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SOME REMARKS ON TARDIFF’S FIXED POINT
THEOREM ON MENGER SPACES

E. PARAU and V. RADU

1 — Introduction

Let D4 be the family of all distribution functions F': R — [0, 1] such that
F(0) =0, and Hy be the element of Dy which is defined by

0, ifx <0,
HO:{ .
1, ifz>0.

A t-norm T is a binary operation on [0, 1] which is associative, commutative,
has 1 as identity, and is non-decreasing in each place. We say that T’ is stronger
than 7" and we write 77 > T" if T'(a,b) > T"(a,b), Va,b € [0, 1].

Definition 1.1. Let X be a set, F: X2 — D, a mapping (F(z,y) will be
denoted F,y) and T': [0,1] x [0, 1] — [0,1] a t-norm. The triple (X, F,T) is called
a Menger space iff it satisfies the following properties:

(PMO) If x #y then F,, # Hy ;

(PM1) Ifx =y then F,y, = Hy ;

(PM2) Fpy=Fy,, Va,yeX;

(M) Foy(u+v) > T(Fy;(u), Foy(v)), Va,y,2€ X, Vu,veR.

Let f: [0,1] — [0,00] be a continuous function which is strictly decreasing
and vanishes at 1.
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Definition 1.2 ([6]). The pair (X,F) which has the properties (PMO0)-
(PM2) is called a probabilistic f-metric structure iff

Vt>0 Js>0 such that [fonz(s)<s, fony(s)<s} = foFu(t)<t.

Remark 1.3. If (X, F) is a probabilistic f-metric structure then the family
W]-‘f::{Wéf}Ge(O7f(0)), where W/ :={(z,y)| Fzy(e) > f~1(e)}, is a uniformity
base which generates a uniformity on X called Ur [6, p.46, Th. 1.3.39].

We define the t-norm generated by f by:
Ty(a,b) = fV(f(a) + £(b))
where f(=Y is the quasi-inverse of f, namely

Nz x
{1 s

It is well known and easy to see that fo f(-1(z) < z, Yz € [0,00] and f(-1) o
f(a) =a,Vae€l0,1].

In the next section of this note we’ll construct generalized metrics on Menger
spaces, related to some ideas which have appeared in [11] and [4], and using some
properties of the probabilistic f-metric structures.

In the last section, using this generalized metrics, we’ll obtain a fixed point
theorem on complete Menger spaces and we’ll give some consequences. We'll give
also, a fixed point alternative in complete Menger spaces.

The notations and the notions not given here are standard and follow [1], [8].

2 — A generalized metric on probabilistic f-metric structures

Let f: [0,1] — [0, 1] a continuous and strictly decreasing function, such that

F(1) =0.

Lemma 2.1. We consider a Menger space (X,F,T), where T > Ty. For
each k > 0 let us define

[ee] Fx
di(x,y) ::supsk/foy(t)dt
>0 p 13
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and
1

pr(,y) = (di(z,y)) ™

Then py, is a generalized metric on X.
Proof: It is clear that py is symmetric and pg(z,z) = 0.

F;
If pg(z,y) = 0, then for each s > 0, /foy()

F
/MdU—O, Vt>s>0.
u

fome(U) foFay(t)
U t

dt = 0 which implies

Since > 0 for each u € (s,t), then

0—/fo d >W(t—s), Vt>s>0,

which implies f o F,,(t) =0, V¢ > 0. Since f is a stictly decreasing function and
f(1) =0 then F,y(t) =1, Vt >0, that is . = y.
Because (X, F,T) is a Menger space and T' > T, we have

Fpy(u4v) > T(Fm(u),Fzy(v)> > Tf(sz(u),Fzy(v)), Vz,y,2€ X, Yu,v e R.
Let us take u = at and v = (3t, where o, 5 € (0,1), « + 3 = 1. Then

Fwy(t) > f(fl) (fosz(ozt) +fOFzy(ﬂt)) )
Ve,y,z€ X, V>0, Va,5€(0,1), a+p=1,

and so

foFElt)<(fo £ (f o Fy.(at) + fo Fzy(ﬁt)) < foFy.(at)+ foF,(Bt),
Ve,yz€ X, Vt>0, Va,f€(0,1), a+p=1.

We divide the both members of inequality by ¢, integrate from s to ms and
multiply with s*, where s > 0, m > 1, k > 0. We obtain

sk/wdtésk/wdt+sk/wdt, Vm>1, Vs>0.
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We take at = u, respectively Gt = v in the first, respectively, the second term
of the right side of the previous inequality and it follows that:

/foFﬁy dt< (as) / foFxZ )d + / fony
F,. Fy(
< T(QS)k/ fO ( )d _|_ - /fo y
Q@ U
1 F:vz
< —ksup as) /fo du—l— 7 Sup (Bs) /fo
ar s>0 s>0

Vm>1, Vs>0.

By making m — oo and taking sup in the left side of the previous inequality
s>0
and by observing that

/ f o sz o / f © F:pz
sup(as) du sup s
s>0 5>0

and

F. F.
sup(s) /fo =y dv =sups /fo =y

s>0 s>0

we obtain that

(e.)
Fo,(t F
supsk/fofxy()dt< sup s /fo 2

s>0 ak >0

/fony
—E Sup s

s>0

(2.1)

Let us denote

azsupsk/fOFEy(t)dt

s>0

_ /fOsz
——sups ,

s>0

/foFZy
—Sups

s>0
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If b = 0o or/and ¢ = oo it follows that pg(z, z) = bEFT = o0 or/and p(z,y) =
1
¢F+T = oo and it is obvious that pg(z,y) < oo = pi(x, 2) + pr(z,y).

We suppose that b < co and ¢ < co. The inequality (2.1) becomes:
b c b c

<2 0L ¢ yae(ol
a_ak+ﬁk Oék—"_(l—@)k’ ac(0,1),
e : b c
which 1mphes a S Oégf;l(g + m), Va e (0, 1)
b
We define the function g: (0,1) — Ry, g(a) = oF + ﬁ. We observe
prit
that ¢ has a minimum in g = ——— (¢'(ap) = 0).
bEHT 4 cFHL
Therefore
C 1 1

and it is clear that
pr(,y) = aFT < DFF 4 P = py(a,2) + pi(z,y) - n
Lemma 2.2. Let (X, F,T) be a Menger space with T > Ty. ThenUr C U,, .

Proof: It can be shown that supT'(a,a) > supTy(a,a) = 1 and, using
a<l a<l
[6, p.41, Th. 1.3.22] we obtain that (X, F) is a probabilistic f-metric structure.

By using Remark 1.3 it suffices to show that
(2.2) Vee (0,f(0)), Fé(e): prlz,y) <d = Fypyle) > e .
We observe that

oo

Fp,(t

pr(x,y) <§ — supsk/fomy()alt<5k'H
s>0 A t

T folF,,(t
— Vs>0, (s’“/folty()dzt<5"“+1
— Vm>1, Vs>0, s"?/foFf”(t)dt<6k“.

We take s fixed, s = % and m = 2. It follows

(f)k/fony(t) dt < sk
2 / t
3
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fony(t) > fony(E).
t - €

(;)’fjfoz?y(e) it < (;)kjfof;zy(t) gt < o+

k+1 foF
which implies (%) ny(e)

Butt <e= F,y(t) < Fypy(e) = foFyy(t) > foFyy(e) =
Therefore

<"1, If we choose (52% we have foFy,(e)<e,
€

which shows that the relation (2.2) is satisfied for d(¢) = —. n

N

Lemma 2.3. If (X,F,T) is a complete Menger space under T" > T, then
(X, px) is complete.

Proof: We suppose that (z,) is a pg-Cauchy sequence, that is,
(2.3) Ve>0, dnple): Vn>ngle), Vp>0 = p(an, Tnyp) <€

From Lemma 2.2 we have that (x,,) is a Ur-Cauchy sequence. Since (X, F,T)
is a complete Menger space, we obtain that (z,) is a Ur-convergent sequence,
that is

Jxg € X such that Ve >0, Ini(e): YVn>ni(e) = Fpp(e) > F1(e) .

It remains to show that (z,) is a pg-convergent sequence. From (2.3) we obtain
that

e > lim p(xy,Znyp) = lim sups /f an” )dt >

p—o0 P—0 s>0

> lim s* /f x"%“’ ®) dt, VYn>ng(e), Vs>0.

p—00

By using the Fatou’s lemma and the continuity of f we obtain:

[oe)
F
¢> lim s" /f z"x"ﬂ' )dt>s limfox”—gwp()dt:

pP—00 p—0o0 13
s
0o

1
:.sk/;f<hm Py (D) dt, Y1 >no(e), Vs>0.

s
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It can be proved that lim Fy ., (t) = Fy,4,(t) (actually we "Il use only the fact
p—oo
that lim F;
=%

Zntnip(t) = Fr,z(t)) and the previous relation becomes

T foFy .t
eZsk/fof"O()dt, Vn >ng(e), Vs>0,

which implies

o
F, t
Pk (Zn, o) :sggsk/fo%"a”o()dtge, Vn > ng(e) .
S
S

Thus the lemma is proved. m

3 — A fixed point theorem and some consequences

It is well-known that a mapping A: X — X (where (X,F) is a PM-space)
is called s-contraction if there exists L € (0, 1) such that Faza,(Lt) > Fyy(t) for
all t € R, for all z,y € X.

Lemma 3.1. If (X,F) is a probabilistic f-metric structure and A is an
s-contraction then A is, for each k > 0, a strict contraction in (X, pg).

Proof: Since Fayay(Lt) > Fyy(t) for some L € (0,1), and every real ¢ then
we have

oo oo
t t
S S
If we make Lt = u in the left side, then we obtain

;(SL)k/fOFAszW)) du < sk/ fOFZ?y(t)) dt
sL S

T FoFylt
gsupsk/foty())dt:dk(x,y), Vs>0.
s>0

Therefore, if we take sup in the first member of the above inequality, then we
s>0

1
obtain that Tk di(Azx, Ay) < di(z,y) and it is clear that
(3.1) pr(Az, Ay) < Ly pp(z,y) where L = LF ¢ (0,1)

and the lemma is proved. n
Now, we can prove our main result:
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Theorem 3.2. Let (X,F,T) be a complete Menger space with T > Tf.
If there exists some k > 0 such that for every pair (z,y) € X one has

0o P
(3.2) sup sk/foy(t) dt < oo,
>0 t

then every s-contraction on X has a unique fixed point.

Proof: The relation (3.2) shows that pj is a metric. From Lemma 3.1 we
obtain that A is a strict contraction in (X, pr). Let x € X be an arbitrary
point. From (3.1) we have that (A'z) is a U,, -Cauchy sequence. By using the
Lemma 2.3, we observe that (A'r) is a pg-convergent sequence to xg. It is easy
to see that xg is the unique fixed point of A. u

Corollary 3.3 (cf. [10]). Let (X,F,T) be a complete Menger space under
T > Ty, where f(0) < oo and suppose that for each pair (z,y) € X? there exists
tyy for which Fy,(ty,) = 1. Then every s-contraction on X has a unique fixed
point.

Proof: Since for s <t,, we have

try

0<s/f Fay(t) 4y — /foF“fy t <

< sk /fo#’”y(s) dt < s* £(0) (In(tay) — In(s))

ny( )

and for s > t,, we have s / fo dt = 0 then (3.2) holds and we can apply

the theorem. m

Corollary 3.4 ([6]). Let (X,F,T) be a complete Menger space with T' > T
such that for some k > 0 and every pair (z,y) € X one has

(3.3) sup sk/ixy(t) dt < oo .
s>0 s t

Then every s-contraction on X has a unique fixed point.

Proof: We take f(t) = fi(t) =1 —t and we apply the theorem. m



TARDIFF’S FIXED POINT THEOREM ON MENGER SPACES 439

Corollary 3.5. Let (X,F,T) be a complete Menger space under T' > T}
and suppose that there exists k > 0 such that every Fy, has a finite k-moment.
Then every s-contraction on X has a unique fixed point.

[e.o]

Proof: It is well-known that (uk)';y = /tk*1(1 — F,y(t)) dt < oo. Therefore
0

sk/%wy(t)dt < /tk %”(t) dt = /t’H(l — Fyy(t)) dt < (up)E, < o0

S S S
and the corollary follows. m

Remark 3.6. For k = 1 it can be obtained a known result (see [11, Corollary
2.2]).

Generally from the fixed point alternative ([3]) we obtain the following

Theorem 3.7. Let (X,F,T) be a complete Menger space under T' > Ty and
A an s-contraction. Then for each x € X either,

i) there is some k > 0 such that (A'x) is py-convergent to the unique fixed
point of A, or

ii) for all k > 0, for all n € N and for all M > 0 there exists s:=s(k,n, M)
such that

o0
Fn n t
sk/fo Ag;A“z()dt>M'
S

Proof: We suppose that ii) is not true:

o0
F n n t
3k>0, 3ng>0, IM >0, Vs>0 such that s’f/fo A OﬂzA O“x()dth.
S

So, we have for some k > 0, py(A™0x, A" F1z) < co. It follows that

p—1
Vp >0, pk(Anoa:?A"O“’:c) < Zpk(A”0+p$,A”°+p+lx) <
=0

< (1 + L1+ Lo+ ...+ Llf—l) pk(Anol', An0+1a}) =

1 _LIIJ no no+1

< pk(Anox’An0+1x)
- 1-14

< oo,
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k
where Lq:=L%71 < 1. Therefore, the sequence of successive approximations,
(A'z) is a pp-Cauchy sequence. From Lemma 2.3 we obtain that (A'z) is
pr-convergent and it is easy to see that the limit of the sequence (A'z) is the

unique fixed point of A. m

[7]
[8]
[9]
[10]
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