi)}α]}2
,

U(β(1)jα) = −
∑

0

xij exp(x′(1)iβ(1)){1− Φ(zTi)}α log(1− Φ(zTi))

[1 + exp(x′(1)iβ(1))[1− {1− Φ(zTi)}α]]2
,

U(β(2)kβ(2)s) =
−α
η2

∑
0

x2ikx2is

{
[zTi + (α− 1)Mi]Ai +A2

i

}
+

1

η2

∑
1

x2ikx2is

{
−1 + (α− 1)ziMi − (α− 1)M2

i

}
,

U(β(2)kη) =
α

η2

∑
0

{[
x2ik − x2ikz

2
Ti − (α− 1)x2ikzTiMi

]
Ai − αx2ikzTiA

2
i

}
+

1

η2

∑
1

{
x2ik

[
−2zi
η
− (1− z2

i )(α− 1)Mi − zi(α− 1)M2
i

]}
,
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U(β(2)kα) =
−1

η

∑
0

{
[1 + α log(1− Φ(zTi))]x2ikAi

+
αx2ik[1− Φ(zTi)] log(1− Φ(zTi))

φ(zTi)
A2
i

}
+

1

η

∑
1

x2ikMi,

U(ηη) =
α

η2

∑
0

{[
2zTi − z3

Ti + (α− 1)z2
TiMi

]
Ai + αz2

TiA
2
i

}
+

1

η2

∑
1

{
1− z2

i − (α− 1)ziMi

[
2− z2

i − φ(zi)zi
φ(zi)

Mi

]}
,

U(ηα) =
−1

η

∑
0

{
[zTi + αzTi log(1− Φ(zTi))]Ai

+

[
αzTi(1− Φ(zTi)) log(1− Φ(zTi))

zTiφ(zTi)

]
A2
i

}
+

1

η

∑
1

ziMi,

U(αα) = −
∑

0

{
{1− Φ(zTi)} log2(1− Φ(zTi))

φ(zTi)
Ai

+

[
{1− Φ(zTi)} log(1− Φ(zTi))

Φ(zTi)
Ai

]2
}
−
∑

1

1

α2

where

Ai =
φ(zi) exp(x′(1)iβ(1)){1− Φ(zTi)}α−1

1 + exp(x′(1)iβ(1))[1− {1− Φ(zTi)}α]
and Mi =

φ(zTi)

1− Φ(zTi)
.
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