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ON THE INTEGRAL TRANSFORMATION
ASSOCIATED WITH THE PRODUCT OF GAMMA-FUNCTIONS

Semyon B. Yakubovich

Abstract: We introduce the following integral transformation

Φ(z) = 2z−2

∫

R+

f(τ) Γ

(

z + i τ

2

)

Γ

(

z − i τ

2

)

dτ ,

where z = x + iy, x > 0, y ∈ R, Γ(z) is Euler’s Gamma-function. Boundedness and

analytic properties are investigated. The Bochner representation theorem is proved for

functions f ∈ L∗(R+), whose Fourier cosine transforms lie in L1(R+). It is shown, that

this transform is an analytic function in the right half-plane and belongs to the Hardy

space H2. When x → 0 it has boundary values from L2(R). Plancherel type theo-

rem is established by using its relationships with the Mellin and Kontorovich–Lebedev

transforms.

1 – Introduction and preliminary results

The aim of this paper is to prove classical theorems of the Bochner and

Plancherel type [1] for the following integral transformation

(1.1) Φ(x+ iy) = 2x+iy−2
∫ ∞

0
f(τ) Γ

(

x+ i(y + τ)

2

)

Γ

(

x+ i(y − τ)

2

)

dτ ,

where x > 0, y ∈ R and Γ(z) is the Euler Gamma-function [2, Vol. I], which is an

analytic function in the right half-plane Re z > 0. This transformation gives an
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interesting example in the general composition theory of integral transformations

of different structure (cf., for instance, in [3], [5], [6]). In fact, we establish its

composition in terms of the Mellin transform [4]

(1.2) fM(s) =

∫ ∞

0
f(x)xs−1 dx ,

and the following integral transformation due to M.I. Kontorovich and

N.N. Lebedev [5]

(1.3) (KLf)(x) =

∫ ∞

0
Kiτ (x) f(τ) dτ , x > 0 ,

which involves as the kernel the modified Bessel function of the second kind or the

Macdonald function Kiτ (x) [2, Vol. II]. As we observe the integration in the latter

integral is with respect to an index (a parameter) of the Macdonald function. This

circumstance differs such a type of integral operators from classical convolution

transformations of the Fourier and Mellin types [4]. We will prove mapping and

composition properties of the transform (1.1) in Lebesgue’s and Hardy’s spaces

by using the corresponding theorems for operators (1.2), (1.3).

Note that the kernel of the transformation (1.1) consists of the product of two

Gamma-functions. It can be represented through the Mellin and Fourier integrals

by formulas (cf. [2, Vol. II], [5])

(1.4) 2x+iy−2 Γ

(

x+ i(y+τ)

2

)

Γ

(

x+ i(y−τ)
2

)

=

∫ ∞

0
Kiτ (t) t

x+iy−1dt , x>0 ,

(1.5) 2x+iy−2 Γ

(

x+ i(y+τ)

2

)

Γ

(

x+ i(y−τ)
2

)

= Γ(x+ iy)

∫ ∞

0

cos(tτ) dt

coshx+iy t
.

Let us introduce for our further purposes the space L∗(R+) (see, for instance,

in [1]).

Definition 1. The space L∗(R+) contains functions f whose Fourier cosine

transforms

(1.6) (Fcf)(x) =

√

2

π

∫ ∞

0
f(t) cos(xt) dt

belong to L1(R+). This is a Banach space with the norm

‖f‖L∗ =

∫ ∞

0
|(Fcf)(x)| dx .
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In order to prove the corresponding theorems for the transform (1.1) we draw a

parallel with the results for the Kontorovich–Lebedev transform (1.3). Therefore

first in this preliminary section we consider some properties of the transformation

(1.3).

Lemma 1. The Kontorovich–Lebedev operator (1.3)KLf : L∗(R+)→L∗(R+)

is bounded and we have

‖KLf‖L∗ ≤ π

2
‖f‖L∗ .

Proof: According to Definition 1 we find that

(1.7) f(τ) =

√

2

π

∫ ∞

0
(Fc f)(t) cos(tτ) dt .

Consequently, after substitution (1.7) into (1.3) we change the order of inte-

gration via the Fubini theorem. Then we calculate the integral with respect to τ

invoking the formula [5]

∫ ∞

0
Kiτ (x) cos(tτ) dτ =

π

2
e−x cosh t , x > 0 .

Thus we arrive at the following relation

(1.8) (KLf)(x) =

√

π

2

∫ ∞

0
e−x cosh t(Fc f)(t) dt , x > 0 .

Hence we can calculate the Fourier transform (1.5) of (KLf)(x). Indeed, we

substitute (KLf)(x) given by (1.8) into the integral (1.6) and interchange the

order of integration via Fubinis theorem. Evaluating an elementary integral we

obtain
√

2

π

∫ ∞

0
(KLf)(x) cos(xτ) dx =

∫ ∞

0

(Fc f)(t) cosh t

cosh2 t+ τ2
dt .

Consequently,

‖KLf‖L∗ ≤
∫ ∞

0
|(Fc f)(t)| cosh t dt

∫ ∞

0

dτ

cosh2 t+ τ2

=

∫ ∞

0
|(Fc f)(t)| dt

∫ ∞

0

dτ

1 + τ2
=

π

2
‖f‖L∗ .

This completes the proof of Lemma 1.

The next theorem states representation properties of an arbitrary function

f ∈ L∗(R+) in terms of the Kontorovich–Lebedev operator (1.3).
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Theorem 1. For any f ∈ L∗(R+) and for all τ ∈ R+ the following represen-

tation is valid

(1.9) f(τ) =
2

π2
τ sinh(πτ) lim

ε→0+

∫ ∞

0
xε−1Kiτ (x) (KLf)(x) dx .

Proof: By using formula (1.8) for (KLf)(x) we substitute it in (1.9) and

in view of the absolute convergence of the iterated integral we invert the order

of integration. The inner integral can be calculated by using the following repre-

sentation of the Gauss hypergeometric function [2, Vol. I] in terms of the Laplace

integral of the Macdonald function

xiτ−α

2α
√
π
|Γ(α+ iτ)|2
Γ(α+ 1/2)

2F1

(

α− iτ

2
,
α− iτ + 1

2
; α+

1

2
; 1− 1

x2

)

=

=

∫ ∞

0
tα−1 e−xtKiτ (t) dt , x, α > 0 .

Hence the right-hand side of (1.9), which we denote by I(τ, ε) is represented as

follows

(1.10)

I(τ, ε) =
21/2−ε

π
τ sinh(πτ)

|Γ(ε+ iτ)|2
Γ(ε+ 1/2)

·
∫ ∞

0
(cosh t)iτ−ε

2F1

(

ε−iτ
2

,
ε−iτ+1

2
; ε+

1

2
; tanh2 t

)

(Fc f)(t) dt .

In order to deduce (1.9) we only must motivate the passage to the limit un-

der the sign of integral (1.10). Indeed, due to the Boltz formula for the Gauss

hypergeometric function (see [2], Vol. I) we have the equality

(1.11)

(cosh t)iτ−ε
2F1

(

ε− iτ

2
,
ε− iτ + 1

2
; ε+

1

2
; tanh2 t

)

=

= 2F1

(

ε− iτ

2
,
ε+ iτ

2
; ε+

1

2
; − sinh2 t

)

.

Hence owing to properties of the Gauss function and its analytic continuation

[2, Vol. I] we find that the right-hand side of (1.11) is equal to

(1.12)
2F1

(

ε− iτ

2
,
ε+ iτ

2
; ε+

1

2
; − sinh2 t

)

=

=
Γ(ε+ 1/2)

|Γ((ε+ iτ)/2)|2
∞
∑

n=0

Γ((ε− iτ)/2 + n) Γ((ε+ iτ)/2 + n)

Γ(ε+ 1/2 + n)

(−1)n sinh2n t

n!
,
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when 0 < sinh t ≤ 1 and for sinh t > 1 we obtain

(1.13)

2F1

(

ε− iτ

2
,
ε+ iτ

2
; ε+

1

2
; − sinh2 t

)

=

=
Γ(ε+ 1/2) Γ(iτ) (sinh t)iτ−ε

|Γ((ε+ iτ)/2)|2 Γ((1 + ε+ iτ)/2)

Γ(1− iτ)

Γ((1− ε− iτ)/2)

·
∞
∑

n=0

Γ((ε− iτ)/2 + n) Γ((1− ε− iτ)/2 + n)

Γ(1− iτ + n) sinh2n t

(−1)n
n!

+
Γ(ε+ 1/2) Γ(−iτ) (sinh t)−iτ−ε

|Γ((ε+ iτ)/2)|2 Γ((1 + ε− iτ)/2)

Γ(1 + iτ)

Γ((1− ε+ iτ)/2)

·
∞
∑

n=0

Γ((ε+ iτ)/2 + n) Γ((1− ε+ iτ)/2 + n)

Γ(1 + iτ + n) sinh2n t

(−1)n
n!

.

Therefore, via the Stirling formula of the asymptotic of Gamma-function

(see [2, Vol. 1]), an elementary inequality |Γ(z)| ≤ Γ(Re z), Re z > 0 and the

convergence of the hypergeometric series one can majorize functions in (1.12),

(1.13) uniformly for all t, τ ∈ R and 0 ≤ ε ≤ ε0 < 1/2 as follows

∣

∣

∣

∣

2F1

(

ε−iτ
2

,
ε+iτ

2
; ε+

1

2
;− sinh2 t

)∣

∣

∣

∣

≤ 1 +
Γ(ε0+1/2)

|Γ((ε+iτ)/2)|2
∞
∑

n=1

[Γ(ε0/2+n)]
2

Γ(1/2 + n)

1

n!

≤ 1 +
1

|Γ((ε+ iτ)/2)|2 O

(

∞
∑

n=1

1

n3/2−ε0

)

,

where 0 < sinh t ≤ 1;

∣

∣

∣

∣

2F1

(

ε− iτ

2
,
ε+ iτ

2
; ε+

1

2
;− sinh2 t

)∣

∣

∣

∣

≤

≤ Γ(ε0 + 1/2) |Γ(iτ)| (sinh t)−ε

|Γ((ε+ iτ)/2) Γ((1 + ε+ iτ)/2)|

·
[

1 +
1

|Γ((ε− iτ)/2) Γ((1− ε− iτ)/2)|
∞
∑

n=1

Γ(ε/2 + n) Γ((1− ε)/2 + n)

|Γ(1− iτ + n)| n!

]

+
Γ(ε0 + 1/2) |Γ(−iτ)| (sinh t)−ε

|Γ((ε− iτ)/2) Γ((1 + ε− iτ)/2)|

·
[

1 +
1

|Γ((ε+ iτ)/2) Γ((1− ε+ iτ)/2)|
∞
∑

n=1

Γ(ε/2 + n) Γ((1− ε)/2 + n)

|Γ(1 + iτ + n)| n!

]

≤
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≤ |Γ(iτ)|
|Γ((ε+ iτ)/2) Γ((1 + ε+ iτ)/2)|

·
[

1 +
1

|Γ((ε− iτ)/2) Γ((1− ε− iτ)/2)| O
(

∞
∑

n=1

1

n3/2

)]

+
|Γ(−iτ)|

|Γ((ε− iτ)/2) Γ((1 + ε− iτ)/2)|

·
[

1 +
1

|Γ((ε+ iτ)/2) Γ((1− ε+ iτ)/2)| O
(

∞
∑

n=1

1

n3/2

)]

,

where sinh t > 1. The obtained estimates imply that the integrand in (1.10) is

uniformly bounded over the interval (0, ε0) and it is majorized by Cτ |(Fc f)(t)|,
with Cτ >0 is a constant depending only on τ . Furthermore, since in view of the

formula in [2, Vol. I]

lim
ε→0+

2F1

(

ε− iτ

2
,
ε+ iτ

2
; ε+

1

2
;− sinh2 t

)

= cos(τt) ,

then one can appeal to the Lebesgue dominated convergence theorem. Passing

to the limit in (1.10) when ε→ 0+ by using the relation [2, Vol. I]

(1.14) |Γ(iτ)|2 =
π

τ sinh(πτ)
,

we obtain the desired representation (1.9). Theorem 1 is proved.

Finally in this section we exhibit the Plancherel type theorem for the Konto-

rovich–Lebedev transform (cf. [5], [6]) as a bounded operator from the space

L2(R+; [τ sinh(πτ)]
−1dτ) onto the space L2(R+;x

−1dx), which will be used in

Section 3 to establish the corresponding theorem for the transformation (1.1).

Theorem 2. Let f ∈ L2(R+; [τ sinh(πτ)]
−1dτ). Then the formula (1.3) for

the Kontorovich–Lebedev transform holds in the sense that, as N → ∞, the

integral

(1.15) (KLf)N (x) =

∫ N

1/N
Kiτ (x) f(τ) dτ

converges in mean to (KLf)(x) with respect to the norm of the space

L2(R+;x
−1dx); and

fN (τ) =
2

π2
τ sinh(πτ)

∫ N

1/N
Kiτ (x) (KLf)(x)

dx

x
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converges in mean to f(τ) with respect to the norm of the space

L2(R+; [τ sinh(πτ)]
−1dτ). Moreover, the following Parseval equality is true

π2

2

∫ ∞

0
f(τ) g(τ)

dτ

τ sinh(πτ)
=

∫ ∞

0
(KLf)(x) (KLg)(x)

dx

x
,

where f, g ∈ L2(R+; [τ sinh(πτ)]
−1dτ). In particular,

(1.16)
π2

2

∫ ∞

0
|f(τ)|2 dτ

τ sinh(πτ)
=

∫ ∞

0
|(KLf)(x)|2 dx

x
.

2 – Representation theorem for transformation (1.1) in L∗(R+)

We begin to study the boundedness and analytic properties of the transforma-

tion (1.1) in the space L∗(R+). First we apply the Parseval equality for Fourier

transforms [4] to the right-hand side of (1.1) and in view of Definition 1 and

representation (1.5) it becomes

(2.1) Φ(x+ iy) = Γ(x+ iy)

√

π

2

∫ ∞

0

(Fc f)(t)

coshx+iy t
dt , x > 0, y ∈ R .

Hence we have the following estimate

(2.2) |Φ(x+ iy)| ≤ |Γ(x+ iy)|
√

π

2

∫ ∞

0
|(Fc f)(t)| dt .

It is clear that the integral (2.1) converges uniformly for Re z = x > 0. It implies

that Φ(x+iy) is an analytic function in the right-half plane. Moreover, we obtain

sup
x>0

∣

∣

∣

∣

Φ(x+ iy)

Γ(x+ iy)

∣

∣

∣

∣

=

√

π

2
‖f‖L∗ .

The main theorem of this section is based on the composition representation

of the transform (1.1) through the Kontorovich–Lebedev operator (1.3) and the

operator of the Mellin transform (1.2). We give here also its inversion formula by

(2.3) f(x) =
1

2πi

∫ γ+i∞

γ−i∞
fM(s)x−s ds , s = γ + it, x > 0 ,

where integrals (1.2), (2.3) exist as Lebesgue integrals or converge in mean by the

norm of spaces L2(γ − i∞, γ + i∞) and L2(R+;x
2γ−1), respectively. In addition,

in the latter case the Parseval equality holds

(2.4)

∫ ∞

0
|f(x)|2 x2γ−1 dx =

1

2π

∫ ∞

−∞
|fM(γ + it)|2 dt .
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Theorem 3. Let f ∈ L∗(R+). Then for all τ ∈ R the following representation

holds

(2.5)

f(τ) =
1

4π3
τ sinh(πτ) lim

x→0+

∫ ∞

−∞
2x−iy

· Φ(x+ iy) Γ

(

x− i(y + τ)

2

)

Γ

(

x− i(y − τ)

2

)

dy .

Proof: As it follows from (2.2) for each x > 0 and f ∈ L∗(R+) the transform

Φ(x+ iy) ∈ L1(R). Then in view of representation (1.4) and asymptotic of the

Macdonald function we can substitute it into (2.5) and invert the order of inte-

gration via Fubini’s theorem. Hence we obtain the equality

(2.6)

1

π3
τ sinh(πτ)

∫ ∞

−∞
2x−iy−2 Φ(x+ iy) Γ

(

x− i(y+τ)

2

)

Γ

(

x− i(y−τ)
2

)

dy =

=
1

π3
τ sinh(πτ)

∫ ∞

0
Kiτ (t) t

x−1 dt

∫ ∞

−∞
Φ(x+ iy) t−iy dy .

We show now that the latter integral with respect to y may be evaluated by using

the Mellin transform formulas (1.2), (2.3) and the Kontorovich–Lebedev operator

(1.3). Precisely, we have

(2.7)
1

2π

∫ ∞

−∞
Φ(x+ iy) t−x−iy dy = (KLf)(t) .

Indeed, the integral of the left-hand side in (2.7) is the inverse Mellin transform

of Φ and it exists since Φ ∈ L1(R). On the other hand via condition f ∈ L∗(R+)

and the uniform estimate [5] for the Macdonald function

(2.8) |Kiτ (t)| ≤ e−δ|τ |K0(t cos δ) , δ ∈ (0, π/2) ,

where K0(z) is the Macdonald function of the index zero we easily find that

(KLf)(t) ∈ L1(R+; t
x−1dt). This result follows from the estimate

∫ ∞

0
tx−1|(KLf)(t)| dt ≤

∫ ∞

0
tx−1K0(t cos δ) dt

∫ ∞

0
e−δτ |f(τ)| dτ

≤ Cx,δ ‖f‖L∗ , x > 0, δ ∈ (0, π/2) ,

where

Cx,δ =

∫ ∞

0
tx−1K0(t cos δ) dt

∫ ∞

0
e−δτdτ =

2x−2

δ
(cos δ)−x Γ2

(

x

2

)

.
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Consequently, according to the L1-theorems for the Mellin transform [4] the com-

position of operators (1.3), (1.2) (KLf)M(x + iy) exists. Moreover, it equals

Φ(x+ iy) after changing the order of integration in the obtained iterated integral

and by using representation (1.4). Therefore we deduce equality (2.7). Hence we

substitute its right-hand side in (2.6) and it becomes

1

π3
τ sinh(πτ)

∫ ∞

−∞
2x−iy−2 Φ(x+ iy) Γ

(

x− i(y+τ)

2

)

Γ

(

x− i(y−τ)
2

)

dy =

=
2

π2
τ sinh(πτ)

∫ ∞

0
Kiτ (t) t

2x−1(KLf)(t) dt .

The desired result now is an immediate consequence of Theorem 1. Theorem 3

is proved.

3 – Plancherel type theorem

Let us consider transformation (1.1) in L2-spaces and establish the Plancherel

theorem for this transform. As we could see in the previous section for f ∈ L∗(R+)

Φ(z) is an analytic function in the right half-plane. We will prove here that it

remains true also for f ∈ L2(R+; [τ sinh(πτ)]
−1dτ) and

(3.1) Φ(x+ iy) = l.i.m.
N→∞

∫ N

1/N
2x+iy−2f(τ) Γ

(

x+ i(y+τ)

2

)

Γ

(

x+ i(y−τ)
2

)

dτ ,

where the latter limit is in mean square sense. Moreover, it will follow that Φ is

an element of the Hardy space H(x1,x2)
2 (R), i.e.

(3.2) sup
0<x1≤x≤x2<∞

1

2π

∫ ∞

−∞
|Φ(x+ iy)|2 dy < ∞ .

As it is known from the theory of H-spaces (cf. in [4]), Φ(x+iy)→ Φ(iy) for almost

all y when x → 0 and Φ(iy) ∈ L2(R). Taking into account possible singularities

of Gamma-functions for x = 0 the corresponding integral (3.1) converges in the

principal value sense. Indeed, with the reduction formula [2, Vol. I] for Gamma-

functions Γ(z + 1) = z Γ(z) the transform Φ(iy) has the form (cf. (3.1))

(3.3) Φ(iy) = l.i.m.
N→∞

P.V.

∫ N

1/N
2iyf(τ)

Γ

(

i(y+τ)
2 + 1

)

Γ

(

i(y−τ)
2 + 1

)

τ2 − y2
dτ .
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Theorem 4. Integral transform (3.1) is a bounded operator Φ : L2(R+;

|Γ(2x+ iτ)|2dτ)→ H(x1,x2)
2 (R) and for x ∈ [x1, x2] we have the inequality

(3.4)
1

2π

∫ ∞

−∞
|Φ(x+ iy)|2 dy ≤ π3/2 2−2x−1

Γ(2x+ 1/2)

∫ ∞

0
|Γ(2x+ iτ)|2 |f(τ)|2 dτ .

In particular, when x→ 0+ it becomes

(3.5)
1

2π

∫ ∞

−∞
|Φ(iy)|2 dy ≤ π2

2

∫ ∞

0
|f(τ)|2 dτ

τ sinh(πτ)
.

Proof: First as a consequence of Stirlings formula of the asymptotic at

infinity of Gamma-functions and relation (1.14) we see that the variety of spaces

L2(R+; |Γ(2x+ iτ)|2dτ) is well-ordered. This gives the following embedding

L2

(

R+; |Γ(2x2 + iτ)|2dτ
)

⊆ L2

(

R+; |Γ(2x1 + iτ)|2dτ
)

, x2 ≥ x1 > 0 .

Denoting by ΦN (x + iy) the integral (3.1) we have that under conditions of the

theorem for each N > 0 it exists as the Lebesgue integral. Further, by using

representation (1.4) we substitute it in (3.1) and invert the order of integration

via the absolute convergence of the corresponding iterated integral. Hence we

obtain

(3.6) ΦN (x+ iy) =

∫ ∞

0
tx+iy−1 dt

∫ N

1/N
Kiτ (t) f(τ) dτ .

The latter integral (3.6) is the composition of the Mellin transform (1.2) and the

Kontorovich–Lebedev operator (1.3) of the function f , which is zero outside of the

interval (1/N,N). Appealing to inequality (2.8) it is not difficult to verify that the

Kontorovich–Lebedev operator in (3.6) is a function also from L2(R+; t
2x−1dt).

Then as a consequence of the Parseval equality (2.4) we immediately find that

1

2π

∫ ∞

−∞
|ΦN (x+ iy)|2 dy =

∫ ∞

0
t2x−1

∣

∣

∣

∣

∫ N

1/N
Kiτ (t) f(τ) dτ

∣

∣

∣

∣

2

dt

=

∫ ∞

0
t2x−1 dt

∫ N

1/N
Kiτ (t) f(τ) dτ

∫ N

1/N
Kiu(t) f(u) du(3.7)

=

∫ N

1/N

∫ N

1/N
f(τ) f(u) dτ du

∫ ∞

0
t2x−1Kiτ (t)Kiu(t) dt .

By virtue of the formula (cf. [5])

∫ ∞

0
t2x−1Kiτ (t)Kiu(t) dt =

22x−3

Γ(2x)

∣

∣

∣

∣

Γ

(

x+
i(u+τ)

2

)

Γ

(

x+
i(τ−u)

2

)∣

∣

∣

∣

2
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we therefore have
1

2π

∫ ∞

−∞
|ΦN (x+ iy)|2 dy =

=
22x−3

Γ(2x)

∫ N

1/N

∫ N

1/N
f(τ) f(u)

∣

∣

∣

∣

Γ

(

x+
i(u+τ)

2

)

Γ

(

x+
i(τ−u)

2

)∣

∣

∣

∣

2

dτ du .

Hence via Schwarz inequality for double integrals we deduce

22x−3

Γ(2x)

∫ N

1/N

∫ N

1/N
f(τ) f(u)

∣

∣

∣

∣

Γ

(

x+
i(u+τ)

2

)

Γ

(

x+
i(τ−u)

2

)∣

∣

∣

∣

2

dτ du ≤

≤ 22x−3

Γ(2x)

∫ N

1/N
|f(τ)|2 dτ

∫ N

1/N

∣

∣

∣

∣

Γ

(

x+
i(u+τ)

2

)

Γ

(

x+
i(τ−u)

2

)∣

∣

∣

∣

2

du

≤ π3/2 2−2x−1

Γ(2x+ 1/2)

∫ N

1/N
|Γ(2x+ iτ)|2 |f(τ)|2 dτ ,

where we have used the value of the following integral [5], [6]
∫ ∞

0

∣

∣

∣

∣

Γ

(

x+
i(u+τ)

2

)

Γ

(

x+
i(τ−u)

2

)∣

∣

∣

∣

2

du =
π3/2 22−4x Γ(2x)

Γ(2x+ 1/2)
|Γ(2x+ iτ)|2, x>0 .

Combining with (3.10) we obtain that

1

2π

∫ ∞

−∞
|ΦN (x+ iy)|2 dy ≤ π3/2 2−2x−1

Γ(2x+ 1/2)

∫ N

1/N
|Γ(2x+ iτ)|2 |f(τ)|2 dτ .

Consequently it is easily seen that if f ∈ L2(R+; |Γ(2x+ iτ)|2dτ) then limit (3.1)

exists and equals Φ(x+ iy). Furthermore, the corresponding transformation (3.1)

belongs to the Hardy space (3.2) and inequality (3.4) holds. Passing to the limit

through (3.4) when x→ 0+ we get (3.5). Theorem 4 is proved.

Finally we are ready to prove the Plancherel theorem for the Φ-transform

(3.3).

Theorem 5. Let f ∈ L2(R+; [τ sinh(πτ)]
−1dτ). Then integral (3.3) converges

in mean with respect to the norm of L2(R) to Φ(iy). Conversely, the integral

(3.8) fN (τ) =
1

4π3
τ sinh(πτ) P.V.

∫ N

−N
2−iy Φ(iy) Γ

(

i(y+τ)

2

)

Γ

(

i(y−τ)
2

)

dy

converges in mean to f(τ) with respect to the norm of the space L2(R+;

[τ sinh(πτ)]−1dτ). Moreover, inequality (3.5) takes the form of the Parseval equal-

ity for the Φ-transformation (3.3)

(3.9)
1

2π

∫ ∞

−∞
|Φ(iy)|2 dy =

π2

2

∫ ∞

0
|f(τ)|2 dτ

τ sinh(πτ)
.
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Proof: As it follows from Theorem 2 the latter equality (3.9) holds true

due to Parseval equality (1.16). In fact, if f ∈ L2(R+; [τ sinh(πτ)]
−1dτ) and

vanishes outside of the interval (1/N,N) then the integral in the right-hand side

of the first equality in (3.7) with x replaced by 0, is convergent via Fatou’s

lemma. Further, by virtue of estimate (2.8) we have that integral (1.15) belongs

to L2(R+). Meanwhile, for all x, 0 ≤ x ≤ 1
2 ,

∫ ∞

0
t2x−1|(KLf)N (t)|2 dt ≤

∫ ∞

0

[

χ[0,1](t) + t χ[1,∞)(t)
]

|(KLf)N (t)|2 dt

t
< ∞ ,

where χ(a,b)(t) is the characteristic function of the corresponding interval. Hence

the limit x → 0 in the first equality of (3.7) can be taken under the integral

sign by virtue of Theorem 4 and the Lebesgue dominated convergence theorem.

Therefore via equality (1.17) we obtain

1

2π

∫ ∞

−∞
|ΦN (iy)|2 dy =

π2

2

∫ N

1/N
|f(τ)|2 dτ

τ sinh(πτ)
.

Now for the difference ΦN (iy)− ΦM (iy) we easily majorize as

(3.10)
1

2π

∫ ∞

−∞
|ΦN (iy)− ΦM (iy)|2 dy =

π2

2

[
∫ 1/N

1/M
+

∫ M

N

]

|f(τ)|2 dτ

τ sinh(πτ)
.

Since the right-hand side of (3.10) tends to zero as M→∞, N→∞, so does the

left-hand side. That is, ΦN (iy) converges in mean to a function, Φ(iy) say, of the

class L2(R).

Further, let us establish that fN (τ) ∈ L2(R+; [τ sinh(πτ)]
−1dτ). This implies

that the corresponding square of norm

(3.11)

‖fN‖2L2(R+;[τ sinh(πτ)]−1dτ) =

=
1

4π3

∫ ∞

0
τ sinh(πτ)

∣

∣

∣

∣

∣

∫ N

−N
2−iy Φ(iy) Γ

(

i(y+τ)

2

)

Γ

(

i(y−τ)
2

)

dy

∣

∣

∣

∣

∣

2

dτ

< ∞ .

By taking sufficiently large X>0 we split up the latter integral with respect to τ

on two integrals over [0, X] and [X,∞) which we denote correspondingly by I1(X)

and I2(X). Keeping X fixed we observe that the integral I1(X) is convergent.

Indeed, first we see that the inner integral with respect to y is uniformly conver-

gent when |y ± τ | ≥ δ > 0. Secondly it can be represented through the Hilbert

type integrals (cf. in [4] and (3.3)) in domains of integration |y± τ | < δ which are
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L2(0, X)-functions. Therefore the integrand (3.11) is a summable function over

[0, X], X > 0.

Concerning the convergence of the integral I2(X) let us apply the Stirling

formula of the asymptotic behavior of Gamma-functions [2] when τ → +∞ and

y ∈ [−N,N ]. In fact, this gives the following asymptotic relation for the kernel

(3.8)

Γ

(−i(y+τ)
2

)

Γ

(

i(τ−y)
2

)

=
2π

τ
exp

[

−π
2
τ − iy log τ − iy2

τ
+O

(

(1 + iy) y2

8 τ2

)

]

·
(

1 +O

(

y

y2−τ2

))

, τ → +∞, y ∈ [−N,N ] .

Consequently, by using the substitution u = log τ and the Parseval equality for

Fourier transform we obtain

I2(X) =
1

4π3

∫ ∞

X
τ sinh(πτ)

∣

∣

∣

∣

∣

∫ N

−N
2−iy Φ(iy) Γ

(

i(y+τ)

2

)

Γ

(

i(y−τ)
2

)

dy

∣

∣

∣

∣

∣

2

dτ

= O

(

∫ ∞

X

dτ

τ

∣

∣

∣

∣

∫ N

−N
2−iy Φ(iy) e−iy log τ dy

∣

∣

∣

∣

2
)

= O

(

∫ ∞

logX
du

∣

∣

∣

∣

∫ N

−N
2−iy Φ(iy) e−iyu dy

∣

∣

∣

∣

2
)

≤
∫ N

−N
|Φ(iy)|2 dy < ∞ .

Thus fN (τ) ∈ L2(R+; [τ sinh(πτ)]
−1dτ) and from (3.9) we have that there exists

l.i.m.N→∞ fN (τ) = ϕ(τ). We may prove now that ϕ(τ) = f(τ) almost everywhere

on R+. Indeed, since both functions are from the space L2(R+; [τ sinh(πτ)]
−1dτ)

it is easily seen that functions ϕ(τ)[sinh(πτ)]−1, f(τ)[sinh(πτ)]−1 ∈ L1(R+).

Then it is sufficient to show that

(3.12)

∫ ξ

0

ϕ(τ)

sinh(πτ)
dτ =

∫ ξ

0

f(τ)

sinh(πτ)
dτ

for all values of ξ > 0. If we take two functions f(τ), g(τ) and their transforma-

tions (3.3) Φ(iy), G(iy) respectively, then the Parseval formula (3.9) gives

1

2π

∫ ∞

−∞
Φ(iy)G(iy) dy =

π2

2

∫ ∞

0
f(τ) g(τ)

dτ

τ sinh(πτ)
.

Let g(τ) = τ (0≤τ≤ξ), g(τ) = 0 (τ >ξ). Then

(3.13)

∫ ξ

0

f(τ)

sinh(πτ)
dτ =

1

4π3

∫ ∞

−∞
2−iy Φ(iy)

∫ ξ

0
τΓ

(−i(y+τ)
2

)

Γ

(

i(τ−y)
2

)

dτ dy .
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The latter integral exists as the Lebesgue integral since for each ξ > 0

∫ ξ

0
τΓ

(−i(y+τ)
2

)

Γ

(

i(τ−y)
2

)

dτ ∈ L2(R) .

This fact can be established similar to the above discussions. On the other hand

integrating through in equality (3.8) and inverting the order of integration we

obtain that

(3.14)

∫ ξ

0

fN (τ)

sinh(πτ)
dτ =

1

4π3

∫ N

−N
2−iy Φ(iy)

∫ ξ

0
τ Γ

(

i(y+τ)

2

)

Γ

(

i(y−τ)
2

)

dτ dy .

We motivate this interchange by splitting up integral (3.8) on four integrals.

As the result we obtain

∫ ξ

0

fN (τ)

sinh(πτ)
dτ =

1

4π3

∫ ξ

0
τ dτ

[

∫

|y±τ |≥δ
+

∫

|y±τ |<δ

]

2−iy Φ(iy)

· Γ
(

i(y+τ)

2

)

Γ

(

i(y−τ)
2

)

dy

= J1 + J2 + J3 + J4 .

The inner integrals in J1, J2 converge uniformly by τ . This means that we can

integrate with respect to τ . Meanwhile, in the case of integrals J3, J4 the order of

integration may be inverted due to the simple case of the Poincaré–Bertrand for-

mula [3]. Precisely, here we have two repeated integrals, which are compositions

of singular integrals (see above) and absolutely convergent integrals.

Finally, passing to the limit in (3.14) when N → ∞ and taking into account

(3.13) we prove (3.12). Then by the differentiation with respect to ξ in (3.12) we

justify the equality ϕ(τ) = f(τ) for almost all τ ∈ R+. Theorem 5 is proved.
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