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Abstract: The convergence of the totally asymmetric simple exclusion
process to the solution of the Burgers equation is a classical result. In his
seminal 1981 paper, Herman Rost proved the convergence of the density
fields and local equilibrium when the limiting solution of the equation is
a rarefaction fan. An important tool of his proof is the subadditive er-
godic theorem. We prove his results by showing how second class particles
transport the rarefaction-fan solution, as characteristics do for the Burg-
ers equation, avoiding subadditivity. Along the way we show laws of large
numbers for tagged particles, fluxes and second class particles, and simplify
existing proofs in the shock cases. The presentation is self contained.
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1. Introduction

In the totally asymmetric simple exclusion process (tasep) there is at most a
particle per site. Particles jump one unit to the right at rate 1, but jumps to
occupied sites are forbidden. Rescaling time and space in the same way, the
density of particles converges to a deterministic function which satisfies the
Burgers equation. This was first noticed by Rost [51], who considered an initial
configuration with no particles at positive sites and with particles in each of the
remaining sites. He then takes r in [−1, 1] and proves that (a) the number of
particles at time t to the right of rt, divided by t converges almost surely when
t → ∞ and (b) the limit coincides with the integral between r and ∞ of the
solution of the Burgers equation at time 1, with initial condition 1 to the left
of the origin and 0 to its right. This is called convergence of the density fields.
Rost also proved that the distribution of particles at time t around the position
rt converges as t grows to a product measure whose parameter is the solution
of the equation at the space-time point (r, 1). This is called local equilibrium
because the product measure is invariant for the tasep. These results were then
proved for a large family of initial distributions and triggered an impressive set
of work on the subject; see Section 10 later.

The main novelty of this paper is a new proof of Rost theorem. Rost first uses
the subadditive ergodic theorem to prove that the density field converges almost
surely and then identifies the limit using couplings with systems of queues in
tandem. Our proof shows convergence to the limit in one step, avoiding the use of
subadditivity. For each ρ ∈ [0, 1] we couple the process starting with the 1-0 step
Rost configuration with a process starting with a stationary product measure
at density ρ and show that for each time t the Rost configuration dominates the
stationary configuration to the left of Rt and the opposite domination holds to
the right of Rt; see Lemma 9.1. Here Rt is a second class particle with respect
to the stationary configuration. It is known that Rt/t converges to (1− 2ρ) and
then the result follows naturally. A colorful and conceptual aspect of the proof
is that 1− 2ρ is the speed of the characteristic of the Burgers equation carrying
the density ρ.

In order to keep the paper self contained we shortly introduce the Burgers
equation and the role of characteristics and the graphical construction of the
tasep which induces couplings and first and second class particles. We also in-
clude a simplified proof of the hydrodynamic limit in the increasing shock case,
using second class particles. Along the way we recall the law of large numbers for
a tagged particle in equilibrium, which in turn implies law of large numbers for
the flux of particles along moving positions and for tagged and isolated second
class particles.

Section 2 introduces the Burgers equation and describes the role of charac-
teristics. Section 3 gives the graphical construction of the tasep and describes
its invariant measures. Section 4 contains some heuristics for the hydrodynamic
limits and states the hydrodynamic limit results. Section 5 contains a proof a
the law of large numbers for the tagged particle. Section 6 includes the graphical
construction of the coupling and describes the two-class system associated to a
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coupling of two processes with ordered initial configurations. Section 7 contains
the proof of the law of large numbers for the flux and the second class particles.
In Section 8 we prove the hydrodynamic limit for the increasing shock and in
Section 9 we prove Rost theorem, the hydrodynamics in the the rarefaction fan.
Finally Section 10 includes comments and references.

2. The Burgers equation

The one-dimensional Burgers equation is used as a model of transport. The
function u(r, t) ∈ [0, 1] represents the density of particles at the space position
r ∈ R at time t ∈ R

+. The density must satisfy

∂u

∂t
= −∂[u(1− u)]

∂r
(2.1)

The initial value problem for (2.1) is to find a solution under the initial condition
u(r, 0) = u0(r), r ∈ R, where u0 : R → [0, 1] is given. In this note we only
consider the following family of initial conditions:

u0(r) = uλ,ρ(r) :=

{
λ if r ≤ 0

ρ if r > 0
(2.2)

where ρ, λ ∈ [0, 1]. Lax [40] explains how to treat this case. Differentiating (2.1)
we get

∂u

∂t
= −(1− 2u)

∂u

∂r
(2.3)

so that u is constant along w(t) with w(0) = r, the trajectory satisfying d
dtw =

(1 − 2u). That is, u propagates with speed (1 − 2u): u(w(t), t) = u0(w(0)).
These trajectories are called characteristics. If different characteristics meet,
carrying two different solutions to the same point, then the solution has a shock
or discontinuity at that position. In our case the discontinuity is present in the
initial condition. The cases λ < ρ and λ > ρ are qualitative different.

Shock case When λ < ρ the characteristics starting at r > 0 and −r have
speed (1 − 2ρ) and (1 − 2λ) respectively and meet at time t(r) = r/(ρ − λ) at
position (1 − λ − ρ)r/(ρ − λ). Take a < b large enough to guarantee that the
shock is inside [a, b] for times in [0, t]. By conservation of mass:

d

dt

∫ b

a

u(r, t) dr = u(a, t)(1− u(a, t)) − u(b, t)(1− u(b, t)) (2.4)

Since
∫ b

a
u(r, t) dr = λ(yt − a) + ρ(b− yt), where yt is the position of the shock

at time t, we have
y′t(λ− ρ) = λ(1− λ)− ρ(1− ρ)

and yt = (1 − λ − ρ)t. We conclude that for λ < ρ, the solution of the initial
value problem u(r, t) is ρ for r > vt and λ for r < vt, that is,

u(r, t) = uλ,ρ(r − vt).
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Fig 2.1. Shocks and characteristics in the Burgers equation. The characteristics starting at
r and −r that go at velocity 1− 2ρ and 1− 2λ respectively with ρ > λ. The center line is the
shock that travels at velocity 1− ρ− λ.

The rarefaction fan When λ > ρ the characteristics emanating at the left
of the origin have speed (1− 2λ) < (1− 2ρ), the speed to the right and there is
a family of characteristics emanating from the origin with speeds (1 − 2α) for
λ ≥ α ≥ ρ. The solution is then

Fig 2.2. The rarefaction fan. Here λ > ρ.

u(r, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λ if r < (1− 2λ)t

t− r

2t
if (1− 2λ)t ≤ r ≤ (1− 2ρ)t

ρ if r > (1− 2ρ)t

(2.5)

The characteristic starting at the origin with speed (1 − 2α) carries the solu-
tion α:

u
(
(1− 2α)t, t

)
= α, λ ≥ α ≥ ρ. (2.6)

The above solution is a weak solution, that is, for all Φ ∈ C∞
0 with compact

support, ∫ ∫ (
∂Φ

∂t
u+

∂Φ

∂r
u(1− u)

)
drdt = 0. (2.7)
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The solution may be not unique, but (2.5) comes as a limit when β → 0 of the
unique solution of the (viscid) Burgers equation

∂u

∂t
= −∂[u(1− u)]

∂r
+ β

∂2u

∂r2
. (2.8)

This solution, called entropic, is selected by the hydrodynamic limit of the tasep,
as we will see.

3. The tasep

We construct now the tasep. Call sites the elements of Z and configurations
the elements of the space {0, 1}Z, endowed with the product topology. When
η(x) = 1 we say that η has a particle at site x, otherwise there is a hole.

Harris graphical construction We define directly the graphical construc-
tion of the process, a method due to Harris [33]. The process in {0, 1}Z is given
as a function of an initial configuration η and a Poisson process ω on Z × R

+

with rate 1; ω is a random discrete subset of Z×R. When (x, t) ∈ ω we say that
there is an arrow x → x+1 at time t. Fix a time T > 0. For almost all ω there is

Fig 3.1. A typical ω, represented by arrows and the initial configuration η, where particles
are represented by dots.

a double infinite sequence of sites xi = xi(ω), i ∈ Z with no arrows xi → xi + 1
in (0, T ). The space Z is then partitioned into finite boxes [xi+1, xi+1]∩Z with
no arrows connecting boxes in the time interval [0, T ]. Take ω satisfying this
property and an arbitrary initial configuration η and construct ηt, 0 ≤ t ≤ T ,
as a function of η and ω, as follows.

Since the boxes are finite, we can label the arrows inside each box by order
of appearance. Take a box. If the first arrow in the box is (x, t) and at time t−
there is a particle at x and no particle at x + 1, then the particle follows the
arrow x → x + 1 so that at time t there is a particle at x + 1 and no particle
at x. If before the arrow from x to x+1 there is a different event (two particles,
two holes or a particle at x+1 and no particle at x), then nothing happens: the
configuration after the arrow is exactly the same as before. Repeat the procedure
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for the successive arrows until the last arrow in the box. Proceed to next box
and obtain a particle configuration depending on the initial η and the Poisson
realization ω, denoted ηt[η, ω], 0 ≤ t ≤ T . For times greater than T , use ηT as

Fig 3.2. A typical construction. Particles follow arrows when destination site is empty.

initial configuration and repeat the procedure to construct the process between
T and 2T , using the arrows of ω with times in [T, 2T ] and so on. In this way we
have constructed the process

(ηt[η, ω] : t ≥ 0).

The process satisfies the almost sure Markov property

ηt+s[η, ω] = ηs
[
ηt[η, ω], τtω

]
, (3.1)

where τtω := {(x, s) : (x, t + s) ∈ ω} has the same distribution as ω and it is
independent of ω ∩ (Z× [0, t]), by the properties of the Poisson process ω. This
implies that the process ηt is Markov. Usually we omit the dependence on ω in
the notation.

Product measures Let

U = (U(x) : x ∈ Z) := independent Uniform[0, 1] random variables. (3.2)

Assume that U is independent of ω. For each ρ ∈ [0, 1] define ηρ = ηρ[U ] by

ηρ(x) := 1{U(x) < ρ}. (3.3)

where 1B is the indicator function of B. All configurations in this paper de-
fined in function of U are naturally coupled by using the same uniform random
variables (3.2); we drop the dependency of U to lighten the notation. The dis-
tribution of ηρ is a Bernoulli product measure. Define

fA(η) :=
∏
x∈A

η(x). (3.4)



TASEP hydrodynamics using microscopic characteristics 7

If ζ is a random configuration in {0, 1}Z, then (EfA(ζ) : A ⊂ Z, finite) charac-
terizes the distribution of ζ. In particular, the distribution of ηρ is characterized
by EfA(η

ρ) = ρ|A|, where |A| is the cardinal of A.
Denote

ηρt := ηt[η
ρ, ω] (3.5)

The configuration ηρt is a function of U and ω. We denote P and E the proba-
bility and expectation associated to the probability space induced by the inde-
pendent random elements U and ω.

Lemma 3.1. For each ρ ∈ [0, 1], the distribution of ηρ is invariant for the
tasep. That is, for any finite A ⊂ Z we have E(fA(η

ρ
t )) = ρ|A|, for all t ≥ 0.

This lemma is proved in Liggett [43]. The configurations ζ(n)(x) := 1{x ≥ n}
are frozen because all particles are blocked. In the same paper Liggett shows that
all the invariant measures are combination of the Bernoulli product measures
and the blocking measures, those concentrating mass on the frozen configura-
tions η(n).

4. The hydrodynamic limit

Heuristic derivation of Burgers equation from tasep Using the forwards
Kolmogorov equation for the function f(η) = η(x) we get

d

dt
E(ηt(x)) = E

[
− ηt(x)(1− ηt(x+ 1)) + ηt(x− 1)(1− ηt(x))

]
, (4.1)

Fix an ε > 0 which will go later to zero and define

uε(r, t) := E[ηε−1t(ε
−1r)],

where ε−1r is an abuse of notation for integer part of ε−1r. Putting the ε’s in
(4.1) we get

d

dt
uε(r, t)) = ε−1E

[
− ηtε−1(rε−1)(1− ηtε−1(rε−1 + 1))

+ ηtε−1(rε−1 − 1) (1− ηtε−1(rε−1))
]
. (4.2)

Assume that there exist a limit

u(r, t) := lim
ε→0

uε(r, t)

and that the distribution of ηε−1t around ε−1r is approximately product, that
is,

lim
ε→0

E
[
ηtε−1(rε−1) ηtε−1(rε−1 + 1)

]
= (u(r, t))2.

Assume further that u(r, t) is differentiable in r. In this case, the right hand side
of (4.2) must converge to minus the derivative of u(r, t)(1− u(r, t)), that is, the
limiting u(r, t) must satisfy the Burgers equation. This heuristic argument may
also be a script of a proof of the convergence of the tasep density to a solution
of the Burgers equation. Instead, we show directly the convergence in the terms
described by (4.5) and (4.6) later.
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Hydrodynamics limit. General case Consider the Burgers equation with
initial data u0 such that there exists a unique entropic weak solution u(r, t)
for the initial value problem (2.1)-(2.2). Take the uniform random variables U
defined in (3.2) and define

ζε(x) := 1{U(x) ≤ u0(εx)}. (4.3)

That is, for each ε > 0, the random configuration ζε is a sequence of independent
Bernoulli random variables with varying parameter induced by u0 for the mesh ε.
Let ζεt be the tasep with random initial configuration ζε:

ζεt := ηt[ζ
ε, ω]. (4.4)

Denote τz the translation operator by z, defined by (τzη)(x) = η(	x + z
),
here 	z
 is the integer part of z.

Theorem 4.1 (Hydrodynamic limits by several authors). Let u(r, t) be the
solution of the Burgers equation with initial condition u0. Let ζε be given by
(4.3) and ζεt be the tasep with initial condition ζε defined in (4.4). Then,
Convergence of the density fields. For all real numbers a < b and for all t ≥ 0,

lim
ε→0

ε
∑

x:a≤εx≤b

ζεε−1t(x) =

∫ b

a

u(r, t)dr, a.s. (4.5)

Local-equilibrium. At the continuity points of u(r, t),

lim
ε→0

E[fA(τε−1rζ
ε
ε−1t)] = u(r, t)|A|. (4.6)

The limit (4.6) gives weak convergence of the particle distribution at the
points of continuity of u(r, t) to the distribution of ηu(r,t), which is an invariant
measure. When A = {0}, the limit (4.6) is the so called density profile:

lim
ε→0

E[ζεε−1t(ε
−1r)] = u(r, t), (4.7)

ignoring the integer parts, as abuse of notation. In Section 10 we give references
to the proof of this Theorem.

Hydrodynamic limit. Shock case Consider the case corresponding to u0 =
uλ,ρ and t = 1. Let λ, ρ ∈ [0, 1] and ηλ,ρ = ηλ,ρ[U ] be defined by

ηλ,ρ(x) :=

{
1{U(x) ≤ λ, } if x ≤ 0

1{U(x) ≤ ρ, } if x > 0.
(4.8)

where U is defined in (3.2). As before we denote

ηλ,ρt := ηt[η
λ,ρ, ω],

a function of U and ω. In the rest of the paper we fix macroscopic time equal
to 1 and use t as scaling parameter.

We prove the following theorem. The result is a particular case of Theorem
4.1, which is known but the methods are new for the rarefaction case.
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Theorem 4.2. For all real numbers a < b,

lim
t→∞

1

t

∑
x:at≤x≤bt

ηλ,ρt (x) =

∫ b

a

uλ,ρ(r, 1)dr, a.s. (4.9)

At the continuity points of uλ,ρ(·, 1), we have

lim
t→∞

E[fA(τtrη
λ,ρ
t )] = u(r, 1)|A|. (4.10)

Sketch of proof of Theorem 4.2 The proofs are based on the coupling of the
tasep obtained by using the same U and ω for all initial conditions. A crucial
property of the coupling is attractivity, meaning that initial coordinate-wise
ordered configurations keep their order under the coupled evolution. In turn,
attractivity permits to describe the system in terms of first and second class
particles, a tool largely used in the literature. During the proof we will prove
laws of large numbers for (a) a tagged particle for the stationary process ηλt , (b)
the flux of ηλt particles along a traveler with constant speed, (c) a second class
particle for the process with initial shock configuration ηλ,ρ with λ < ρ and (d)
a second class particle for the stationary process ηλt . The main novelty is the
microscopic counterpart of Figure 2.2.

5. The tagged particle

Take a configuration η with infinitely many particles to the left and right of the
origin and tag its particles as follows:

X(i)[η] :=

⎧⎪⎨
⎪⎩
max{x ≤ 0 : η(x) = 1} if i = 0

min{x > X(i− 1) : η(x) = 1} if i > 0

max{x < X(i+ 1) : η(x) = 1} if i < 0.

(5.1)

We are interested in configurations with a particle at the origin. So, define

η̃(x) :=

{
1 if x = 0

η(x) otherwise
; η̃t := ηt[η̃, ω]. (5.2)

The positions of the particles at time t can be recovered from the graphical
construction by following the thick trajectories, see Figure 5.1. Call Xt(i)[η̃, ω]
the position of the i-th particle at time t; when η and ω are understood we just
denote Xt(i). Call Xt := Xt(0) the position of the tagged particle initially at
the origin and define the process as seen from that tagged particle by

τXtηt[η̃, ω]. (5.3)

Add a particle to the configuration ηρ as in (5.2) to get η̃ρ. The law of η̃ρ is
the Bernoulli product measure conditioned to have a particle at the origin. The
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Fig 5.1. Trajectories of the tagged particles.

distribution of η̃ρ is invariant for the process as seen from the tagged particle:
τXt η̃

ρ
t has the same distribution as η̃ρ for all t ≥ 0, see [18], for instance. This

invariance is crucial in the two alternative proofs of the law of large numbers of
the next proposition but it is not necessary for the rest of the arguments of this
paper.

Proposition 5.1 (Law of large numbers for the tagged particle). Let Xt be the
position of the tagged particle initially at the origin for the process with random
initial configuration η̃ρ. Then,

lim
t→∞

Xt

t
= (1− ρ), a.s. (5.4)

Sketch proof. A proof based in Burke’s theorem [12] goes as follows. Think that
the particles are servers and the holes are customers of a system of infinitely
many queues in series so that Xt(i) is the position of server i at time t, i ∈ Z

with Xt(0) = Xt. Let the block of successive holes to the right of Xt(i) be the
queue of server i at time t. Each time server-i jumps to the right, a customer
is served and goes to the queue of server-(i − 1). Burke’s theorem says that if
the initial random configuration is η̃ρ, then the process (Xt, t ≥ 0) is a Poisson
process of rate (1− ρ). This fact was observed by Kesten in Example 3.2 of the
historical Spitzer’s 1970 paper [57]; see [35] or [24] for proofs in this context. As
a corollary we get the law of large numbers (5.4).

Alternatively, Saada [52] proves that the process (τXt η̃
ρ : t ≥ 0) is ergodic,

which in turn implies the law of large numbers; this argument avoids the use of
Burke’s theorem.

6. Coupling and two-class tasep

The graphical construction provides a natural coupling of the tasep starting
with two or more different configurations. Let η, η′ be initial configurations and
define the coupling(

(ηt, η
′
t) : t ≥ 0

)
:=

(
(ηt[η, ω], ηt[η

′, ω]) : t ≥ 0
)
.
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This amounts to use the same arrows for both marginals. By construction, each

Fig 6.1. Coupling. Configurations η′ and η before and after 3 possible arrows.

marginal of the coupling has the distribution of the tasep. Particles at site x of
each marginal try to jump at the same time, but the jump occurs only if the
destination site x+ 1 is empty in the corresponding marginal.

Denote η ≤ η′ if η(x) ≤ η′(x) for all x ∈ Z.

Lemma 6.1. Attractivity. For all t ≥ 0 we have

η ≤ η′ implies ηt ≤ η′t a.s. (6.1)

Discrepancy conservation. If η ≤ η′, and the number of discrepancies is finite,
then ∑

x

(η′(x)− η(x)) =
∑
x

(η′t(x)− ηt(x)). (6.2)

Proof. To show (6.1) it is sufficient to check that if ηt− ≤ η′t− and (t, x) ∈ ω,
that is, there is an arrow from x to x + 1 at time t, then ηt ≤ η′t, that is, the
domination still holds after the arrow. The same exploration shows that the
number of discrepancies does not change after the arrow.

First and second class particles Fix η ≤ η′ and call

σt := ηt[η, ω], ξt := ηt[η
′, ω]− ηt[η, ω]. (6.3)

By definition σt ∈ {0, 1}Z and by attractivity, ξt ∈ {0, 1}Z. We call first class
the σ particles and second class the ξ particles. The process ((σt, ξt) : t ≥

Fig 6.2. The (σ, ξ) configuration associated to (η, η′) of figure 6.1. σ particles are labeled 1,
ξ particles are labeled 2 and holes are labeled 0.

0) is Markov; it can be constructed directly as function of ω and the initial
configurations σ and ξ, as follows. At each site there is at most one particle,
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either ξ or σ. Arrows involving ξ-ξ, σ-σ, ξ-0, σ-0 particles, use the same rules as
the tasep, but arrows involving σ-ξ particles follow the rules (a) if σ → ξ then
the particles interchange positions and (b) if ξ → σ, then nothing happens. In
other words, ξ particles behave as particles when interacting with holes and as
holes when interacting with σ particles.

Fig 6.3. Another way of looking at the coupling. We see three possible jumps of first and
second class particles associated to the configuration η′ and η of figure 6.1. The upper line
shows the configuration before the jumps and the lower line the one after the jumps.

The vector (σt, ξt) depends on the initial configuration (σ, ξ) = (η, η′ − η)
and on ω. When this needs to be stressed we denote

(σt, ξt) = (σt, ξt)[(σ, ξ), ω)] = (σt[(σ, ξ), ω)], ξt[(σ, ξ), ω)]), (6.4)

either way.

7. Law of large numbers

Flux Let (yt : t ≥ 0) be an arbitrary trajectory in R with y(0) = 0. Define
the flux of particles along yt by

Fyt(t)[η, ω] :=
∑
i≤0

1{Xt(i)[η, ω] > yt} −
∑
i>0

1{Xt(i)[η, ω] ≤ yt}. (7.1)

Consider the configuration η̃ defined from η in (5.2), having a particle at the

Fig 7.1. The flux along trajectory yt is −1 and the flux along trajectory zt is 3.

origin. Recall Xt is the position of the tagged particle of η̃ initially at the origin
and observe that due to the exclusion interaction and the nearest neighbor
jumps, the flux of η̃ particles along the tagged particle Xt is null:

FXt(t)[η̃, ω] ≡ 0. (7.2)
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Hence we have the following alternative expression for the flux of η̃ particles.

Fyt(t)[η̃, ω] =
∑
x

η̃t(x)
(
1{yt < x ≤ Xt} − 1{Xt < x ≤ yt}

)
; (7.3)

only one of the indicator functions is no null in each term of (7.4). And, since
η and η̃ have at most one discrepancy which is conserved by (6.2),

Fyt(t)[η, ω] =
∑
x

ηt(x)
(
1{yt < x ≤ Xt} − 1{Xt < x ≤ yt}

)
+ O(1), (7.4)

where O(1) is some function of U , ω and t satisfying that |O(1)| ≤ Constant.
The function may change from line to line, but in any case O(1)/t goes to zero
almost surely when t → ∞.

Proposition 7.1. Let a ∈ R. Then,

lim
t→∞

Fat(t)[η
ρ, ω]

t
= ρ[(1− ρ)− a], a.s. (7.5)

Proof. Using (7.4) we can write

Fat(t)[η
ρ, ω]

=
∑
x

ηρt (x)
(
1{at < x ≤ (1− ρ)t} − 1{(1− ρ)t < x ≤ at}

)
+
∑
x

ηρt (x)
(
1{(1− ρ)t < x ≤ Xt} − 1{Xt < x ≤ (1− ρ)t}

)
+O(1).

Dividing by t and taking t → ∞, the first term converges a.s. to ρ[(1 − ρ) − a]
because ηρt is a sequence of iid Bernoulli(ρ) random variables by Lemma 3.1.
The absolute value of the second term is bounded by |Xt − (1 − ρ)t|/t which
goes to zero a.s. by Proposition 5.1.

Tagged second class particle Take 0 ≤ λ < ρ ≤ 1 and using always the
same U and ω define the two-class process

(σt, ξt) := (ηλt , η
ρ
t − ηλt ). (7.6)

The marginal laws of σt and σt+ ξt are stationary but the process (σt, ξt) is not
stationary. Take off a particle of η at the origin defining

˜
η as the configuration

˜
η(x) :=

{
0 if x = 0

η(x) otherwise.
(7.7)

and recall η̃ defined in (5.2) as the configuration η with a particle at the origin.
Now define

(
˜
σt, ξ̃t) := (

˜
ηλt , η̃

ρ
t −

˜
ηλt ). (7.8)

The initial configuration for this process is identical to (σ, ξ) out of the origin
while at the origin there is a second class particle: σ(0) = 0 and ξ(0) = 1.
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Proposition 7.2. Take λ < ρ and let Y λ,ρ
t be the position of the tagged ξ

particle for the process (7.8), initially located at the origin, Y λ,ρ
0 = 0. Then,

lim
t→∞

Y λ,ρ
t

t
= 1− λ− ρ, a.s. (7.9)

Proof. Denote Gyt(t)[(
˜
σ, ξ̃), ω] the flux of ξ̃ particles along a trajectory yt for

the process (
˜
σt, ξ̃t). This flux is the difference of η̃ρ particle flux and the

˜
ηλ

particle flux:

Gyt(t)[(
˜
σ, ξ̃), ω] = Fyt(t)[

˜
ηρ, ω]− Fyt(t)[η̃

λ, ω] (7.10)

= Fyt(t)[η
ρ, ω]− Fyt(t)[η

λ, ω] +O(1), (7.11)

where the error O(1) comes from (7.4). Taking yt = at for some real number a,
by the law of large numbers (7.5),

lim
t→∞

Gat(t)[(
˜
σ, ξ̃), ω]

t
= [ρ(1− ρ)− λ(1− λ)]− a(ρ− λ), a.s. (7.12)

The limit is negative for a > 1 − λ − ρ and positive for a < 1 − λ − ρ. On
the other hand, Gat(t) is non increasing in a and, by exclusion, the flux of ξ̃

particles along Y λ,ρ
t is null: GY λ,ρ

t
(t) ≡ 0. This implies (7.9).

Isolated second class particle Take α ∈ (0, 1). To create a second class
particle for the configuration ηα we consider the coupling

(
˜
ηαt , η̃

α
t −

˜
ηαt ) (7.13)

and call

Rα
t := {x : η̃αt (x) �=

˜
ηαt (x)}, (7.14)

the position at time t of the second class particle in the coupling (7.13).

Proposition 7.3. We have

lim
t→∞

Rα
t

t
= 1− 2α, a.s. (7.15)

Proof. Take α < ρ, consider the coupling

(
˜
ηαt , η̃

ρ
t −

˜
ηαt ) (7.16)

and, as before, denote Y α,ρ
t the position of the tagged second class particle

initially at the origin for this process. Recalling that we are using the same U
and ω in the couplings (7.13) and (7.16) we see that both Rα

t and Y α,ρ
t see the

same first class particles
˜
ηαt but while Rα

t sees no other particle, Y α,ρ
t is blocked

by the second class particles (η̃ρt −
˜
ηαt ) to its right. For this reason,

Rα
t ≥ Y α,ρ

t , if α < ρ. (7.17)



TASEP hydrodynamics using microscopic characteristics 15

On the other hand, take λ < α and consider the coupling

(
˜
ηλt , η̃

α
t −

˜
ηλt ). (7.18)

The first class particles for Y λ,α
t are ηλ,αt ≤ ηαt , the first class particles for Rα

t .
See (8.4) and (8.6) below for more details. Hence

Rα
t ≤ Y λ,α

t , if λ < α. (7.19)

Use the law of large numbers (7.9) to conclude.

8. Proof of hydrodynamics: increasing shock

In this section we prove Theorem 4.2 in the shock case λ < ρ. Recall that in
this case the solution u(r, t) = uλ,ρ(r− (1−λ−ρ)t) is a translation of the initial
condition.

Let Γz : {0, 1}Z → {0, 1}Z be the cut operator defined by

Γzη(x) := η(x)1{x ≥ z}. (8.1)

This operator, when applied to the configuration η cuts the η-particles to the
left of z. The operator Γ0, when applied to the second class particles ξ commutes
with the dynamics in the following sense. If ξ(0) = 1 and Yt is the position of
the ξ particle initially at the origin, then

(σt[(σ, ξ), ω],ΓYtξt[(σ, ξ), ω]) = (σt[(σ,Γ0ξ), ω], ξt[(σ,Γ0ξ), ω]). (8.2)

That is, to cut the initial ξ configuration to the left of the origin and evolve until
time t is the same as to cut the ξt configuration to the left of Yt. The reason is
that the initial ξ particles to the left of Y0 are not felt neither by the σ particles
nor by the ξ particles at Y0 and to the right of Y0, so it is the same to cut them
at time 0 than to cut them at time t. Since those particles occupy sites to the
left of Yt at that time, we get (8.2).

Let (σ, ξ) be a two-class configuration and let

η := σ + Γ0ξ. (8.3)

Add a second class particle with respect to ηt at the origin at time zero; call
Rt its position at time t. Add a ξ particle at the origin at time zero; call Yt its
position at time t. Then, using (8.2),

Rt = Yt, (8.4)

(
˜
ηt, Rt) = (

˜
σt + ΓYt ξ̃t, Yt). (8.5)

Recall ηρ and ηλ,ρ are defined as functions of U and that their tilded versions
are defined in (5.2) and (7.7). Set σ = ηλ and ξ = ηρ−ηλ. From those definitions
we have

(
˜
σ, ξ̃) = (

˜
ηλ, η̃ρ −

˜
ηλ),

˜
ηλ,ρ =

˜
σ + Γ0ξ̃.
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Let Rλ,ρ
t be a second class particle with respect to

˜
ηλ,ρt and Y λ,ρ

t be a ξ̃ tagged

particle for (
˜
σt, ξ̃t) with Rλ,ρ

0 = Y λ,ρ
0 = 0. Then,

Rλ,ρ
t = Y λ,ρ

t ,

(
˜
ηλ,ρt , Rλ,ρ

t ) = (
˜
σt + ΓY λ,ρ

t
ξ̃t, Y

λ,ρ
t ), (8.6)

for all t ≥ 0 by (8.4)-(8.5). Roughly speaking, to obtain the system with shock

initial condition ηλ,ρt and a second class particle Rλ,ρ
t one can take the system

of two classes (σt, ξt) with the right marginals, cut the second class particles to

the left of the tagged second class particle Y λ,ρ
t and forget the classes for the

remaining particles. Notice that

ηλ,ρt (x) =

⎧⎨
⎩˜
ηλ,ρt (x) if x �= Rλ,ρ

t ,

ηλ,ρt (0) if x = Rλ,ρ
t .

(8.7)

Proof of local equilibrium (4.10) for λ < ρ In this case (4.10) reduces to

lim
t→∞

EfA(τrtη
λ,ρ
t ) =

{
ρ|A| if r > 1− ρ− λ,

λ|A| if r < 1− ρ− λ.
(8.8)

Take first r > (1 − λ − ρ) and denote Yt = Y λ,ρ
t the position of the tagged ξ

particle. By (8.6) and (8.7) we get

EfA(τrt
˜
ηλ,ρt ) = EfA(τrt(

˜
σt + ΓYt ξ̃t)) (8.9)

= E
[
fA(τrt(σt + ξt))1{Yt < rt+minA}

]
(8.10)

+ E
[
fA(τrt(

˜
σt + ΓYt ξ̃t))1{Yt ≥ rt+minA}

]
→

t→∞
ρ|A|, (8.11)

where in (8.9) we used (8.6) to get an expression in terms of (σ, ξ) and in (8.10)
we used the definition of the cut operator Γ to erase it and (8.7) to erase the
tildes. Since Yt/t → 1−λ−ρ a.s., the indicator functions converge a.s. to 1 and
zero respectively. Since |fA| ≤ 1, the second summand goes to zero and since
σt + ξt = ηρt whose law is shift invariant, the first summand converges to ρ|A|;
this justifies (8.11) and concludes the proof of (8.8) when r > (1− λ− ρ). The
same argument shows (8.8) when r < (1− λ− ρ).

Proof of convergence of the density fields We use the same argument
and notation as in the previous proof. Fix 1− λ− ρ < a < b and write∑
at≤x≤bt

ηλ,ρt (x) =
∑

at≤x≤bt

(σt(x) + ΓYtξt(x))

=
∑

at≤x≤bt

(σt(x) + ξt(x))1{Yt < at}+ (b− a)O(1)1{Yt ≥ at}
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=
∑

at≤x≤bt

ηρt (x) (1− 1{Yt ≥ at}) + (b− a)O(1)1{Yt ≥ at}

=
∑

at≤x≤bt

ηρt (x) + 2 (b− a)O(1)1{Yt ≥ at},

where the third identity follows from (8.6). Then, the law of large numbers for
ηρt ∼ ηρ and the law of large numbers Yt/t → 1− ρ− λ < a imply

1

t

∑
at≤x≤bt

ηλ,ρt (x) →
t→∞

ρ(b− a). (8.12)

The same argument applied to c < d < 1− λ− ρ shows

1

t

∑
ct≤x≤dt

ηλ,ρt (x) =
1

t

∑
ct≤x≤dt

(σt(x) + ΓYtξt(x))

=
1

t

∑
ct≤x≤dt

ηλt (x) + (d− c)O(1)1{Yt ≤ dt}

→
t→∞

λ(d− c), (8.13)

using the law of large numbers for ηλt . For d < 1− λ− ρ < a we have

0 ≤ 1

t

∑
dt≤x≤at

ηλ,ρt (x) ≤ a− d.

Taking a, d → 0 we conclude that for c < 1− λ− ρ < b we have

1

t

∑
ct≤x≤dt

ηλ,ρt (x) →
t→∞

λ(1− λ− ρ− c) + ρ(b− 1− λ− ρ), (8.14)

which is (4.9) in this case.

9. Proof of hydrodynamics: rarefaction fan

Here we consider λ > ρ, when the solution is the rarefaction fan (2.5). An
essential component of this proof is the law of large numbers for a second class
particle Proposition 7.3. We first prove a crucial lemma. Recall that the processes
ηρt and ηλ,ρt defined in (3.3) and (4.8) and Rα

t defined in (7.14) are constructed
with the same U and ω for all λ, ρ, α.

Lemma 9.1. Take λ > ρ and for each α ∈ [0, 1] let Rα
t be a second class particle

initially at the origin for the process ηαt as defined in (7.14). Then

ηλ,ρt (x) =

{
ηρt (x) if x > Rρ

t ,

ηλt (x) if x < Rλ
t .

(9.1)
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Fig 9.1. Macroscopic schema of (9.2) and (9.3). The configuration ηλ,ρt dominates ηαt to the
left of Rα

t and the opposite happens to its right.

Furthermore, for λ ≥ α ≥ ρ we have

ηλ,ρt (x) ≤ ηαt (x), for x > Rα
t , (9.2)

ηαt (x) ≤ ηλ,ρt (x), for x < Rα
t . (9.3)

Proof. Consider the process with only one second class particle and constant
density ρ given by

(
˜
ηρt , η̃

ρ
t −

˜
ηρt ) (9.4)

and let Rρ
t be the second class particle for this coupling. On the other hand,

define
(σt, ξt) := (ηρt , η

λ,ρ
t − ηρt ),

where σt are first class particles and ξt are second class particles.
The first identity in (9.1) is equivalent to

ξt(x) = 0, for x > Rρ
t . (9.5)

This clearly holds at time 0 because Rρ
0 = 0 and ξ(x) = ηλ,ρ(x)− ηρ(x) = 0 for

all x > 0, by definition. Furthermore, ξ particles cannot overpass Rρ
t :

Yt := max{y : ξt(y) = 1} ≤ Rρ
t . (9.6)

Let’s show (9.6). Since ξ particles interact by exclusion among them, we have
that the rightmost ξ particle does not feel the ξ particles to its left and hence
Yt behaves as a second class particle for ηρt , but with a random initial position
Y0 := max{y ≤ 0 : ξ0(y) = 1} ≤ 0 = Rρ

0. One is tempted to say that 2 second
class particles with respect to ηρt can not overpass, but since we have a precise
definition of Y0 (in function of ηλ and ηρ) and Rρ

0 (in function of ηρ and its
tilded versions), we have to explore the following three cases. (a) If ηρ(0) = 0
and ηλ(0) = 1, then Y0 = 0 = Rρ

0 and both particles will coincide at future
times. (b) If ηρ(0) = ηλ(0) = 1, then Y0 < Rρ

0 and Yt < Rρ
t for all times because

σt(R
ρ
t ) = 1 and Yt cannot jump over σ particles. (c) If ηρ(0) = ηλ(0) = 0, then

Y0 < Rρ
t and Yt ≤ Rρ

t for all times because if there is an arrow at x at time t and
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Fig 9.2. Macroscopic schema of the coupling to show (9.1). There are no ξt particles to the
right of Rρ

t at time t.

Yt− = x, Rρ
t− = x+1, then after the arrow the particles coalesce Yt = Rρ

t = x+1
and then continue together for ever. See the following tables for the (b) and (c)
cases, the bold numbers correspond to the particles and holes involved in the
definition of Yt or R

ρ
t . For instance the first row of case (b) means ηλt (Yt) = 1,

ηλt (R
ρ
t ) = 1 and the second row of case (c) means η̃ρt (Yt) = 0, η̃ρt (R

ρ
t ) = 1. More

concisely, in case (b) ηρ(0) = 1 and Rρ
t behaves as a first class particle for Yt so

they exclude each other while in case (c) ηλ(0) = 0 and Rρ
t behaves as a hole

for Yt so they can coalesce.

(b)

Y R

ηλ 1 1

ηρ 0 1

η̃ρ 0 1

˜
ηρ 0 0

(c)

Y R

ηλ 1 0

ηρ 0 0

η̃ρ 1 1

˜
ηρ 0 0

(9.7)

The first identity in (9.1) follows from (9.6). To get the second identity in
(9.1) define

(σt, ξt) := (ηλ,ρt , ηλt − ηλ,ρt )

and use an argument analogous to the proof of (9.6) to show that

Rλ
t ≥ min{y : ξt(y) = 1},

that is, ξt(x) = 0 for x < Rλ
t .
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To show (9.2) and (9.3) recall λ ≥ α ≥ ρ and observe that

ηλ,ρt (x) ≤ ηλ,αt (x) = ηαt (x), for x > Rα
t , (9.8)

ηαt (x) = ηα,ρt (x) ≤ ηλ,ρt (x), for x < Rα
t , (9.9)

where the inequalities hold by attractivity and the identities are (9.1).

Corollary 9.2. Let λ ≥ α > β ≥ ρ. Then,

P
(
lim inf
t→∞

1

t

∑
x

ηλ,ρt (x)1{x ∈ ((1− 2α)t, (1− 2β)t)} ≥ 2(α− β)β
)
= 1,

(9.10)

P
(
lim sup
t→∞

1

t

∑
x

ηλ,ρt (x)1{x ∈ ((1− 2α)t, (1− 2β)t)} ≤ 2(α− β)α
)
= 1.

(9.11)

Proof. From (9.3),

∑
x

ηβt (x)1{x ∈ (Rβ
t , R

α
t )} ≤

∑
x

ηλ,ρt (x)1{x ∈ (Rβ
t , R

α
t )} (9.12)

≤
∑
x

ηαt (x)1{x ∈ (Rβ
t , R

α
t )}. (9.13)

From the inequality (9.12),

Fig 9.3. Macroscopic schema of (9.12)-(9.13)

∑
x

ηβt (x)1{x ∈ ((1− 2β)t, (1− 2α)t)}

≤
∑
x

ηλ,ρt (x)1{x ∈ ((1− 2β)t, (1− 2α)t)}

+ 2|Rβ
t − (1− 2β)t|+ 2|Rα

t − (1− 2α)t)|. (9.14)

Divide by t, take t → ∞ and use the law of large numbers for ηβt ∼ ηβ and for

Rα
t , R

β
t to get (9.10). The same argument using (9.13) shows (9.11).
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Proof of convergence of the density fields Fix r ∈ (1 − 2λ, 1 − 2ρ) and
use the bound (9.11) with α = k/n and β = (k − 1)/n to obtain

lim sup
t

1

t

∑
x∈(rt,(1−2ρ)t)

ηλ,ρt (x)

= lim sup
t

1

t

n∑
k=1

∑
x∈(rt,(1−2ρ)t)

ηλ,ρt (x)1
{
x ∈ [t(1− 2 k

n ), t(1− 2k−1
n )]

}

≤
n∑

k=1

k

n

2

n
1
{
ρ ≤ k

n ≤ 1−r
2

}

−→
n→∞

∫ 1−r
2

ρ

2r′dr′ =
(1− r

2

)2

− ρ2 =

∫ 1−2ρ

r

u(r′, 1)dr′.

The same argument using (9.10) shows that

lim inf
t

1

t

∑
x∈(rt,(1−2ρ)t)

ηλ,ρt (x) ≥
∫ 1−2ρ

r

u(r′, 1)dr′.

This proves (4.5) for intervals (a, b) ⊂ (1−2λ, 1−2ρ). Take now a < 1−2λ and
use the second identity in (9.1) and the law of large numbers for Rλ

t to conclude
that

lim
t

1

t

∑
x∈(at,(1−2λ)t)

ηλ,ρt (x) = λ(1− 2λ− a) =

∫ 1−2λ

a

u(r′, 1)dr′. (9.15)

Take b > 1− 2ρ and use the first identity in (9.1) and the law of large numbers
for Rρ

t to conclude

lim
t

1

t

∑
x∈((1−2ρ)t,bt)

ηλ,ρt (x) = ρ(b− (1− 2ρ)) =

∫ b

1−2ρ

u(r′, 1)dr′. (9.16)

Proof of density profile and local equilibrium Take a finite integer set A
and recall fA(η) =

∏
x∈A η(x). Take λ ≥ α > β ≥ ρ. From (9.2)-(9.3) we have

Bt :=
{
Rα

t < rt+ x < Rβ
t , x ∈ A

}
⊂

{
fA(τrtη

α
t ) ≥ fA(τrtη

λ,ρ
t ) ≥ fA(τrtη

β
t )
}
.

Hence,

E(fA(τrtη
β
t )1Bt) ≤ E(fA(τrtη

λ,ρ
t )1Bt) ≤ E(fA(τrtη

α
t )1Bt).

By the law of large numbers for Rα
t and Rβ

t , for r ∈ ((1−2α), (1−2β)) we have
limt 1Bt = 1 a.s.. Hence, since |fA| ≤ 1, for r ∈ ((1− 2α), (1− 2β)),

β|A| ≤ lim inf
t

E(fA(τrtη
λ,ρ
t )) ≤ lim sup

t
E(fA(τrtη

λ,ρ
t )) ≤ α|A|.
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Take α ↘ 1−r
2 and β ↗ 1−r

2 to get

lim
t

E(fA(τrtη
λ,ρ
t )) =

(1− r

2

)|A|
= u(r, 1)|A|.

This proves local equilibrium for r in the rarefaction fan ((1 − 2λ), (1 − 2ρ)).

For r ≥ 1− 2ρ we know that ηλ,ρt (x) = ηρt (x) when x > Rρ
t . This together with

the law of large numbers for Rρ
t allows to conclude. The same argument holds

for r < 1− 2λ.

10. Notes and references

There are many papers about hydrodynamics of interacting particles systems.
We just quote some reviews and books. De Masi and Presutti [15, 13], Kipnis
and Landim [36] and Lebowitz, Presutti and Spohn [41].

Lax (1972) shows the role of characteristics to solve the initial value problem
of the Burgers equation. See also Evans [17]. Rezakhanlou [49] shows there that
if the initial condition presents no decreasing discontinuity at a, then there is
only one characteristic emanating from a. Rezakhanlou [50] shows that a local
perturbation of the initial condition of the Burgers equation behaves like the
characteristics or a shock.

The convergence of the hydrodynamic limit of the tasep to the Burgers equa-
tion has also different approaches and results. The local-equilibrium convergence
(4.6) was proven by Liggett [42, 44] for the case r = 0, before the connection be-
tween the process and the Burgers equation appeared. The first paper realizing
this connection was Rost [51] who studied the rarefaction fan case. Rost uses
the sub-additive ergodic theorem to show almost sure convergence of the density
fields and then a comparison with stationary systems of queues to identify the
limit and to show local equilibrium; see also Liggett’s book [45]. The result is
generalized by Seppalainen [55, 54, 56, 53], who uses it to prove almost sure
convergence of density fields for a large class of initial conditions. Proofs for
more general initial profiles were provided by Benassi and Fouque [10], Benassi,
Fouque, Saada, and Vares [11]. Andjel and Vares [4] prove convergence of the
expectation of the density fields for general initial profiles for a class of processes
including the tasep, without using subadditivity. Andjel, Ferrari and Siqueira
[2] extended the arguments of Rost to the case of non-nearest neighbor jumps.

In dimension d ≥ 1, Rezakhanlou [48] proves convergence in probability of
the density fields while Landim [39] shows that this limit is enough to have
local equilibrium. See also Landim [37, 38]. Recent strong approach to hydro-
dynamics without subadditivity can be found in the work of Bahadoran, Guiol,
Ravishankar, and Saada [6], [7].

Ferrari, Kipnis and Saada [28] and the author [19, 20] used the laws of large
numbers for tagged and second class particles to show hydrodynamics in the
shock case. The structure of Sections 7 and 8 follows the survey [20] but with
an important simplification. Here we only use a law of large numbers for the
tagged particle and attractive couplings to obtain all the other results while the
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arguments in [20] also used asymptotic properties of the invariant measure for
first and second class particles, a more refined property.

Further results not discussed in this paper Local equilibrium does not
hold at the discontinuity points of the solution u. Wick [58], Andjel, Bramson
and Liggett [3], De Masi, Kipnis, Presutti, and Saada [14] have proven partial
results. The author [20] proved that the limit is a convex combination of the
product measures with densities λ and ρ, depending if the second class particle
for ηλ,ρt is to the right or left of (1− λ− ρ)t.

Microscopic interfaces. A second class particle with respect to a product ini-
tial configuration with densities λ < ρ to the left and right of the origin, respec-
tively, sees at any time t a measure that is absolutely continuous with respect
to the product measure with a bounded Radom-Nikodim derivative. In fact,
there exists an invariant measure for the process as seen from the second class
particle which is absolutely continuous with respect to the product measure.
This started with [28, 19, 20], then Derrida, Janowsky, Lebowitz and Speer [16]
computed the measure, from where subsequent progress done by Ferrari Fontes
Kohayakawa [25] and Angel [5] permitted Ferrari and Martin [29] to give a
complete description of that measure in terms of the output of a discrete-time
stationary MM1 queue.

Diffusive fluctuations. The flux or current of particles along lines different
from the characteristic have variance of order t explicitly computed by Ferrari
and Fontes [22], see also Ben Arous and Corwin [9]. For the second class particle
in the shock also has variance of order t, computed in [23, 21].

The flux of particles along a characteristic has non-diffusive fluctuations,
while a second class particle in a translation invariant Bernoulli measure has
super diffusive behavior [22]. Ferrari and Spohn [32] compute the equilibrium
current fluctuations along the characteristic of order t1/3 and show that the limit
in distribution converges to the GUE Tracy-Widom distribution. For the growth
process associated to the tasep Johansson [34] computes limiting fluctuations of
order t1/3, and find the limit distribution, see Prahoffer and Spohn [47] and Ben
Arous and Corwin [9]. Balasz, Cator and Seppalainen [8] compute the order t2/3

for the variance of the mentioned growth model.
The second class particle in the rarefaction fan converges almost surely to a

uniform random variable in [−1, 1]. See Ferrari and Kipnis [27] for convergence in
distribution and Mountford and Guiol [46] Ferrari, Pimentel and Martin [31, 30]
for a.s. convergence. Further results can be found in Ferrari, Gonçalves and
Martin [26] and Amir, Angel and Valko [1].
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