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MORE ON SG-COMPACT SPACES *

J. Dontchev and M. Ganster

Abstract: The aim of this paper is to continue the study of sg-compact spaces, a

topological notion much stronger than hereditary compactness. We investigate the rela-

tions between sg-compact and C2-spaces and the interrelations to hereditarily sg-closed

sets.

1 – Introduction

In 1995, sg-compact spaces were introduced independently by Caldas [2]

and by Devi, Balachandran and Maki [4]. A topological space (X, τ) is called

sg-compact [2] if every cover of X by sg-open sets has a finite subcover. In [4],

the term SGO-compact is used.

Recall that a subset A of a topological space (X, τ) is called sg-open [1] if

every semi-closed subset of A is included in the semi-interior of A. A set A is

called semi-open if A ⊆ IntA and semi-closed if IntA ⊆ A. The semi-interior of

A, denoted by sInt(A), is the union of all semi-open subsets of A while the semi-

closure of A, denoted by sCl(A), is the intersection of all semi-closed supersets

of A. It is well known that sInt(A) = A ∩ IntA and sCl(A) = A ∪ IntA.

Every topological space (X, τ) has a unique decomposition into two sets X1

and X2, where X1 = {x ∈ X : {x} is nowhere dense} and X2 = {x ∈ X : {x} is

locally dense}. This decomposition follows from a result of Janković and Reilly

[13, Lemma 2]. Recall that a set A is said to be locally dense [3] (= preopen) if

A ⊆ IntA.
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It is a fact that a subset A of X is sg-closed (= its complement is sg-open)

if and only if X1 ∩ sCl(A) ⊆ A [6], or equivalently if and only if X1 ∩ IntA ⊆ A.

By taking complements one easily observes that A is sg-open if and only if

A ∩X1 ⊆ sInt(A). Hence every subset of X2 is sg-open.

2 – Sg-compact spaces

Let A be a sg-closed subset of a topological space (X, τ). If every subset

of A is also sg-closed in (X, τ), then A will be called hereditarily sg-closed

(= hsg-closed). Observe that every nowhere dense subset is hsg-closed but not

vice versa.

Proposition 2.1. For a subset A of a topological space (X, τ) the following

conditions are equivalent:

(1) A is hsg-closed.

(2) X1 ∩ IntA = ∅.

Proof. (1)⇒(2) Suppose that there exists x ∈ X1∩IntA. Let Vx be an open

set such that Vx⊆A and let B=A\{x}. Since B is sg-closed, i.e. X1∩sCl(B)⊆B,

we have x 6∈ sCl(B), hence x 6∈ IntB, and thus x ∈ X\B. If H = Vx ∩ (X\B),

then H is nonempty and open with H ⊆ A and H ∩B = ∅ and so H ∩A = {x}.

Hence ∅ 6= H = H ∩ A ⊆ H ∩A ⊆ {x}, i.e. Int{x} 6= ∅. Thus x ∈ X2, a

contradiction.

(2)⇒(1) Let B ⊆ A. Then IntB ⊆ IntA and X1 ∩ IntB = ∅, i.e. B is

sg-closed.

We will call a topological space (X, τ) a C2-space [9] (resp. C3-space) if ev-

ery nowhere dense (resp. hsg-closed) set is finite. Clearly every C3-space is a

C2-space. Also, a topological space (X, τ) is indiscrete if and only if every subset

of X is hsg-closed (since in that case X1 = ∅).

Following Hodel [14], we say that a cellular family in a topological space

(X, τ) is a collection of nonempty, pairwise disjoint open sets. The following

result reveals an interesting property of C2-spaces.

Lemma 2.2. Let (X, τ) be a C2-space. Then every infinite cellular family

has an infinite subfamily whose union is contained in X2.
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Proof. Let {Ui : i ∈ N} be a cellular family. Suppose that for infinitely

many i ∈ N we have Ui∩X1 6= ∅. Without loss of generality we may assume that

Ui∩X1 6= ∅ for each i ∈ N. Now pick xi ∈ Ui∩X1 for each i ∈ N and partition N
into infinitely many disjoint infinite sets, N =

⋃

k∈N Nk. Let Ak = {xi : i ∈ Nk}.

Since Ak ∩ (
⋃

i6∈Nk
Ui) = ∅ and Ak ⊆

⋃

i∈Nk
Ui for each k, it is easily checked that

{IntAk : k ∈ N} is a disjoint family of open sets. Since X is a C2-space, Ak

cannot be nowhere dense and so, for each k, there exists pk ∈ IntAk and the pk’s

are pairwise distinct. Also, since X is C2,
⋃

i∈N Ui =
⋃

i∈N(Ui) ∪ F , where F is

finite. Since pk ∈
⋃

i∈N Ui for each k, there exists k0 such that pk ∈
⋃

i∈N Ui for

k ≥ k0, and since IntAk∩(
⋃

i6∈Nk
Ui) = ∅, we have pk ∈

⋃

i∈Nk
Ui for k ≥ k0. Now,

for each k ≥ k0 pick ik ∈ Nk such that pk ∈ Uik , and so pk ∈ W = Uik ∩ IntAk.

Thus ∅ 6= W ⊆ Uik ∩ Ak ⊆ Uik ∩Ak = {xik}. Hence {xik} is locally dense, a

contradiction. This shows that only for finitely many i ∈ N we have Ui ∩X1 6= ∅.

Thus the claim is proved.

The α-topology [16] on a topological space (X, τ) is the collection of all sets

of the form U\N , where U ∈ τ and N is nowhere dense in (X, τ). Recall that

topological spaces whose α-topologies are hereditarily compact have been shown

to be semi-compact [11]. The original definition of semi-compactness is in terms

of semi-open sets and is due to Dorsett [8]. By definition a topological space

(X, τ) is called semi-compact [8] if every cover of X by semi-open sets has a finite

subcover.

Remark 2.3.

(i) The 1-point-compactification of an infinite discrete space is a C2-space

having an infinite cellular family.

(ii) [9] A topological space (X, τ) is semi-compact if and only if X is a

C2-space and every cellular family is finite.

(iii) [12] Every subspace of a semi-compact space is semi-compact (as a sub-

space).

Lemma 2.4.

(i) Every C3-space (X, τ) is semi-compact.

(ii) Every sg-compact space is semi-compact.

Proof. (i) All C3-spaces are C2-spaces. Thus in the notion of Remark 2.3 (ii)

above we need to show that every cellular family in X is finite. Suppose that

there exists an infinite cellular family {Ui : i ∈ N}. For each i ∈ N pick xi ∈ Ui
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and, as before, partition N =
⋃

k Nk and set Ak = {xi : i ∈ Nk}. Since X is a

C2-space, {IntAk : k ∈ N} is a cellular family. By Lemma 2.2, there is a k ∈ N
such that IntAk ⊆ X2. Since Ak is not hsg-closed, we must have X1∩ IntAk 6= ∅,

a contradiction. So, every cellular family in X is finite and consequently (X, τ)

is semi-compact.

(ii) is obvious since every semi-open set is sg-open.

Remark 2.5.

(i) It is known that sg-open sets are β-open, i.e. they are dense in some

regular closed subspace [5]. Note that β-compact spaces, i.e. the spaces

in which every cover by β-open sets has a finite subcover are finite [10].

However, one can easily find an example of an infinite sg-compact space

— the real line with the cofinite topology is such a space.

(ii) In semi-TD-spaces the concepts of sg-compactness and semi-compactness

coincide. Recall that a topological space (X, τ) is called a semi-TD-space

[13] if each singleton is either open or nowhere dense, i.e. if every sg-closed

set is semi-closed.

Theorem 2.6. For a topological space (X, τ) the following conditions are

equivalent:

(1) X is sg-compact.

(2) X is a C3-space.

Proof. (1)⇒(2) Suppose that there exists an infinite hsg-closed set A and

set B = X\A. Observe that for each x ∈ A, the set B ∪ {x} is sg-open in X.

Thus {B ∪ {x} : x ∈ A} is a sg-open cover of X with no finite subcover. Thus

(X, τ) is C3.

(2)⇒(1) Let X =
⋃

i∈I Ai, where each Ai is sg-open. Let Si = sInt(Ai) for

each i ∈ I and let S =
⋃

i∈I Si. Then S is a semi-open subset of X and each Si

is a semi-open subset of (S, τ |S). Since X is a C3-space, (X, τ) is semi-compact

and hence (S, τ |S) is a semi-compact subspace of X (by Remark 2.3 (iii)). So we

may say that S = Si1 ∪ · · · ∪ Sik . Since Ai is sg-open, we have X1 ∩ Ai ⊆ Si for

each index i and so X1 = X1∩ (
⋃

Ai) ⊆ X1∩S ⊆ Si1 ∪· · ·∪Sik = S. Hence X\S

is semi-closed and X\S ⊆ X2. Since Int(X\S) ⊆ X\S ⊆ X2, we conclude that

X\S is hsg-closed and thus finite. This shows that X = Si1 ∪ · · ·∪Sik ∪ (X\S) =

Ai1 ∪ · · · ∪Aik ∪ F , where F is finite, i.e. (X, τ) is sg-compact.
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Remark 2.7.

(i) If X1 = X, then (X, τ) is sg-compact if and only if (X, τ) is semi-compact.

Observe that in this case sg-closedness and semi-closedness coincide.

(ii) Every infinite set endowed with the cofinite topology is (hereditarily)

sg-compact.

It is known that an arbitrary intersection of sg-closed sets is also an sg-closed

set [6]. The following result provides an answer to the question about the addi-

tivity of sg-closed sets.

Proposition 2.8.

(i) If A is sg-closed and B is closed, then A ∪B is also sg-closed.

(ii) The intersection of a sg-open and an open set is always sg-open.

(iii) The union of a sg-closed and a semi-closed set need not be sg-closed, in

particular, even finite union of sg-closed sets need not be sg-closed.

Proof. (i) Let A ∪ B ⊆ U , where U is semi-open. Since A is sg-closed, we

have sCl(A ∪ B) = (A ∪ B) ∪ Int(A ∪B) ⊆ U ∪ Int(A ∪ B) ⊆ U ∪ (IntA ∪ B) ⊆

U ∪ (U ∪B) = U .

(ii) follows from (i).

(iii) Let X = {a, b, c, d}, τ = {∅, {a}, {b}, {a, b}, X}. Note that the two sets

A = {a} and B = {b} are semi-closed but their union {a, b} is not sg-closed.

Theorem 3 from [1] states that if B ⊆ A ⊆ (X, τ) and A is open and sg-closed,

then B is sg-closed in the subspace A if and only if B is sg-closed in X. Since

a subset is regular open if and only if it is α-open and sg-closed [7], by using

Proposition 2.8, we obtain the following result:

Proposition 2.9. Let R be a regular open subset of a topological space

(X, τ). If A ⊆ R and A is sg-open in (R, τ |R), then A is sg-open in X.

Proof. Since B = R\A is sg-closed in (R, τ |R), B is sg-closed in X

by [1, Theorem 3]. Thus X\B is sg-open in X and by Proposition 2.8 (ii),

R ∩ (X\B) = A is sg-open in X.

Recall that a subset A of a topological space (X, τ) is called δ-open [18] if A is

a union of regular open sets. The collection of all δ-open subsets of a topological

space (X, τ) forms the so called semi-regularization topology .
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Corollary 2.10. If A ⊆ B ⊆ (X, τ) such that B is δ-open in X and A is

sg-open in B, then A is sg-open in X.

Proof. Let B =
⋃

i∈I Bi, where each Bi is regular open in (X, τ). Clearly,

each Bi is regular open also in (B, τ |B). By Proposition 2.8 (ii), A ∩ Bi is

sg-open in (B, τ |B) for each i ∈ I. In the notion of Proposition 2.9, B\(A∩Bi) is

sg-closed in (X, τ) for each i ∈ I. Hence X\(B\(A ∩Bi)) = (A ∩Bi) ∪ (X\B) is

sg-open in (X, τ). Again by Proposition 2.8 (ii), B∩ ((A∩Bi)∪ (X\B)) = A∩Bi

is sg-open in (X, τ). Since any union of sg-open sets is always sg-open, we have

A =
⋃

i∈I(A ∩Bi) is sg-open in (X, τ).

Proposition 2.11. Every δ-open subset of a sg-compact space (X, τ) is

sg-compact, in particular, sg-compactness is hereditary with respect to regular

open sets.

Proof. Let A ⊆ X be δ-open. If {Ui : i ∈ I} is a sg-open cover of (S, τ |S),

then by Corollary 2.10, each Ui is sg-open in X. Then, {Ui : i ∈ I} along with

X\A forms a sg-open cover of X. Since X is sg-compact, there exists a finite

F ⊆ I such that {Ui : i ∈ F} covers A.

Example 2.12. Let A be an infinite set with p 6∈ A. Let X = A ∪ {p} and

τ = {∅, A,X}.

(i) Clearly, X1 = {p}, X2 = A and for each infinite B ⊆ X, we have B = X.

Hence X1∩IntB 6= ∅, so B is not hsg-closed. Thus (X, τ) is a C3-space, so

sg-compact. But the open subspace A is an infinite indiscrete space which

is not sg-compact. This shows that (1) hereditary sg-compactness is a

strictly stronger concept than sg-compactness and (2) in Proposition 2.11

‘δ-open’ cannot be replaced with ‘open’.

(ii) Observe that X ×X contains an infinite nowhere dense subset, namely

X×X \A×A. This shows that even the finite product of two sg-compact

spaces need not be sg-compact, not even a C2-space.

(iii) [15] If the nonempty product of two spaces is sg-compact Tgs-space

(see [15]), then each factor space is sg-compact.

Recall that a function f : (X, τ) → (Y, σ) is called pre-sg-continuous [17] if

f−1(F ) is sg-closed in X for every semi-closed subset F ⊆ Y .
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Proposition 2.13.

(i) The property ’sg-compact’ is topological.

(ii) Pre-sg-continuous images of sg-compact spaces are semi-compact.
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