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SOME REMARKS ON TARDIFF’S FIXED POINT
THEOREM ON MENGER SPACES

E. Părău and V. Radu

1 – Introduction

Let D+ be the family of all distribution functions F : R → [0, 1] such that

F (0) = 0, and H0 be the element of D+ which is defined by

H0 =

{

0, if x ≤ 0,

1, if x > 0 .

A t-norm T is a binary operation on [0, 1] which is associative, commutative,

has 1 as identity, and is non-decreasing in each place. We say that T ′ is stronger

than T ′′ and we write T ′ ≥ T ′′ if T ′(a, b) ≥ T ′′(a, b), ∀ a, b ∈ [0, 1].

Definition 1.1. Let X be a set, F : X2 → D+ a mapping (F(x, y) will be

denoted Fxy) and T : [0, 1]× [0, 1]→ [0, 1] a t-norm. The triple (X,F , T ) is called

a Menger space iff it satisfies the following properties:

(PM0) If x 6= y then Fxy 6= H0 ;

(PM1) If x = y then Fxy = H0 ;

(PM2) Fxy = Fyx, ∀x, y ∈ X ;

(M) Fxy(u+ v) ≥ T (Fxz(u), Fzy(v)), ∀x, y, z ∈ X, ∀u, v ∈ R .

Let f : [0, 1] → [0,∞] be a continuous function which is strictly decreasing

and vanishes at 1.
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Definition 1.2 ([6]). The pair (X,F) which has the properties (PM0)–

(PM2) is called a probabilistic f -metric structure iff

∀ t > 0 ∃ s > 0 such that
[

f ◦ Fxz(s) < s, f ◦ Fzy(s) < s
]

⇒ f ◦ Fxy(t) < t .

Remark 1.3. If (X,F) is a probabilistic f -metric structure then the family

WF
f :={W f

ε }ε∈(0,f(0)), where W f
ε :={(x, y)| Fxy(ε) > f−1(ε)}, is a uniformity

base which generates a uniformity on X called UF [6, p.46, Th. 1.3.39].

We define the t-norm generated by f by:

Tf (a, b) = f (−1)
(

f(a) + f(b)
)

where f (−1) is the quasi-inverse of f , namely

f (−1)(x) =

{

f−1(x), x ≤ f(0),

0, x > f(0) .

It is well known and easy to see that f ◦ f (−1)(x) ≤ x, ∀x ∈ [0,∞] and f (−1) ◦

f(a) = a, ∀ a ∈ [0, 1].

In the next section of this note we’ll construct generalized metrics on Menger

spaces, related to some ideas which have appeared in [11] and [4], and using some

properties of the probabilistic f -metric structures.

In the last section, using this generalized metrics, we’ll obtain a fixed point

theorem on complete Menger spaces and we’ll give some consequences. We’ll give

also, a fixed point alternative in complete Menger spaces.

The notations and the notions not given here are standard and follow [1], [8].

2 – A generalized metric on probabilistic f-metric structures

Let f : [0, 1]→ [0, 1] a continuous and strictly decreasing function, such that

f(1) = 0.

Lemma 2.1. We consider a Menger space (X,F , T ), where T ≥ Tf . For

each k > 0 let us define

dk(x, y) := sup
s>0

sk
∞
∫

s

f ◦ Fxy(t)

t
dt
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and

ρk(x, y) :=
(

dk(x, y)
)

1
k+1

.

Then ρk is a generalized metric on X.

Proof: It is clear that ρk is symmetric and ρk(x, x) = 0.

If ρk(x, y) = 0, then for each s > 0,

∞
∫

s

f ◦ Fxy(t)

t
dt = 0 which implies

t
∫

s

f ◦ Fxy(u)

u
du = 0, ∀ t > s > 0.

Since
f ◦ Fxy(u)

u
≥

f ◦ Fxy(t)

t
≥ 0 for each u ∈ (s, t), then

0 =

t
∫

s

f ◦ Fxy(u)

u
du ≥

f ◦ Fxy(t)

t
(t− s) , ∀ t > s > 0 ,

which implies f ◦Fxy(t) = 0, ∀ t > 0. Since f is a stictly decreasing function and

f(1) = 0 then Fxy(t) = 1, ∀ t > 0, that is x = y.

Because (X,F , T ) is a Menger space and T ≥ Tf , we have

Fxy(u+v) ≥ T
(

Fxz(u), Fzy(v)
)

≥ Tf

(

Fxz(u), Fzy(v)
)

, ∀x, y, z ∈ X, ∀u, v ∈ R.

Let us take u = αt and v = βt, where α, β ∈ (0, 1), α+ β = 1. Then

Fxy(t) ≥ f (−1)
(

f ◦ Fxz(αt) + f ◦ Fzy(βt)
)

,

∀x, y, z ∈ X, ∀ t > 0, ∀α, β ∈ (0, 1), α+ β = 1 ,

and so

f ◦ Fxy(t) ≤ (f ◦ f
(−1))

(

f ◦ Fxz(αt) + f ◦ Fzy(βt)
)

≤ f ◦ Fxz(αt) + f ◦ Fzy(βt) ,

∀x, y, z ∈ X, ∀ t > 0, ∀α, β ∈ (0, 1), α+ β = 1 .

We divide the both members of inequality by t, integrate from s to ms and

multiply with sk, where s > 0, m > 1, k > 0. We obtain

sk
ms
∫

s

f ◦Fxy(t)

t
dt ≤ sk

ms
∫

s

f ◦Fxz(αt)

t
dt+ sk

ms
∫

s

f ◦Fzy(βt)

t
dt, ∀m>1, ∀ s>0.



434 E. PĂRĂU and V. RADU

We take αt = u, respectively βt = v in the first, respectively, the second term

of the right side of the previous inequality and it follows that:

sk
ms
∫

s

f ◦Fxy(t)

t
dt ≤

1

αk
(αs)k

mαs
∫

αs

f ◦ Fxz(u)

u
du+

1

βk
(βs)k

mβs
∫

βs

f ◦ Fzy(v)

v
dv

≤
1

αk
(αs)k

∞
∫

αs

f ◦ Fxz(u)

u
du+

1

βk
(βs)k

∞
∫

βs

f ◦ Fzy(v)

v
dv

≤
1

αk
sup
s>0
(αs)k

∞
∫

αs

f ◦Fxz(u)

u
du+

1

βk
sup
s>0
(βs)k

∞
∫

βs

f ◦Fzy(v)

v
dv,

∀m > 1, ∀ s > 0 .

By making m→∞ and taking sup
s>0

in the left side of the previous inequality

and by observing that

sup
s>0
(αs)k

∞
∫

αs

f ◦ Fxz(u)

u
du = sup

s>0
sk

∞
∫

s

f ◦ Fxz(t)

t
dt

and

sup
s>0
(βs)k

∞
∫

βs

f ◦ Fzy(v)

v
dv = sup

s>0
sk

∞
∫

s

f ◦ Fzy(t)

t
dt ,

we obtain that

(2.1)

sup
s>0

sk
∞
∫

s

f ◦ Fxy(t)

t
dt ≤

1

αk
sup
s>0

sk
∞
∫

s

f ◦ Fxz(u)

u
du

+
1

βk
sup
s>0

sk
∞
∫

s

f ◦ Fzy(v)

v
dv .

Let us denote






























































a = sup
s>0

sk
∞
∫

s

f ◦ Fxy(t)

t
dt ,

b =
1

αk
sup
s>0

sk
∞
∫

s

f ◦ Fxz(t)

t
dt ,

c =
1

βk
sup
s>0

sk
∞
∫

s

f ◦ Fzy(t)

t
dt .
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If b =∞ or/and c =∞ it follows that ρk(x, z) = b
1

k+1 =∞ or/and ρk(z, y) =

c
1

k+1 =∞ and it is obvious that ρk(x, y) ≤ ∞ = ρk(x, z) + ρk(z, y).

We suppose that b <∞ and c <∞. The inequality (2.1) becomes:

a ≤
b

αk
+

c

βk
=

b

αk
+

c

(1− α)k
, ∀α ∈ (0, 1) ,

which implies a ≤ inf
0<α<1

( b

αk
+

c

(1− α)k

)

, ∀α ∈ (0, 1).

We define the function g : (0, 1) → R+, g(α) =
b

αk
+

c

(1− α)k
. We observe

that g has a minimum in α0 =
b

1
k+1

b
1

k+1 + c
1

k+1

(g′(α0) = 0).

Therefore

a ≤
b

αk
0

+
c

(1− α0)k
= (b

1
k+1 + c

1
k+1 )k+1

and it is clear that

ρk(x, y) = a
1

k+1 ≤ b
1

k+1 + c
1

k+1 = ρk(x, z) + ρk(z, y) .

Lemma 2.2. Let (X,F , T ) be a Menger space with T ≥ Tf . Then UF ⊂ Uρk .

Proof: It can be shown that sup
a<1

T (a, a) ≥ sup
a<1

Tf (a, a) = 1 and, using

[6, p.41, Th. 1.3.22] we obtain that (X,F) is a probabilistic f -metric structure.

By using Remark 1.3 it suffices to show that

(2.2) ∀ ε ∈ (0, f(0)), ∃ δ(ε) : ρk(x, y) < δ ⇒ Fxy(ε) > f−1(ε) .

We observe that

ρk(x, y) < δ ⇐⇒ sup
s>0

sk
∞
∫

s

f ◦ Fxy(t)

t
dt < δk+1

⇐⇒ ∀ s > 0, sk
∞
∫

s

f ◦ Fxy(t)

t
dt < δk+1

=⇒ ∀m > 1, ∀ s > 0, sk
ms
∫

s

f ◦ Fxy(t)

t
dt < δk+1 .

We take s fixed, s =
ε

2
and m = 2. It follows

(

ε

2

)k
ε
∫

ε
2

f ◦ Fxy(t)

t
dt < δk+1 .
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But t ≤ ε⇒ Fxy(t) ≤ Fxy(ε)⇒ f ◦Fxy(t) ≥ f ◦Fxy(ε)⇒
f ◦ Fxy(t)

t
≥

f ◦ Fxy(ε)

ε
.

Therefore

(

ε

2

)k
ε
∫

ε
2

f ◦ Fxy(ε)

ε
dt ≤

(

ε

2

)k
ε
∫

ε
2

f ◦ Fxy(t)

t
dt < δk+1 ,

which implies
( ε

2

)k+1 f ◦Fxy(ε)

ε
<δk+1. If we choose δ=

ε

2
we have f ◦Fxy(ε)<ε,

which shows that the relation (2.2) is satisfied for δ(ε) =
ε

2
.

Lemma 2.3. If (X,F , T ) is a complete Menger space under T ≥ Tf , then

(X, ρk) is complete.

Proof: We suppose that (xn) is a ρk-Cauchy sequence, that is,

(2.3) ∀ ε > 0, ∃n0(ε) : ∀n ≥ n0(ε), ∀ p ≥ 0 ⇒ ρ(xn, xn+p) < ε .

From Lemma 2.2 we have that (xn) is a UF -Cauchy sequence. Since (X,F , T )

is a complete Menger space, we obtain that (xn) is a UF -convergent sequence,

that is

∃x0 ∈ X such that ∀ ε > 0, ∃n1(ε) : ∀n ≥ n1(ε) ⇒ Fxnx0
(ε) > f−1(ε) .

It remains to show that (xn) is a ρk-convergent sequence. From (2.3) we obtain

that

ε ≥ lim
p→∞

ρ(xn, xn+p) = lim
p→∞

sup
s>0

sk
∞
∫

s

f ◦ Fxnxn+p(t)

t
dt ≥

≥ lim
p→∞

sk
∞
∫

s

f ◦ Fxnxn+p(t)

t
dt , ∀n ≥ n0(ε), ∀ s > 0 .

By using the Fatou’s lemma and the continuity of f we obtain:

ε ≥ lim
p→∞

sk
∞
∫

s

f ◦ Fxnxn+p(t)

t
dt ≥ sk

∞
∫

s

lim
p→∞

f ◦ Fxnxn+p(t)

t
dt =

= sk
∞
∫

s

1

t
f
(

lim
p→∞

Fxnxn+p(t)
)

dt , ∀n ≥ n0(ε), ∀ s > 0 .
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It can be proved that lim
p→∞

Fxnxn+p(t) = Fxnx0
(t) (actually we ’ll use only the fact

that lim
p→∞

Fxnxn+p(t) ≥ Fxnx0
(t)) and the previous relation becomes

ε ≥ sk
∞
∫

s

f ◦ Fxnx0
(t)

t
dt , ∀n ≥ n0(ε), ∀ s > 0 ,

which implies

ρk(xn, x0) = sup
s>0

sk
∞
∫

s

f ◦ Fxnx0
(t)

t
dt ≤ ε , ∀n ≥ n0(ε) .

Thus the lemma is proved.

3 – A fixed point theorem and some consequences

It is well-known that a mapping A : X → X (where (X,F) is a PM-space)

is called s-contraction if there exists L ∈ (0, 1) such that FAxAy(Lt) ≥ Fxy(t) for

all t ∈ R, for all x, y ∈ X.

Lemma 3.1. If (X,F) is a probabilistic f -metric structure and A is an

s-contraction then A is, for each k > 0, a strict contraction in (X, ρk).

Proof: Since FAxAy(Lt) ≥ Fxy(t) for some L ∈ (0, 1), and every real t then

we have

sk
∞
∫

s

f ◦ FAxAy(Lt)

t
dt ≤ sk

∞
∫

s

f ◦ Fxy(t)

t
dt .

If we make Lt = u in the left side, then we obtain

1

Lk
(sL)k

∞
∫

sL

f ◦ FAxAy(u))

u
du ≤ sk

∞
∫

s

f ◦ Fxy(t))

t
dt

≤ sup
s>0

sk
∞
∫

s

f ◦ Fxy(t))

t
dt = dk(x, y) , ∀ s > 0 .

Therefore, if we take sup
s>0

in the first member of the above inequality, then we

obtain that
1

Lk
dk(Ax,Ay) ≤ dk(x, y) and it is clear that

(3.1) ρk(Ax,Ay) ≤ L1 ρk(x, y) where L1 = L
k

k+1 ∈ (0, 1)

and the lemma is proved.

Now, we can prove our main result:
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Theorem 3.2. Let (X,F , T ) be a complete Menger space with T ≥ Tf .

If there exists some k > 0 such that for every pair (x, y) ∈ X one has

(3.2) sup
s>0

sk
∞
∫

s

f ◦ Fxy(t)

t
dt <∞ ,

then every s-contraction on X has a unique fixed point.

Proof: The relation (3.2) shows that ρk is a metric. From Lemma 3.1 we

obtain that A is a strict contraction in (X, ρk). Let x ∈ X be an arbitrary

point. From (3.1) we have that (Aix) is a Uρk -Cauchy sequence. By using the

Lemma 2.3, we observe that (Aix) is a ρk-convergent sequence to x0. It is easy

to see that x0 is the unique fixed point of A.

Corollary 3.3 (cf. [10]). Let (X,F , T ) be a complete Menger space under

T ≥ Tf , where f(0) <∞ and suppose that for each pair (x, y) ∈ X2 there exists

txy for which Fxy(txy) = 1. Then every s-contraction on X has a unique fixed

point.

Proof: Since for s ≤ txy we have

0 ≤ sk
∞
∫

s

f ◦ Fxy(t)

t
dt = sk

txy
∫

s

f ◦ Fxy(t)

t
dt ≤

≤ sk
txy
∫

s

f ◦ Fxy(s)

t
dt ≤ sk f(0)

(

ln(txy)− ln(s)
)

and for s > txy we have s
k

∞
∫

s

f ◦ Fxy(t)

t
dt = 0 then (3.2) holds and we can apply

the theorem.

Corollary 3.4 ([6]). Let (X,F , T ) be a complete Menger space with T ≥ T1

such that for some k > 0 and every pair (x, y) ∈ X one has

(3.3) sup
s>0

sk
∞
∫

s

1− Fxy(t)

t
dt <∞ .

Then every s-contraction on X has a unique fixed point.

Proof: We take f(t) = f1(t) = 1− t and we apply the theorem.
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Corollary 3.5. Let (X,F , T ) be a complete Menger space under T ≥ T1

and suppose that there exists k > 0 such that every Fxy has a finite k-moment.

Then every s-contraction on X has a unique fixed point.

Proof: It is well-known that (µk)
k
xy =

∞
∫

0

tk−1(1−Fxy(t)) dt <∞. Therefore

sk
∞
∫

s

1− Fxy(t)

t
dt ≤

∞
∫

s

tk
1− Fxy(t)

t
dt =

∞
∫

s

tk−1(1− Fxy(t)) dt ≤ (µk)
k
xy <∞

and the corollary follows.

Remark 3.6. For k = 1 it can be obtained a known result (see [11, Corollary

2.2]).

Generally from the fixed point alternative ([3]) we obtain the following

Theorem 3.7. Let (X,F , T ) be a complete Menger space under T ≥ Tf and

A an s-contraction. Then for each x ∈ X either,

i) there is some k > 0 such that (Aix) is ρk-convergent to the unique fixed

point of A, or

ii) for all k > 0, for all n ∈ N and for all M > 0 there exists s := s(k, n,M)

such that

sk
∞
∫

s

f ◦ FAnxAn+1x(t)

t
dt > M .

Proof: We suppose that ii) is not true:

∃ k>0, ∃n0>0, ∃M>0, ∀ s>0 such that sk
∞
∫

s

f ◦ FAn0xAn0+1x(t)

t
dt ≤M .

So, we have for some k > 0, ρk(A
n0x,An0+1x) <∞. It follows that

∀ p > 0, ρk(A
n0x,An0+px) ≤

p−1
∑

i=0

ρk(A
n0+px,An0+p+1x) ≤

≤ (1 + L1 + L2 + ...+ L
p−1
1 ) ρk(A

n0x,An0+1x) =
1− L

p
1

1− L1
ρk(A

n0x,An0+1x) ≤

≤
ρk(A

n0x,An0+1x)

1− L1
<∞ ,
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where L1 :=L
k

k+1 < 1. Therefore, the sequence of successive approximations,

(Aix) is a ρk-Cauchy sequence. From Lemma 2.3 we obtain that (Aix) is

ρk-convergent and it is easy to see that the limit of the sequence (A
ix) is the

unique fixed point of A.
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Bv. V. Pârvan, No.4, 1900 TIMIŞOARA – ROMANIA
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