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Abstract

A multicomponent system of k components having strengths following k-
independently and identically distributed random variables X1, X2, . . . , Xk

and each component experiencing a random stress Y is considered. The
system is regarded as alive only if at least s out of k (s < k) strengths ex-
ceed the stress. The reliability of such a system is obtained when strength
and stress variates are given by generalized exponential distribution with
different shape parameters. The reliability is estimated using ML method
of estimation in samples drawn from strength and stress distributions. The
reliability estimators are compared asymptotically. The small sample com-
parison of the reliability estimates is made through Monte Carlo simulation.
Using real data sets we illustrate the procedure.

Key words: Asymptotic confidence interval, Maximum likelihood estima-
tion, Reliability, Stress-strength model.

Resumen

Se considera un sistema de k multicomponentes que tiene resistencias
que se distribuyen como k variables aleatorias independientes e idéntica-
mente distribuidas X1, X2, . . . , Xk y cada componente experimenta un estrés
aleatorio Y . El sistema se considera como vivo si y solo si por lo menos s
de k(s < k) resistencias exceden el estrés. La confiabilidad de este sistema
se obtiene cuando las resistencias y el estrés se distribuyen como una dis-
tribución exponencial generalizada con diferentes parámetros de forma. La
confiabilidad es estimada usando el método ML de estimación en muestras
extraídas tanto para distribuciones de resistencia como de estrés. Los esti-
madores de confiabilidad son comparados asintóticamente. La comparación
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para muestras pequeñas de los estimadores de confiabilidad se hace a través
de simulaciones Monte Carlo. El procedimiento también se ilustra mediante
una aplicación con datos reales.

Palabras clave: confiabilidad, estimación máximo verosímil, intervalos de
confianza asintóticos, modelo de resistencia-estrés.

1. Introduction

The two-parameter generalized exponential distribution (GE) has been intro-
duced and studied quite extensively by Gupta & Kundu (1999, 2001, 2002). The
two-parameter GE distribution is an alternative to the well known two-parameter
gamma, two-parameter Weibull or two parameter log-normal distributions. The
two-parameter GE distribution has the following density function and the distri-
bution function, respectively

f(x;α, λ) = αλe−xλ(1− e−xλ)α−1; forx > 0 (1)

F (x;α, λ) = (1− e−xλ)α−1; forx > 0 (2)

Here α and λ are the shape and scale parameters, respectively. Now onwards
GE distribution with the shape parameter α and scale parameter λ will be denoted
by GE(α, λ).

The purpose of this paper is to study the reliability in a multicomponent
stress-strength based on X, Y being two independent random variables, where
X ∼ GE(α, λ) and Y ∼ GE(β, λ).

Let the random samples Y,X1, X2, . . . , Xk being independent, G(y) be the con-
tinuous distribution function of Y and F (x) be the common continuous distribution
function of X1, X2, . . . , Xk. The reliability in a multicomponent stress-strength
model developed by Bhattacharyya & Johnson (1974) is given by

Rs,k = P [at least s of theX1, X2, . . . , Xk exceed Y ]

=

k∑
i=s

(
k

i

)∫ ∞
−∞

[1− F (y)]i [F (y)](k−i) dG(y)
(3)

WhereX1, X2, . . . , Xk are independently identically distributed (iid) with com-
mon distribution function F (x), this system is subjected to common random stress
Y . The probability in (3) is called reliability in a multicomponent stress-strength
model (Bhattacharyya & Johnson 1974). The survival probability of a single com-
ponent stress-strength version has been considered by several authors assuming
various lifetime distributions for the stress-strength random variates, e.g. Enis
& Geisser (1971), Downtown (1973), Awad & Gharraf (1986), McCool (1991),
Nandi & Aich (1994), Surles & Padgett (1998), Raqab & Kundu (2005), Kundu &
Gupta (2005), Kundu & Gupta (2006), Raqab, Modi & Kundu (2008), Kundu &
Raqab (2009). The reliability in a multicomponent stress-strength was developed
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by Bhattacharyya & Johnson (1974), Pandey & Uddin (1985), and the references
therein cover the study of estimating in many standard distributions assigned to
one or both stress, strength variates. Recently, Rao & Kantam (2010) studied
estimation of reliability in multicomponent stress-strength for the log-logistic dis-
tribution.

Suppose that a system, with k identical components, functions if s(1 ≤ s ≤ k)
or more of the components simultaneously operate. In this operating environment,
the system is subjected to a stress Y which is a random variable with distribution
function G(.). The strengths of the components, that is the minimum stress to
cause failure, are independent and identically distributed random variables with
distribution function F (.). Then, the system reliability, which is the probability
that the system does not fail, is the function Rs,k given in (3). The estimation
of the survival probability in a multicomponent stress-strength system when the
stress follows a two-parameter GE distribution has not received much attention
in the literature. Therefore, an attempt is made here to study the estimation
of reliability in multicomponent stress-strength model with reference to the two-
parameter GE probability distribution. In Section 2, we derive the expression
for Rs,k and develop a procedure for estimating it. More specifically, we obtain
the maximum likelihood estimates of the parameters. The Maximum Likelihood
Estimators (MLEs) are employed to obtain the asymptotic distribution and confi-
dence intervals for Rs,k. The small sample comparisons are made through Monte
Carlo simulations in Section 3. Also, using real data, we illustrate the estimation
process. Finally, some conclusion and comments are provided in Section 4.

2. Maximum Likelihood Estimator of Rs,k

Let X ∼ GE(α, λ) and Y ∼ GE(β, λ) with unknown shape parameters α
and β and common scale parameter λ, where X and Y are independently dis-
tributed. The reliability in multicomponent stress-strength for two-parameter GE
distribution using (3) is

Rs,k =

k∑
i=s

(
k

i

)∫ ∞
0

[1− (1− e−yλ)α]i[(1− e−yλ)α](k−i) βλe−yλ(1− e−yλ)β−1 dy

=

k∑
i=s

(
k

i

)∫ 1

0

[1− tν ]i [tν ](k−i) dt, where t = (1− e−yλ)β and ν =
α

β

=
1

ν

k∑
i=s

(
k

i

)∫ 1

0

[1− z]i [z](k−i+ 1
ν−1) dz if z = tν

=
1

ν

k∑
i=s

β(k − i+ 1

ν
, i+ 1)
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After the simplification we get

Rs,k =
1

ν

k∑
i=s

k!

(k − i)!

 i∏
j=0

(k +
1

ν
− j)

−1 , since k and i are integers (4)

The probability in (4) is called reliability in a multicomponent stress-strength
model. If α and β are not known, it is necessary to estimate α and β to estimate
Rs,k. In this paper we estimate α and β by the ML method. Once MLEs are
obtained then Rs,k can be computed using equation (4).

Let X1, X2, . . . , Xn; Y1, Y2, . . . , Ym be two ordered random samples of size n,
m, respectively, on strength, stress variates following a GE distribution with shape
parameters α and β and a common scale parameter λ. The log-likelihood function
of the observed sample is

L(α, β, λ) = (m+ n) lnλ+ n lnα+m lnβ − λ

 n∑
i=1

xi −
m∑
j=1

yj

+

(α− 1)

n∑
i=1

ln(1− e−xiλ) + (β − 1)

m∑
j=1

ln(1− e−yjλ)

(5)

The MLEs of α, β and λ, say α̂, β̂ and λ̂, respectively, can be obtained as the
solution of

α̂ =
−n

n∑
i=1

ln(1− e−xiλ)
(6)

β̂ =
−m

m∑
j=1

ln(1− e−yjλ)
(7)

g(λ) = 0⇒ m+ n

λ
−

n
n∑
i=1

xi e
−xiλ

1−e−xiλ

n∑
k=1

ln(1− e−xkλ)
−

m
m∑
j=1

yj e
−yjλ

1−e−yjλ

m∑
k=1

ln(1− e−ykλ)

−
n∑
i=1

xi
1− e−xiλ

−
m∑
j=1

yj
1− e−yjλ

(8)

Therefore, λ̂ is a simple iterative solution of the non-linear equation g(λ) =

0. Once we obtain λ̂; α̂ and β̂ can be obtained from (6) and (7), respectively.
Therefore, the MLE of Rs,k becomes

R̂s,k =
1

ν̂

k∑
i=s

k!

(k − i)!

 i∏
j=0

(k +
1

ν̂
− j)

−1 , where ν̂ =
α̂

β̂
(9)
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To obtain the asymptotic confidence interval for Rs,k, we proceed as below:
The asymptotic variance of the MLE is given by

V (α̂) =

[
E(−∂

2L

∂α2
)

]
=
α2

n
and V (β̂) =

[
E(−∂

2L

∂β2
)

]
=
β2

n
(10)

The asymptotic variance (AV) of an estimate of Rs,k which is a function of two
independent statistics α̂ and β̂ is given by Rao (1973).

AV (R̂s,k) = V (α̂)

[
∂Rs,k
∂α

]2
+ V (β̂)

[
∂Rs,k
∂β

]2
(11)

From the asymptotic optimum properties of MLEs (Kendall & Stuart 1979) and
of linear unbiased estimators (David 1981), we know that MLEs are asymptotically
equally efficient having the Cramer-Rao lower bound as their asymptotic variance,
as given in (10). Thus, from equation (11), the asymptotic variance of R̂s,k can
be obtained. To avoid the difficulty of the derivation of the Rs,k, we obtain the
derivatives of Rs,k for (s, k)=(1,3) and (2,4) separately and they are given by

∂R1,3

∂α
=

3

β (3ν̂ + 1)
2 and

∂R1,3

∂β
=

−3ν̂
β (3ν̂ + 1)

2

∂R2,4

∂α
=

12ν̂(7ν̂ + 2)

β [(3ν̂ + 1)(4ν̂ + 1)]
2 and

∂R2,4

∂β
=

−12ν̂2(7ν̂ + 2)

β [(3ν̂ + 1)(4ν̂ + 1)]
2

Thus AV (R̂1,3) =
9ν̂2

(3ν̂+1)4

(
1
n + 1

m

)
AV (R̂2,4) =

144ν̂4(7ν̂ + 2)2

[(3ν̂ + 1)(4ν̂ + 1)]
4

(
1

n
+

1

m

)

as n → ∞,m → ∞, R̂s,k−Rs,k
AV (R̂s,k)

d−→ N(0, 1) and the asymptotic confidence 95%
confidence interval for Rs,k is given by

R̂s,k ± 1.96

√
AV (R̂s,k)

The asymptotic confidence 95% confidence interval for R1,3 is given by

R̂1,3 ± 1.96
3ν̂

(3ν̂ + 1)
2

√(
1

n
+

1

m

)
, where ν̂ =

α̂

β̂

The asymptotic confidence 95% confidence interval for R2,4 is given by

R̂2,4 ± 1.96
12ν̂2(7ν̂ + 2)

[(3ν̂ + 1)(4ν̂ + 1)]
2

√(
1

n
+

1

m

)
, where ν̂ =

α̂

β̂

Revista Colombiana de Estadística 35 (2012) 67–76



72 Gadde Srinivasa Rao

3. Simulation Study and Data Analysis

3.1. Simulation Study

In this subsection we present some results based on Monte Carlo simulations
to compare the performance of the Rs,k using different sample sizes. 3,000 ran-
dom samples of size 10(5)35 each from stress population, strength population are
generated for (α, β) = (3.0, 1.5), (2.5,1.5), (2.0,1.5), (1.5,1.5), (1.5,2.0),(1.5,2.5)
and (1.5,3.0) in line with Bhattacharyya & Johnson (1974). The MLE of scale
parameter λ is estimated by the iterative method, and the using λ the shape pa-
rameters α and β are estimated from (6) and (7). These ML estimators of α and
β are then substituted in ν to get the reliability in a multicomponent reliability
for (s, k) = (1, 3), (2, 4). The average bias and average mean square error (MSE)
of the reliability estimates over the 3000 replications are given in Tables 1 and 2.
Average confidence length and coverage probability of the simulated 95% confi-
dence intervals of Rs,k are given in Tables 3 and 4. The true values of reliability
in multicomponent stress-strength with the given combinations for (s, k) = (1, 3)
are 0.857, 0.833, 0.800, 0.750, 0.692, 0.643, 0.600, and for (s, k) = (2, 4) are 0.762,
0.725, 0.674, 0.600, 0.519, 0.454, and 0.400. Thus, the true value of reliability
in multicomponent stress-strength model decreases as β increases for a fixed α
whereas reliability in multicomponent stress-strength increases as increases for a
fixed β in both the cases (s, k). Therefore, the true value of reliability decreases
as ν decreases, and vice versa. The average bias and average MSE decrease as
sample size increases for both methods of estimation in reliability. Also the bias
is negative in both situations of (s, k). It verifies the consistency property of the
MLE of Rs,k. Whereas, among the parameters the absolute bias and MSE de-
crease as α increases for a fixed β in both cases of (s, k) and the absolute bias
and MSE increase as β increases for a fixed α in both the cases of (s, k). The
length of the confidence interval also decreases as the sample size increases. The
coverage probability is close to the nominal value in all cases but slightly less than
0.95. Overall, the performance of the confidence interval is quite good for all com-
binations of parameters. Whereas, among the parameters we observed the same
phenomenon for average length and average coverage probability that we observed
in the case of average bias and MSE.

3.2. Data Analysis

In this subsection we analyze two real data sets and demonstrate how the pro-
posed methods can be used in practice. The first data set is reported by Lawless
(1982) and the second one is given by Linhardt & Zucchini (1986). Both are ana-
lyzed and fitted for various lifetime distributions. We fit the generalized exponen-
tial distribution to the two data sets separately. The first data set (Lawless 1982,
p. 228) presented here arose in tests on endurance of deep groove ball bearings.
The data presented are the number of million revolutions before failure for each of
the 23 ball bearings in the life test, and they are: 17.88, 28.92, 33.00, 41.52, 42.12,
45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12,
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98.64, 105.12, 105.84, 127.92, 128.04, and 173.40. Gupta & Kundu (2001) studied
the validity of the model and they compute the Kolmogorov-Smirnov (KS) distance
between the empirical distribution function and the fitted distribution functions of
generalized exponential distribution which is 0.1058 with a corresponding p-value
of 0.9592.

Table 1: Average bias of the simulated estimates of Rs,k.
(α,β)

(s, k) (n,m) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0)
(10,10) −0.0029 −0.0047 −0.0072 −0.0109 −0.0150 −0.0183 −0.0207

(15,15) −0.0021 −0.0042 −0.0058 −0.0081 −0.0105 −0.0123 −0.0137

(1,3) (20,20) −0.0018 −0.0027 −0.0039 −0.0058 −0.0079 −0.0096 −0.0109

(25,25) −0.0012 −0.0020 −0.0030 −0.0046 −0.0064 −0.0078 −0.0089

(30,30) −0.0011 −0.0019 −0.0028 −0.0041 −0.0055 −0.0066 −0.0075

(35,35) −0.0002 −0.0006 −0.0012 −0.0021 −0.0031 −0.0040 −0.0047

(10,10) −0.0029 −0.0039 −0.0063 −0.0092 −0.0116 −0.0128 −0.0131

(15,15) −0.0022 −0.0034 −0.0059 −0.0075 −0.0087 −0.0092 −0.0091

(2,4) (20,20) −0.0017 −0.0027 −0.0040 −0.0056 −0.0070 −0.0077 −0.0080

(25,25) −0.0010 −0.0019 −0.0030 −0.0044 −0.0056 −0.0063 −0.0065

(30,30) −0.0009 −0.0011 −0.0030 −0.0041 −0.0051 −0.0057 −0.0059

(35,35) −0.0003 −0.0002 −0.0008 −0.0016 −0.0023 −0.0027 −0.0029

Table 2: Average MSE of the simulated estimates of Rs,k.
(α,β)

(s, k) (n,m) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0)
(10,10) 0.0041 0.0052 0.0068 0.0092 0.0119 0.0139 0.0153
(15,15) 0.0026 0.0033 0.0043 0.0058 0.0075 0.0087 0.0096

(1,3) (20,20) 0.0017 0.0022 0.0029 0.0040 0.0052 0.0061 0.0068
(25,25) 0.0014 0.0018 0.0024 0.0032 0.0042 0.0050 0.0055
(30,30) 0.0011 0.0014 0.0018 0.0025 0.0032 0.0038 0.0043
(35,35) 0.0009 0.0011 0.0015 0.0021 0.0027 0.0032 0.0036
(10,10) 0.0096 0.0115 0.0141 0.0171 0.0193 0.0199 0.0196
(15,15) 0.0062 0.0075 0.0091 0.0111 0.0125 0.0130 0.0128

(2,4) (20,20) 0.0042 0.0051 0.0063 0.0078 0.0090 0.0094 0.0094
(25,25) 0.0035 0.0043 0.0052 0.0065 0.0074 0.0078 0.0078
(30,30) 0.0028 0.0033 0.0041 0.0050 0.0058 0.0060 0.0060
(35,35) 0.0022 0.0027 0.0034 0.0042 0.0049 0.0052 0.0052

The second data set (from Linhardt & Zucchini 1986, p. 69) represents the
failure times of the air conditioning system of an airplane (in hours): 23, 261, 87,
7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16,
90, 1, 16, 52, 95. Gupta & Kundu (2003) studied the validity of the generalized
exponential distribution and they compute the Kolmogorov-Smirnov (KS) distance
between the empirical distribution function and the fitted distribution functions
which is 0.1744 with a corresponding p-value 0.2926. Therefore, it is clear that the
generalized exponential model fits quite well to both the data sets.

We use the iterative procedure to obtain the MLE of λ using (8), and MLEs of
α and β are obtained by substituting MLE of λ in (6) and (7). The final estimates
are λ̂ = 2.80609, α̂ = 1.00667 and β̂ = 0.02098. Based on the estimates of α and
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β, the MLE of Rs,k becomes R̂1,3 = 0.893191 and R̂2,4 = 0.819677. The 95%
confidence intervals for R1,3 become (0.841368, 0.945014) and for R2,4 become
(0.735472, 0.903882).

Table 3: Average confidence length of the simulated 95% confidence intervals of Rs,k.
(α,β)

(s, k) (n,m) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0)
(10,10) 0.2112 0.2399 0.2762 0.3221 0.3627 0.3873 0.4012
(15,15) 0.1747 0.1981 0.2279 0.2659 0.3000 0.3212 0.3337

(1,3) (20,20) 0.1512 0.1716 0.1977 0.2311 0.2614 0.2804 0.2918
(25,25) 0.1351 0.1534 0.1768 0.2069 0.2342 0.2515 0.2619
(30,30) 0.1238 0.1404 0.1618 0.1893 0.2145 0.2304 0.2401
(35,35) 0.1140 0.1295 0.1492 0.1748 0.1982 0.2132 0.2224
(10,10) 0.3267 0.3628 0.4045 0.4485 0.4744 0.4782 0.4697
(15,15) 0.2721 0.3020 0.3368 0.3742 0.3973 0.4020 0.3962

(2,4) (20,20) 0.2366 0.2630 0.2939 0.3274 0.3486 0.3533 0.3486
(25,25) 0.2119 0.2356 0.2635 0.2939 0.3134 0.3180 0.3141
(30,30) 0.1943 0.2161 0.2416 0.2697 0.2878 0.2923 0.2890
(35,35) 0.1794 0.1996 0.2234 0.2497 0.2669 0.2716 0.2688

Table 4: Average coverage probability of the simulated 95% confidence intervals of Rs,k.
(α,β)

(s, k) (n,m) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0)
(10,10) 0.9230 0.9247 0.9277 0.9220 0.9140 0.9070 0.9053
(15,15) 0.9327 0.9330 0.9357 0.9323 0.9303 0.9280 0.9243

(1,3) (20,20) 0.9373 0.9387 0.9397 0.9400 0.9360 0.9293 0.9243
(25,25) 0.9287 0.9323 0.9347 0.9360 0.9340 0.9293 0.9247
(30,30) 0.9347 0.9360 0.9393 0.9403 0.9420 0.9427 0.9363
(35,35) 0.9453 0.9480 0.9497 0.9477 0.9450 0.9417 0.9347
(10,10) 0.9197 0.9213 0.9230 0.9177 0.9133 0.9133 0.9097
(15,15) 0.9320 0.9323 0.9340 0.9333 0.9307 0.9277 0.9237

(2,4) (20,20) 0.9353 0.9373 0.9390 0.9387 0.9327 0.9310 0.9260
(25,25) 0.9287 0.9320 0.9333 0.9383 0.9333 0.9300 0.9263
(30,30) 0.9353 0.9380 0.9410 0.9397 0.9390 0.9393 0.9363
(35,35) 0.9453 0.9490 0.9490 0.9453 0.9433 0.9380 0.9360

4. Conclusions

In this paper, we have studied the multicomponent stress-strength reliability
for generalized exponential distribution when both stress, strength variates follow
the same population. Also, we have estimated asymptotic confidence interval for
the multicomponent stress-strength reliability. The simulation results indicate that
the average bias and average the MSE decrease as sample size increases for both
situations of (s, k). Among the parameters the absolute bias and MSE decrease
(increase) as α increases (β increases) in both the cases of (s, k). The length of
the confidence interval also decreases as the sample size increases and the coverage
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probability is close to the nominal value in all sets of parameters considered here.
Using real data, we illustrate the estimation process.[
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