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1. Introduction

Let X,X1, X2, . . . be a sequence of i.i.d. random variables with mean zero, and
put X̄ = Sn/n,

Sn =

n∑

j=1

Xj , V 2
n =

n∑

j=1

X2
j and σ2

n =
n− 1

n

n∑

j=1

(Xj − X̄)2.

There has been increasing interest in the investigation of limit behaviors for the
so-called self-normalized sum Sn/Vn in the past decade. One of the reasons for
this flourish comes from the fact:

P
(
tn ≥ x

)
= P

{
Sn/Vn ≥ x[n/(n+ x2 − 1)]1/2

}
, x ≥ 0, (1.1)

where tn = Sn/σn is the classical Student t-statistic. This allows us to only
consider the distribution properties of the less complex Sn/Vn to discuss the
distribution properties of tn, which is frequently used in practice to test hy-
potheses about the mean. More importantly, the limit theorems for Sn/Vn (and
hence for tn) usually require much less stringent moment conditions than the
classical limit theorems do, and hence provide much wide practical applicability.

The past decade has witnessed significant development in the arena of weak-
ening moment conditions for self-normalized limit theorems. Griffin and Kuelbs
(1989) [31] obtained a self-normalized law of the iterated logarithm for all dis-
tributions in the domain of attraction of a normal or stable law. Shao (1997)
[55] showed that no moment conditions are needed for a self-normalized large
deviation result P (Sn/Vn ≥ x

√
n), and that the tail probability of Sn/Vn is

Gaussian-like when X1 is in the domain of attraction of the normal law and
sub-Gaussian-like when X is in the domain of attraction of a stable law, while
Giné, Götze and Mason (1997) [29] proved that the tails of Sn/Vn are uniformly
sub-Gaussian when the sequence is stochastically bounded. Shao (1999) [57] es-
tablished a Cramér type moderate deviation result for self-normalized sums only
under a finite third moment condition. Jing, Shao and Wang (2003) [37] proved
a Cramér type moderate deviation result (for independent random variables)
under a Lindeberg type condition. Jing, Shao and Zhou (2004) [38] obtained
the saddlepoint approximation without any moment conditions. Other results
include Wang and Jing (1999) [69] as well as Robinson and Wang (2005) [54]
for an exponential non-uniform Berry-Esseen bound; Csörgő, Szyszkowicz and
Wang (2003a, b) [18, 19] for Darling-Erdős theorems and Donsker’s theorems;
Wang (2005) [66] as well as Wang and Hall (2009) [68] for a refined moderate de-
viation; Hall and Wang (2004) [35] for exact convergence rates, and Chistyakov
and Götze (2004b) [13] for all possible limiting distributions when X is in the
domain of attraction of a stable law. We also refer to de la Pen̆a, Lai and Shao
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(2009) [52] for a systematic presentation on self-normalized processes and their
statistical applications.

The main aim of this paper is to provide an overview of new developments
on the functional central limit theorems (invariance principles), absolute and
relative errors in the central limit theorems, Cramér-Chernoff-type large devi-
ations and saddle-point approxiamtions for the Sn/Vn. Partial materials have
been collected in [56, 58, 60]. We represent these here for the sake of complete-
ness. Explicitly, Section 2 will review weak convergence properties of Sn/Vn,
including central limit theorems and invariance principles. The absolute and
relative errors in the central limit theorems for the Sn/Vn will be given in
Section 3 and 4 respectively. Section 5 reviews Cramér-Chernoff-type large de-
viations and saddle-point approximations. Finally in Section 6 we briefly review
other self-normalized limit theorems, like the self-normalized law of the iterated
logarithm, Darling-Erdös type theorem, limit theorem for studentized non-linear
statistics, etc. Throughout the paper, we assume that X,X1, . . . , Xn are i.i.d.
random variables with EX = 0, except for those explicitly specified.

2. The central limit theorem and invariance principle

Efron (1969) [25] might be the first paper to investigate the limit behavior of the
Student’s t-statistic tn or, equivalently, the Sn/Vn, in some nonstandard cases.
The general research begins with Logan, Mallows, Rice and Shep (1973) [44]
(LMRS for short) in which the authors showed, among many other results, that
if X is in the domain of attraction of an α-stable law, 0 < α ≤ 2, centered if
α > 1 and symmetric if α = 1, then Sn/Vn converges in distribution to a limit,
which is sub-Gaussian, and if moreover X is symmetric, then the moments of
Sn/Vn also converge to the corresponding moments of the limit. LMRS also
conjectured that Sn/Vn is asymptotically normal if (and perhaps only if) X is
in DAN (the domain of attraction of the normal law) and the only possible
nontrivial limit distributions of Sn/Vn are those obtained when X follows a
stable law.

Based on Raikov’ theorem, as was noticed by Maller (1981) [45], among
others, one can easily show the “if” part in the conjectures of LMRS. We refer
to Csörgő and Horváth (1988) [15], Griffin and Mason (1991) [32] for more
details in this regard. It is the “only if” part that has remained open until 1997
for the general case of not necessarily symmetric random variables, when Giné,
Götze and Mason (1997) [29] proved that

Theorem 2.1. Sn/Vn →D N(0, 1) if and only if X is in the domain of attrac-
tion of the normal law.

Giné, Götze and Mason (1997) [29] also showed that, if the self-normalized
sums Sn/Vn, n ∈ N , are stochastically bounded, then they are uniformly sub-
Gaussian in the sense that

sup
n∈N

EetSn/Vn ≤ 2ect
2

for all t ∈ R and some c < ∞.
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This, in turn, implies a basic requirement in the proof of this result that the
moments of Sn/Vn converge to those of a N(0, 1) r.v. whenever Sn/Vn is asymp-
totically standard normal.

The second conjecture of LMRS was confirmed by Chistyakov and Götze
(2004b) [13] who proved the following theorem.

Theorem 2.2. Sn/Vn converge weakly to a random variable Z such that

(a) P (|Z| = 1) < 1 if and only if

(1) X is in the domain of attraction of a stable law with α ∈ (0, 2];

(2) EX = 0 if 1 < α ≤ 2;

(3) if α = 1, then X is in the domain of attraction of Cauchy’s law and
Feller’s condition holds: limn→∞ nE sin(X/an) exists and is finite,
where

an = inf
{
x > 0 : nx−2

[
1 + E{X2I(|X | < x)}

]
≤ 1

}
.

(b) P (|Z| = 1) = 1 if and only if P (|X | > x) is a slowly varying function at
+∞.

The proofs of Chistyakov and Götze (2004b) [13] are very technical. It would
be interesting to find an alternative approach. In the independent, but not iden-
tically distributed case, Mason (2005) [46] considered self-normalized triangular
arrays. The result in [46] is stated as follows.

Theorem 2.3. Let X1,n, . . . , Xn,n, n ≥ 1, be a triangular array of independent
infinitesimal random variables. Assume that

( n∑

i=1

Xi,n,

n∑

i=1

X2
i,n

)
→D (U, V ),

for a nondegenerate pair (U, V ). Then
∑n

i=1 Xi,n

/√∑n
i=1 X

2
i,n →D N(0, 1) if

and only if for some τ > 0,
n∑

i=1

Xi,n →D τ N(0, 1) and

n∑

i=1

X2
i,n →P τ2.

Mason (2005) [46] also claimed other general results. For instance, their The-
orem 1 leads to an alternative proof of the Giné, Götze and Mason (1997) [29]
result. In the independent symmetric case, the following result from Egorov
(1996) [26] is also of interest.

Theorem 2.4. Let X1, X2, . . . , be independent symmetric random variables
around mean zero. Then Sn/Vn →D N(0, 1) if and only if

max
1≤j≤n

|Xj|/Vn →P 0, as n → ∞. (2.1)

Note that (2.1) is equivalent to the condition that X is in the domain of
attraction of the normal law if {Xj , j ≥ 1} is a sequence of i.i.d. random vari-
ables (cf. O’Brien (1980) [48]). Also, it is readily seen that the Lindeberg con-
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dition implies (2.1). However, it is not clear at this moment whether or not
Theorem 2.4 still holds for general independent random variables, i.e., without
assuming {Xj, j ≥ 1} to be symmetric. In the i.i.d. case, Theorem 2.4 has been
previously proved in Griffin and Mason (1991) [32].

The extension of the self-normalized central limit theorem to Donsker type
functional central limit theorem was established in Csörgő, Szyszkowicz and

Wang (CsSzW) (2003b) [19]. Define S[nt] =
∑[nt]

i=1 Xi. The following theorem
comes from their Theorem 1.

Theorem 2.5. As n → ∞, the following statements are equivalent:

(a) EX = 0 and X is in the domain of attraction of the normal law;
(b) S[nt0]/Vn →D N(0, t0), for t0 ∈ (0, 1];
(c) S[nt]/Vn →D W (t) on (D[0, 1], ρ), where ρ is the sup-norm metric for

functions in D[0, 1], and {W (t), 0 ≤ t ≤ 1} is a standard Wiener process;
(d) On an appropriate probability space for X,X1, X2, . . . , we can construct a

standard Wiener process {W (t), 0 ≤ t < ∞} such that

sup
0≤t≤1

∣∣∣S[nt]/Vn −W (nt)/
√
n
∣∣∣ = oP (1).

Assuming appropriate conditions, there are two immediate analogs of Theo-
rem 2.5 when {Xj , j ≥ 1} is a sequence of independent random variables with
EXj = 0 and finite variances EX2

j . Write B2
n =

∑n
j=1 EX2

j . If the Lindeberg
condition holds, namely

for all ǫ > 0, B−2
n

n∑

j=1

E{X2
j I(|Xj | > ǫBn)} → 0, as n → ∞,

then it is readily seen that V 2
n /B

2
n →P 1. Hence it follows easily from classical

results (cf., e.g., Prohorov (1956) [53]) that SKn(t)/Vn →D W (t) on (D[0, 1], ρ),
where Kn(t) = sup{m : B2

m ≤ tB2
n}. By using a similar method as in the

Theorem 2.5, we can also redefine {Xj, j ≥ 1} on a richer probability space
together with a sequence of independent normal random variables {Yj, j ≥ 1}
with mean zero and V ar(Yj) = V ar(Xj) such that

sup
0≤t≤1

∣∣∣S[nt]/Vn −
[nt]∑

j=1

Yj/Bn

∣∣∣ = oP (1)

provided that the Lindeberg condition holds. Furthermore, CsSzW (2003b) [19]
also proved the following result for self-normalized, self-randomized partial sums
processes of independent random variables.

Theorem 2.6. Let X1, X2, . . . , be independent symmetric random variables
around mean zero. Then (2.1) holds true if and only if

SK̃n(t)
/Vn →D W (t) on (D[0, 1], ρ), (2.2)

where K̃n(t) = sup{m : V 2
m ≤ tV 2

n }.



74 Q. M. Shao and Q. Wang

Currently, several authors considered the extensions of Theorems 2.5 and
2.6 to weight approximation and dependent settings. See, for example, CsSzW
(2004, 2008) [20, 21], Kulik (2006) [40], Balan and Kulik (2009) [5] and Choi
and Moon (2010) [14].

Since we assume EXj = 0, the investigation of limit behaviors for Sn/Vn in
Theorems 2.1–2.6 is only related to centralized Student t-statistics. The limit
behaviors of the non-central Student t-statistic was discussed in Bentkus, Jing,
Shao and Zhou (2007) (BJSZ for short) [8]. Under the assumption of EX2 < ∞,
the limit behaviors of the non-central limit t-statistic are shown to be different
for the following two cases: (a) EX4 < ∞; (b) EX4 = ∞ but EX2 < ∞.
Define ν = µ/σ, where µ = EX and σ2 = var(X). Write X ∈ B(p, µ, σ2) if
X = σY +µ, where Y is a standardized Bernoulli random variable. The following
theorem comes from BJSZ’s Theorems 1 and 2.

Theorem 2.7. (a) Assume EX4 < ∞.

(i) For X ∈ B(p, µ, σ2) such that ν = 2
√
pq/(q − p) and p 6= 1/2, we

have
a′n(tn − ν

√
n− 1) →D N2(0, 1),

where a′n = 2ν
√
n/(1 + ν2).

(ii) For any X other than the one given in (i), we have

σ−1
0 (tn − ν

√
n) →D N(0, 1),

where σ2
0 = 1−να3+ν2(α4−1)/4, and αk = E(X−µ)k/σk, k = 3, 4.

(b) Assume µ 6= 0, EX2 < ∞ and EX4 = ∞. Further assume that X2 is
in the domain of attraction of the stable law with an index τ ∈ [1, 2], and
that (dn − cn)

2 = o(cn) when τ = 1, where cn > 0 (slowly varying) and dn
(diverge to ∞) are constants related to the limit law:

cn n
−1/τ

( n∑

i=1

Y 2
i − n

)
→D Zτ , τ > 1, as n → ∞,

cn n
−1

n∑

i=1

Y 2
i − dn →D Z1, as n → ∞,

where Yi = (Xi − µ)/σ. Define

an = 2cnn
1/2−1/τ/ν, bn =

{
ν
√
n if 1 < τ ≤ 2,

ν
√
n
[
3/2− dn/(2cn)

]
if τ = 1.

We have

(i) if τ = 2, then an(tn − bn) →D N(0, 1),

(ii) if τ ∈ [1, 2), then an(tn − bn) →D −Zτ .

In BJSZ, the authors also considered the limit behavior of the non-centralized
Student t when EX2 = ∞ or µ = µn = o(n).



Self-normalized limit theorems 75

3. Absolute errors in the central limit theorems

There are mainly two approaches for estimating the error of the normal approx-
imation in Section 2. One is to study the absolute error in the self-normalized
central limit theorem via a Berry-Esseen bound or an Edgeworth expansion.
Put bn = sup{ x : nx−2 E{X2 I(|X | ≤ x)} ≥ 1} and

δn = nP (|X | > bn) + n b−1
n |E{X I(|X | ≤ bn)}|

+ n b−3
n E{|X |3 I(|X | ≤ bn)}. (3.1)

As a major advance in this direction, Bentkus and Götze (1996) [7] refined the
results in Slavova (1985) [63] as well as Hall (1988) [34] and showed that

Theorem 3.1. If X is in the domain of attraction of the normal law, then

sup
x

∣∣P
(
Sn/Vn ≤ x

)
− Φ(x)

∣∣ ≤ Aδn,

where A is an absolute constant.

This result was extended to the independent, but not identically distributed
case by Bentkus, Bloznelis and Götze (1996) [6] and Shao (2005) [59]. Differing
from Bentkus and Götze (1996) [7] as well as Bentkus, Bloznelis and Götze
(1996) [6], Shao (2005) [59] used Stein’s method to provide an explicit constant
in his theorem, which is stated as follows.

Theorem 3.2. Let X1, X2, . . .Xn be a sequence of independent random vari-
ables with mean EXj = 0, j = 1, 2, . . . , n. Then,

sup
x

∣∣P
(
Sn/Vn ≤ x

)
− Φ(x)

∣∣ ≤ 10.2

B2
n

n∑

i=1

E
{
X2

i I(|Xi| ≥ Bn/2)
}

+
25

B3
n

n∑

i=1

E
{
|Xi|3I(|Xi| ≤ Bn/2)

}
,

where B2
n =

∑n
i=1 EX2

i .

For explicit constants in the i.i.d case and other results related to the uniform
Berry-bound, we refer to Egorov (2002) [27] and Novak (2004) [47].

The Berry-Esseen bounds provide an upper bound for the rate of convergence
in the central limit theorem. In order to characterize the rate of convergence in
the central limit theorem for Sn/Vn, Hall and Wang (2004) [35] investigated the
leading term arguments under the optimal conditions. Letting

Ln(x) = nE
(
Φ
[
x
{
1 + (X/bn)

2
}1/2 − (X/bn)

]
− Φ(x)

)
,

[35] established the following result, among others.
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Theorem 3.3. If X is in the domain of attraction of the normal law, then

sup
x

∣∣P (Sn/Vn ≤ x)− {Φ(x) + Ln(x)}
∣∣ = o(δ1n) +O

(
n−1/2

)
, (3.2)

where

δ1n = nP (|X | > bn) + n b−1
n |E{X I(|X | ≤ bn)}|

+n b−3
n

∣∣E
{
X3 I(|X | ≤ bn)

}∣∣+ n b−4
n E

{
X4 I(|X | ≤ bn)

}
.

If in addition Cramér’s condition holds, i.e.

lim sup
|t|→∞

∣∣E
(
eitX

)∣∣ < 1,

then O(n−1/2) on the right-hand side of (3.2) can be replaced by O(n−1).

Theorem 3.3 argues that Ln(x) is a leading term in an expansion of the
distribution of Sn/Vn. Indeed, it was proved in [35] that δ1n → 0 and

sup
x

|Ln(x)| ≍ δ1n, as n → ∞. (3.3)

Here an ≍ bn denotes that 0 < lim infn→∞ an/bn ≤ lim supn→∞ an/bn < ∞.
There exist examples of distributions in the domain of attraction of the normal
law, having zero mean, and for which any given one of the four components in
the definition of δ1n, dominates all the others along a subsequence. It follows
that none of the terms of which δ1n is comprised can be dropped if we require
a full account of the rate of convergence in the central limit theorem. Together,
properties (3.2) and (3.3) give concise results about the rate of convergence in
the central limit theorem. For example, assuming that X is in the domain of
attraction of the normal law and E(X) = 0, we have

(a) supx |P (Sn/Vn ≤ x) − Φ(x)| + n−1/2 ≍ δ1n + n−1/2, where n−1/2 can be
replaced by n−1 if Cramér’s condition is satisfied.

(b) E|X |2(r+1) < ∞ if and only if

∞∑

n=1

nr−1 sup
x

∣∣P (Sn/Vn ≤ x)− Φ(x)
∣∣ < ∞, for 0 ≤ r < 1/2.

(c) P (|X | > x) = O(x−2(r+1)) as x → ∞, if and only if

sup
x

∣∣P (Sn/Vn ≤ x)− Φ(x)
∣∣ = O

(
n−r

)
, for 0 < r < 1/2.

If additionally E(|X |3) < ∞ and E(X2) = 1, then we also have

sup
x

∣∣∣n1/2Ln(x)− 1
6 γ

(
2x2 + 1

)
φ(x)

∣∣∣ → 0 (3.4)

where γ = E(X3), as n → ∞.
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Formula (3.4) shows that in the case of finite third moments, the leading term
is asymptotic to its conventional form in an Edgeworth expansion. Consequently,
if E|X |3 < ∞ and the distribution of X is nonlattice, then

sup
x

∣∣∣P (Sn/Vn ≤ x)− Φ(x)− Fn(x)
∣∣∣ = o(n−1/2),

where Fn(x) = 1
6
√
n

EX3

σ3 (2x2 + 1)φ(x). More results on Edgeworth expansion

for Student’s t statistics can be found in Hall (1987) and Bloznelis and Putter
(1998, 2002) [9, 10].

Wang and Jing (1999) [69] was the first to investigate the non-uniform Berry-
Esseen bound for Sn/Vn. The result given by [69] was extended in Robinson and
Wang (2005) [54], where an exponential non-uniform bound was established un-
der the optimal moment conditions. The following result comes from Theorem 3
of [54].

Theorem 3.4. If X is in the domain of attraction of the normal law, then there
exist 0 < η < 1 such that

∣∣P
(
Sn/Vn ≤ x

)
− Φ(x)

∣∣ ≤ Aδn exp
(
− ηx2/2

)
(3.5)

for all x ∈ R and n ≥ 1, where δn is defined as in (3.1) and A is an absolute
constant.

The constant η in Theorem 3.4 may depend on the distribution of X and
cannot be replaced by an absolute constant. For example, let X1, . . . , Xn be iid
random variables from the distribution P (X = 1) = 1−P (X = −p/(1−p)) = p,
where 0 < p < 1. It is readily seen that EX = 0, and for x =

√
n and p ≥ 1/2

P (Sn ≥ xVn) ≥ P (Sn = n) ≥ P (X1 = 1, . . . , Xn = 1) = pn = ex
2 log p.

Since log p < 0 and log p ↑ 0 as p ↑ 1, (3.5) cannot be true for an absolute
constant. Corollary 2.3 of [69] provided a similar result to (3.5) under E|X |10/3 <
∞. However the corollary misused the concept of absolute constant.

It is possible to replace the η in (3.5) by 1 if we restrict the x in a narrow
range or if we require Xj to be symmetric random variables. Indeed it follows
from Theorem 4.1 below, that, if EX = 0 and E|X |3 < ∞, then

∣∣P
(
Sn/Vn ≤ x

)
− Φ(x)

∣∣ ≤ A (1 + x2)e−x2/2E|X |3/(σ3
√
n),

for 0 ≤ x ≤ σn1/6/(E|X |3)1/3, where σ2 = EX2 and A is an absolute constant.
Furthermore if X is a symmetric random variable around zero with E|X |3 < ∞,
then

∣∣P
(
Sn/Vn ≤ x

)
− Φ(x)

∣∣ ≤ A min{(1 + x2)E|X |3/(σ3
√
n), 1}e−x2/2.

See Wang and Jing (1999) [69] as well as Chistyakov and Götze (2003) [11].
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4. Relative errors in the central limit theorems

Section 3 reviewed the absolute error in the central limit theorem for Sn/Vn.
This section considers the relative error of P (Sn/Vn ≥ x) to 1 − Φ(x), that
is, the Cramér-type moderate deviation for Sn/Vn, which is another approach
for estimating the errors in the normal approximation in Section 2. In this
regard, Jing, Shao and Wang (2003) [37] refined Shao (1999) [57], Wang and
Jing (1999) [69] as well as Chistyakov and Götze (2003) [11], and obtained the
following result. Let

B2
n =

n∑

i=1

EX2
i and Lkn = B−k

n

n∑

i=1

E|Xi|k, for k ≥ 3.

Theorem 4.1. If X1, X2, . . . are independent random variables with EXj = 0
and 0 < E|Xj |3 < ∞, then

P (Sn/Vn ≥ x) =
{
1− Φ(x)

}{
1 +O1(1 + x)3L3n

}
(4.1)

for 0 ≤ x ≤ L−1/3
3n , where O1 is bounded by an absolute constant.

[37] actually established more general frameworks and considered applica-
tions to the self-normalized law of the iterated logarithm and the studentized
bootstrap. There are several further extensions in i.i.d. settings. Using an exam-
ple, Chistyakov and Götze (2004a) [12] proved that the result in [37] is sharp.
Robinson and Wang (2005) [54] established a Cramér type result under optimal
moment condition, that is, under the assumption that X is in the domain of
attraction of the normal law. Assuming EX4 < ∞, Wang (2005) [66] as well
as Wang and Hall (2009) [68] proved that P (Sn/Vn ≥ x)/{1−Φ(x)} equals, to
first order, exp{−x3EX3/(3

√
nσ3)} where σ2 = EX2. Explicitly, the following

Theorem 4.2 is from Theorem 1.1 of Wang (2005) [66].

Theorem 4.2. Assume that EX = 0 and EX4 < ∞. Then, for x ≥ 0 and
x = O(n1/6),

P
(
Sn ≥ xVn

)

1− Φ(x)
= exp

{
−x3EX3

3
√
nσ3

} [
1 + O

(1 + x√
n

)]
, (4.2)

If in addition EX3 = 0, then, for 0 ≤ x ≤ O
(
n1/6

)
,

P
(
Sn ≥ xVn

)
− (1− Φ(x)) = O

(
n−1/2e−x2/2

)
. (4.3)

We mention that the proofs of Theorems 4.1 and 4.2 (other related results in
the cited articles as well) depends heavily on the following ideas and facts. First
of all, by the Cauchy inequality xVn ≤ (x2+ b2V 2

n )/(2b), where b := bx = x/Bn,
we have

P (Sn ≥ xVn) ≥ P
{
Sn ≥ (x2 + b2V 2

n )/(2b)
}
= P (2bSn − b2V 2

n ≥ x2). (4.4)
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Since 2bSn − b2V 2
n =

∑n
i=1 Yi, where Yi = 2bXi − b2Y 2

i are independent having
EetYi < ∞ for any t > 0, the lower bound of (4.1) was obtained from the fact
that:

P (2bSn − b2V 2
n ≥ x2) = {1− Φ(x)}

{
1 +O(1)(1 + x)3L3n

}
(4.5)

for 0 ≤ x ≤ L−1/3
3n . By the conjugate method, it is easy to prove (4.5) and it is

also possible to provide a more concise result.
A truncation technique is used in establishing the upper bound of (4.1). Let

τ := τn,x = Bn/max{1, x} and define X̄i = XiI(|Xi| ≤ τ). We may write

P (Sn ≥ xVn) = p1n + p2n, (4.6)

where p1n = P (Sn ≥ xVn, Xi = X̄i, all i = 1, . . . , n) and

p2n = P (Sn ≥ xVn, Xi 6= X̄i, some i = 1, . . . , n).

It is relatively easy to show that

p2n ≤ A (1 + x)3L3n{1− Φ(x)}, (4.7)

for 0 ≤ x ≤ L−1/3
3n . Therefore the key step in the proof of (4.1) is to establish

the result:

p1n ≤ {1− Φ(x)}
{
1 +A (1 + x)3L3n

}
(4.8)

for 0 ≤ x ≤ L−1/3
3n . This was done in Jing, Shao and Wang (2003) [37] (and

other related results in the cited articles) by separating the x into “small” and
“large” cases. Explicitly in [37] we proved

p1n ≤ {1− Φ(x)}
{
1 +A (1 + x)3L3n

}
+ e−3x2

(4.9)

and

p1n ≤ {1− Φ(x)}
{
1 +A (1 + x)3L3n

}
+A(xL3n)

4/3, (4.10)

for 0 ≤ x ≤ L−1/3
3n . By using (4.9) we obtain (4.8) when x is “large”, and by

using (4.10) we obtain (4.8) when x is “small”. The proofs of both (4.9) and
(4.10) are difficult and very technical.

Observe that p1n may be estimated by the following (since (1 + y)1/2 ≥
1 + y/2− y2 for y ≥ −1)

p1n = P (Sn ≥ xBn

[
1 +

1

B2
n

(
V 2
n −B2

n

)]1/2
, Xi = X̄i, all i = 1, . . . , n)

≤ P
(
Sn ≥ xBn

{
1 +

1

2B2
n

(V 2
n −B2

n)−
1

B4
n

(V 2
n −B2

n)
2
}
,

Xi = X̄i, all i = 1, . . . , n
)

≤ P
(
2bSn − b2V 2

n ≥ x2
[
1− 2B−4

n (V̄ 2
n −B2

n)
2
])

, (4.11)



80 Q. M. Shao and Q. Wang

where V̄n =
∑n

i=1 X̄
2
i . This, together with (4.4), heuristically provides the fact

that P (Sn/Vn ≥ x) is “close enough” to P (2bSn − b2V 2
n ≥ x2) under certain

moment conditions, since B−4
n E(V̄ 2

n − B2
n)

2 is small. As noticed before, it is
relatively easy to derive a concise estimate for P (2bSn − b2V 2

n ≥ x2). Based
on these observations, Wang (2011) [67] provided an alternative proof of (4.8).
Furthermore he gave a more concise estimate of P (Sn/Vn ≥ x) instead of the
(4.1), which is stated as follows.

Let’s start with some notation and basic facts. Let Yi = 2bXi − (bXi)
2 and

write m(λ) =
∑n

i=1 log EeλYi . Note that m(λ) is well-defined and m′′(λ) =∑n
i=1 var(2bZi − b2Z2

j ) > 0 for all λ > 0 and x 6= 0, where Z1, . . . , Zn are in-
dependent random variables with Zj having distribution function Vj(u) defined
by

Vj(u) = E
{
eλYjI(Yj ≤ u)

}/
EeλYj . (4.12)

Hence, for each x 6= 0, m′(λ) is a strictly increasing function for λ > 0. Fur-
thermore, there exists an absolute constant A0 such that for all x > 0 satisfying
x ≤ 1

3Bn/(maxiE|Xi|3)1/3 and x ≤ L−1
3n /A0, the equation m′(λ) = x2 has a

unique solution λ0 > 0. For this defined λ0, [67] established the following result.
Write

Ψx(t, δ) = exp
{
m(t) + x2(2t2 − t)− t δ

}
,

Ψ̃x(t, c) = exp
{
m(t) +

1

2
(x + c)2 − t (x2 + 2x c)

}
,

where δ = δ(x) and c = c(x) are defined later.

Theorem 4.3. If X1, X2, . . . are independent random variables with EXj = 0
and 0 < E|Xj |4 < ∞, then

P (Sn/Vn ≥ x)

= Ψx(λ0, 0)
{
1− Φ(2λ0 x)

}{
1 +O1(1 + x)L3n +O2(1 + x4)L4n

}
, (4.13)

or equivalently,

P (Sn/Vn ≥ x)

= Ψ̃x(λ0, 0)
{
1− Φ(x)

}{
1 +O1(1 + x)L3n +O2(1 + x4)L4n

}
, (4.14)

for 0 ≤ x ≤ L−1/4
4n , where O1 and O2 are bounded by an absolute constant.

Since maxi E|Xi|3 ≤ (
∑n

i=1 E|Xi|4)3/4 and L2
3n ≤ L4n, the condition x ≤

L−1/4
4n implies that x ≤ Bn/(maxiE|Xi|3)1/3 and x ≤ L−1

3n , provided L3n ≤ 1.
Theorem 4.3 is a corollary of the following general framework. Write

∆n,x = τ−3
n∑

i=1

E{|Xi|I(|X | ≥ τ)} + τ−4
n∑

i=1

E{|Xi|4I(|Xi| ≤ τ)},

where τ = Bn/max{1, x} and denote λ1 for the solution of the equationm′(λ) =
x2 + 2xc.
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Theorem 4.4. If X1, X2, . . . are independent random variables with EXj = 0
and 0 < E|Xj |3 < ∞, then

P (Sn ≥ xVn + cBn)

= Ψx(λ1, 2xc)
{
1− Φ(2λ1 x)

}
eO1∆n,x

{
1 +O2(1 + x)L3n

}
, (4.15)

or equivalently,

P (Sn ≥ xVn + cBn)

= Ψ̃x(λ1, c)
{
1− Φ(x+ c)

}
eO1∆n,x

{
1 +O2(1 + x)L3n

}
, (4.16)

uniformly for |c| ≤ x/5 and for all x > 0 satisfying x ≤ 1
3Bn/(maxiE|Xi|3)1/3

and x ≤ L−1
3n /A0, where O1 and O2 are bounded by an absolute constant.

Consequently, we also have

P (Sn ≥ xVn + cBn)

=
{
1− Φ(x+ c)

}
Ψ∗

x e
O1∆n,x

{
1 +O2(1 + x)L3n

}
, (4.17)

where γ = 1
2 (1 + c/x) and Ψ∗

x = exp
{
γ2(4γ/3 − 2)x3B−3

n

∑n
i=1 EX3

i

}
, 1 uni-

formly for |c| ≤ x/5 and for all x > 0 satisfying x ≤ 1
3Bn/(maxiE|Xi|3)1/3 and

x ≤ L−1
3n /A0, where O1 and O2 are bounded by an absolute constant.

Theorem 4.4 provides a concise estimate of P (Sn/Vn ≥ x) instead of (4.1). It
also improves the general result in Jing, Shao and Wang (2003) [37]. Assuming
that X1, X2, . . . , Xn are i.i.d. random variables, result (4.17) gives Theorem 4.2
and Theorem 1 of Wang and Hall (2009) [68]. It would be interesting to see
whether or not it is possible to remove the error term O1∆n,x in (4.16). If
the x is in a small range [for instance 0 ≤ x ≤ O(n1/6) in the i.i.d. settings],
then the term O1∆n,x is smaller than that of xL3n, and hence can be removed
(see Theorem 4.3). However it plays a part when the x is in a median or large
range [for instance O(n1/6) ≤ x ≤ o(

√
n) in the i.i.d. settings]. In terms of the

difference between (4.4) and (4.11), the current truncation technique seems to
raise an error term like O1∆n,x.

Based on these facts, in order to obtain a better estimate of P (Sn/Vn ≥ x)
in a median or large range for the x, we may have to use a completely different
technique. Jing, Shao and Zhou (2004) [38] [also see Zhou and Jing (2006) [71]]
investigated a saddle-point approximation for the tail probability P (Sn/Vn ≥ x)
in a very large range for the x, that is, x = c

√
n with 0 < c < 1 in the i.i.d.

settings (see the review in the next section). It is not clear at the moment if
the technique in [38] or [71] can be employed to provide a better approximation
for P (Sn/Vn ≥ x) in a median range for the x [i.e., O(n1/6) ≤ x ≤ o(

√
n) in

the i.i.d. settings]. We note that [38] derived their results without imposing any
moment conditions on X , but we do require a moment condition to establish a

1There is a typo in the definition of Ψ∗
x
, presented in (1.17) of Wang (2011) [67].
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better approximation for P (Sn/Vn ≥ x) in a small range for the x. For instance,
a finite third moment is necessary to establish

P (Sn/Vn ≥ x) = {1− Φ(x)}
{
1 +O(1 + x)L3n

}
,

for 0 ≤ x ≤ C, where C is a constant. By taking consideration of this fact, some
significant modifications might be necessary even if the technique in [38] would
work to provide a better approximation for P (Sn/Vn ≥ x) in a median range for
the x. On the other hand, the problem may be solvable by the method developed
in Shao and Zhou (2012) [61] where a new randomized concentration inequality
is obtained to establish a Cramér type moderate theorem for self-normalized
non-linear statistics (see Section 6).

5. Cramér-Chernoff type large deviation and saddle-point

approximation

Section 4 considered the relative error of P (Sn/Vn ≥ x) to 1 − Φ(x) when
0 ≤ x ≤ o(n1/2). In the i.i.d. settings, assuming EX = 0 and E|X |3 < ∞, it
follows from Theorem 4.4 that

logP (Sn/Vn ≥ xn) ∼ −x2
n/2, (5.1)

whenever xn → ∞ and xn = o(n1/2). It is interesting to notice that the result
(5.1) may be proved directly under fewer moment conditions. See Shao (1997)
[55] and Jing, Shao and Zhou (2008) [38]. Indeed, Shao (1997) [55] showed that
if EX = 0 and the distribution of X is in the domain of attraction of the
normal law, then (5.1) holds true. Furthermore, [38] established the following
more general Theorem 5.1.

Denote the support of X by Cs, that is,

Cs = {x : P{X ∈ (x− ǫ, x+ ǫ)} > 0, for any ǫ > 0}.

Say X is in the centered Feller class if X ∈ Fθ for some 0 ≤ θ < ∞, where

Fθ =
{
X : lim

a→∞
a2{P (|X | > a) + a−1|EXI(|X | ≤ a)|}

EX2I(|X | ≤ a)
= θ

}
.

Then we have

Theorem 5.1. Suppose that

(i) Cs ∩ R+ 6= φ and Cs ∩ R− 6= φ, where R+ = {x : x > 0} and R− = {x :
x < 0};

(ii) EX = 0 or EX2 = ∞.

Also assume that X is in the centered Feller class. Then, for any sequence
{xn, n ≥ 1} satisfying xn → ∞ and xn = o(n1/2),

logP (Sn/Vn ≥ xn) ∼ −nλ(x2
n/n), (5.2)

where λ(x) = infb>0 supt≥0(tx− logE exp{t(2bX − b2X2)}).
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The result (5.2) also holds true when xn = ǫ
√
n for some ǫ > 0. In fact, in this

situation, the condition that X is in the centered Feller class is not necessary.
The following theorem proved in [55] claims this statement.

Theorem 5.2. Assume that either EX = 0 or EX2 = ∞. Then,

logP (Sn/Vn ≥ ǫ
√
n) ∼ −nλ(ǫ2), (5.3)

for ǫ > EX/(EX2)1/2, where λ(x) is defined as in Theorem 5.1 and EX/
(EX2)1/2 is interpreted to be zero if EX2 = ∞ and 0/0 to be ∞.

Note that no conditions are required for the result (5.3), since it is natural
to assume EX = 0 if EX2 < ∞. By adding some smoothing conditions for
the distribution of X , [38] derived the saddle-point approximation for the tail
probability P (Sn/Vn ≥ ǫ

√
n) without any moment conditions. Indeed, it is

proved in [38] that, if the distribution function F (x) of X is continuous, then,
for any 0 < ǫ < 1, the equation:

s+
2ta

ǫ2
= 0,

∂K(s, t)

∂s
= a,

∂K(s, t)

∂t
= a2/ǫ2

has a unique solution (s0, t0, a0) such that s0 > 0, t0 < 0 and a0 > 0, where
K(s, t) = logEesX+tY . Write

Λ0(ǫ) = s0 a0 + t0 a
2
0/ǫ

2 −K(s0, t0),

Λ1(ǫ) = 2t0/ǫ
2 +

(
1, 2a0/ǫ

2
)
∆−1

(
1, 2a0/ǫ

2
)′
,

where Kss(s, t) =
∂2K(s,t)

∂s2 , Kst(st) =
∂2K(s,t)
∂s ∂t , Ktt(s, t) =

∂2K(s,t)
∂t2 and

∆ =
(

Kss(s0, t0) Kst(s0, t0)
Kst(s0, t0) Ktt(s0, t0)

)
.

Jing, Shao and Zhou (2004) [38] established

Theorem 5.3. Assume that
∫∞
−∞

∫∞
−∞ |EeisX+itX2 |rdsdt < ∞ for some r > 1.

Then, for any 0 < ǫ < 1,

P (Sn/Vn ≥ ǫ
√
n) = 1− Φ(

√
nω)− φ(

√
nω)√
n

( 1

ω
− 1

ν
+O(n−1)

)
, (5.4)

where ω =
√
2Λ0(ǫ) and ν = −t0 (det∆)1/2Λ1(ǫ)

1/2.

The smoothing condition in Theorem 5.3 was reduced to (X,X2) being a
strongly nonlattice vector in Zhou and Jing (2006) [71]. As mentioned in Sec-
tion 4, it would be interesting to consider the extension of (5.4) to the situation
where 0 < ǫ := ǫn → 0, as in Theorems 4.3 and 4.4.

6. Other self-normalized limit theorems

Sections 2–5 reviewed current developments in the investigations for the self-
normalized sums Sn/Vn, along the lines related to central limit theorems. This
section will briefly mention other important self-normalized limit theorems.



84 Q. M. Shao and Q. Wang

6.1. Self-normalized laws of the iterated logarithm

Griffin and Kuelbs (1989) [31] was the first to investigate the laws of the iterated
logarithm for the self-normalized sums. The following beautiful result is from
their Theorem 1.

Theorem 6.1. If EX = 0 and X is in the domain of attraction of the normal
law, then

lim sup
n→∞

Sn

Vn(log log n)1/2
=

√
2, a.s. (6.1)

Griffin and Kuelbs (1989) [31] and later Shao (1997) [55] also discussed the
laws of the iterated logarithm under the condition that X is in the domain
of attraction of the stable law. More currently, Jing, Shao and Zhou (2008)
[39] established a general result under the condition that X is in the centered
Feller class defined as in Section 5. The following Theorem 6.2 is from their
Theorem 1.2. Note that Theorem 6.2 also extends those results given by Giné
and Mason (1998) [30].

Theorem 6.2. Under the conditions of Theorem 5.1,

lim sup
n→∞

Sn

Vn(log logn)1/2
=

1√
t0
, a.s. (6.2)

where t0 = limx→0+ tx, and (tx, bx) is the solution of the following equations:

E
[
b(2X − bX2) exp{tb(2X − bX2)}

]
= xE exp{tb(2X − bX2)},

E
[
(X − bX2) exp{tb(2X − bX2)}

]
= 0.

There are other extensions for the self-normalized laws of the iterated log-
arithm. For instance, Csörgö and Hu (2013) [16] established a strong approxi-
mation result, Csörgö, Hu and Mei (2013) [17] obtained a strassen-type law of
the iterated logarithm, Dembo and Shao (1998, 2006) [23, 24] considered self-
normalized laws of the iterated logarithm under space Rd, de la Pena, Klass and
Lai (2000, 2004) [50, 51] investigated the laws of the iterated logarithm for self-
normalized martingales. The later also derived other results for self-normalized
processes.

6.2. Darling-Erdós type theorem and maximum of self-normalized

sum

CsSzW (2003a) [18] and later Wang (2004) [65] investigated the asymptotic be-
havior in the distribution of the maximum of self-normalized sums, max1≤k≤n Sk/
Vk. The following Darling-Erdős type result Theorem 6.3 comes from Wang’s
Theorem 1. Write l(x) = EX2I(|X|≤x), a(n) = (2 log logn)1/2 and

b(n) = 2 log logn+
1

2
log log logn− 1

2
log(4π).
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Theorem 6.3. Suppose that l(x) is a slowly varying function at ∞, satisfying
l(x) ≤ c1 exp{c2(log x)β} for some c1 > 0, c2 > 0 and 0 ≤ β < 1/2. Then, for
every t ∈ R, we have that

lim
n→∞

P
{
a(n) max

1≤k≤n
Sk/Vk ≤ t+ b(n)

}
= exp(−e−t). (6.3)

Self-normalization significantly reduces the moment conditions in comparison
to the classical result. Indeed, the classical Darling-Erdős theorem shows that,

lim
n→∞

P
{
a(n) max

1≤k≤n
Sk/(σ

√
k) ≤ t+ b(n)

}
= exp(−e−t), (6.4)

where σ2 = EX2, if and only if EX = 0 and

EX2I(|X|≥x) = o
(
(log log x)−1

)
, as x → ∞.

See Einmahl (1989) [28]. The necessary condition for the result (6.3) remains
an open question.

The asymptotic behavior of max1≤k≤n Sk/Vn is different frommax1≤k≤n Sk/Vk.
This claim can be justified by the following result, coming from Theorem 1 of
Liu, Shao and Wang (2012) [43].

Theorem 6.4. If E|X |3 < ∞, then

lim
n→∞

P
(
max1≤k≤n Sk ≥ xVn

)

1− Φ(x)
= 2 (6.5)

uniformly for x ∈ [0, o(n1/6)).

[43] actually established more general results which improved those by Hu,
Shao and Wang (2009) [36]. It should be mentioned that Theorem 6.4 is com-
parable to the large deviation result for the maximum of partial sum given in
Aleshkyavichene (1979) [1]. However the latter requires a finite exponential mo-
ment condition. If we are only interested in a Chernoff type large deviation, the
third moment condition required in Theorem 6.4 can be reduced significantly.
Indeed, [36] proved the following theorem.

Theorem 6.5. If X is in the domain of attraction of the normal law, then

lim
n→∞

x−2
n logP

(
max

1≤k≤n
Sk ≥ xn Vn

)
= −1

2
(6.6)

for any xn → ∞ with xn = o(
√
n).

6.3. Limit theorems for Hotelling’s T 2 statistic

Let X,X1,X2, . . . be a sequence of independent and identically distributed
(i.i.d.) nondegenerate Rd-valued random vectors with mean µ, where d ≥ 1. Let

SSn =

n∑

i=1

Xi, V n =

n∑

i=1

(Xi − SSn/n)(Xi − SSn/n)
′
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Define Hotelling’s T 2 statistic by

T 2
n = (SSn − nµ)′V −1

n (SSn − nµ). (6.7)

Here when V n is not full rank, i.e., V n is degenerate, x′V −1
n x is defined as

x′V −1
n x = sup

||θ||=1,θ
′
x>0

(θ′x)2

θ′V nθ

and 0/0 is interpreted as ∞.
The T 2-statistic is a natural extension of the Student’s t at the vector space,

and is used for testing hypotheses about mean µ and for obtaining confidence
regions for unknown µ. When X has a normal distribution N(µ,Σ), it is known
that (n−d)T 2

n/(dn) is distributed as an F -distribution with d and n−d degrees
of freedom (see, e.g., Anderson (2003) [3]). When the distribution of X is not
normal, it was proved by Sepanski (1994) [64] that the limiting distribution of
T 2
n as n → ∞ is a χ2-distribution with d degrees of freedom. Dembo and Shao

(2006) [24] established the following large and moderate deviation results for
the T 2-statistic.

Theorem 6.6.

(i) Assume that µ = 0. For α ∈ (0, 1), let

K(α) = sup
b≥0

sup
||θ||=1

inf
t≥0

E exp
(
t
(
bθ′

X − α((θ′
X)2 + b2)/2

))
.

Then, for all x > 0,

lim
n→∞

P
(
T 2
n ≥ xn

)1/n

= K(
√
x/(1 + x)).

(ii) Let {xn, n ≥ 1} be a sequence of positive numbers with xn → ∞ and
xn = o(n) as n → ∞. Assume that h(x) := E||X ||21{||X|| ≤ x} is slowly
varying and

lim inf
x→∞

inf
θ∈Rd,||θ||=1

E(θ′X)21{||X|| ≤ x}/h(x) > 0. (6.8)

If µ = 0, then

lim
n→∞

x−1
n lnP

(
T 2
n ≥ xn

)
= −1

2
.

(iii) Assume that h(x) := E||X||21{||X|| ≤ x} is slowly varying and 6.8 is
satisfied. If µ = 0, then

lim sup
n→∞

T 2
n

2 log logn
= 1 a.s.

Theorem 6.6 was further refined by Liu and Shao (2012) [42] as follows.



Self-normalized limit theorems 87

Theorem 6.7. Suppose that E||X1 − µ||3+δ < ∞ for some δ > 0. Then

P
(
T 2
n ≥ x2

)

P
(
χ2(d) ≥ x2

) → 1 (6.9)

uniformly for x ∈ [0, o(n1/6)).

We also refer to [23, 24] and [42] for other limit theorems related to the T 2-
statistic. Because of its usefulness in statistical inferences, it would be interesting
to find further sharp results for the T 2-statistic as in Sections 2–5. For instance,
we conjecture that the result (6.9) still holds if only E||X1 − µ||3 < ∞.

6.4. Limit theorems for studentized non-linear statistics

Non-linear statistics are used in various statistical inference problems. It is
known that many of them can be written as a partial sum of independent
random variables plus a negligible term. Typical examples include U-statistics,
multi-sample U-statistics, L-statistics, random sums and functions of non-linear
statistics. Since the Standardized non-linear statistics often involve some un-
known nuisance parameters, the Studentized analogues are commonly used in
practice.

Let ξ1, . . . , ξn be independent random variables satisfying Eξi = 0. Assume
the non-linear statistic of interest can be decomposed as a standardized partial
sum of {ξi}, e.g.,Wn, plus a remainder, say,D1. Then the Studentized analogues
can be written as

Tn =
Wn +D1

Vn(1 +D2)1/2
, (6.10)

where

Wn =

n∑

i=1

ξi, , Vn =
( n∑

i=1

ξ2i

)1/2

,

D1 and D2 are measurable functions of {ξi}, 1 ≤ i ≤ n. Examples satisfying
(6.10) include the t-statistic, Studentized U-statistics and L-statistics. There
are many works on the asymptotic distribution theory for the Studentized non-
linear statistics Tn. We only refer to Wang, Jing and Zhao (2000) [70] as well
as Shao, Zhang and Zhou (2012) [62] for general Berry-Esseen bounds under
minor moment conditions.

A general Cramér type moderation for the Studentized statistics Tn was
established in Shao and Zhou (2012) [61]. For 1 ≤ i ≤ n and x ≥ 0, let

δi,x = (1 + x)2Eξ2i I{(1+x)|ξi|>1} + (1 + x)3E|ξi|3I{(1+x)|ξi|≤1}

and

∆n,x =

n∑

i=1

δi,x, In,0 = EexWn−x2V 2
n /2 =

n∏

i=1

Eexξi−x2ξ2i /2.
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Let D
(i)
1 and D

(i)
2 , for each 1 ≤ i ≤ n, be arbitrary measurable functions of

{ξj , 1 ≤ j ≤ n, j 6= i}. Set for x > 0,

Rn,x = I−1
n,0 ×

{
E
[
(x|D1|+ x2|D2|)e

∑
n

j=1
(xξj−x2ξ2j /2)

]

+

n∑

i=1

E
[
min(x|ξi|, 1)(|D1 −D

(i)
1 |+ x|D2 −D

(i)
2 |)e

∑
n

j 6=i
(xξj−x2ξ2j /2)

]}
.

Theorem 6.8. Let Tn be defined in (6.10) and
∑n

i=1 Eξ2i = 1. Then there is
an absolute constant A (> 1) such that

eO(1)∆n,x
(
1−ARn,x

)
≤ P (Tn ≥ x)

1− Φ(x)
(6.11)

and

P (Tn ≥ x) ≤
(
1− Φ(x)

)
eO(1)∆n,x

(
1 +ARn,x

)

+ P
(
|D1|/Vn > 1/(4x)

)
+ P

(
|D2| > 1/(4x2)

)
(6.12)

for all x > 1 satisfying max1≤i≤n δi,x ≤ 1 and ∆n,x ≤ (1 + x)2/A, where
|O(1)| ≤ A.

As a direct but nontrivial consequence of Theorem 6.8, [61] provided a sharp
Cramér moderate deviation for Studentized U -statistics under optimal moment
conditions, which improved an earlier result by Lai, Shao and Wang (2011)
[67, 41].

Let X1, X2, . . . be a sequence of i.i.d. random variables and let h : Rm → R
be a Borel measurable symmetric function of m variables, where 2 ≤ m < n/2.
Consider Hoeffding’s U-statistic with kernel h

Un =

(
n

m

)−1 ∑

1≤i1<···<im≤n

h(Xi1 , . . . , Xim).

Let θ = Eh(X1, . . . , Xm), g(x) = Eh(x,X2, . . . , Xm) and σ2 = var(g(X1)). The
Studentized U-statistic [see e.g., Arvesen (1969) [4]] is defined as

Tn =

√
n

ms1
(Un − θ),

where s21 is the Jacknife estimator of σ2,

s21 =
(n− 1)

(n−m)2

n∑

i=1

(qi − Un)
2,

qi =

(
n− 1

m− 1

)−1 ∑

(l1,...,lm)∈Cm−1,i

h(Xi, Xl1 , . . . , Xlm−1
)

and

Cm−1,i = {(l1, . . . , lm−1) : 1 ≤ l1 < · · · < lm−1 ≤ n, lj 6= i for 1 ≤ j ≤ m− 1}.
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Theorem 6.9. Let 2 < p ≤ 3 and assume 0 < σp = (E|g(X1) − θ|p)1/p < ∞.
Suppose that there are constants c0 ≥ 1 and τ ≥ 0 such that

(h(x1, . . . , xm)− θ)2 ≤ c0

(
τσ2 +

m∑

i=1

(g(xi)− θ)2
)
. (6.13)

Then there exists a constant A > 1 only depending on m such that

P (Tn ≥ x)

1− Φ(x)
= 1 +O(1)

{σp
p(1 + x)p

σpn(p−2)/2
+ c0(1 + τ)

(1 + x)3

n1/2

}
, (6.14)

for any 0 < x < min{σn(p−2)/(2p)/σp, n
1/6/(c0(1+τ))1/6}/A, where |O(1)| ≤ A.

In particular, we have
P (Tn ≥ x)

1− Φ(x)
→ 1 (6.15)

uniformly in 0 ≤ x ≤ o(n(p−2)/(2p)).
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