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ON AN ANALOGUE OF COMPLETELY
MULTIPLICATIVE FUNCTIONS

P. Haukkanen and P. Ruokonen

Abstract: We introduce exponentially A-multiplicative functions which serve as an

analogue of completely multiplicative functions in the setting of exponential A-convolu-

tion, where A is Narkiewicz’s regular convolution. We show that exponentially A-multi-

plicative functions under exponential A-convolution possess properties similar to the

familiar properties of completely multiplicative functions under the Dirichlet convolution.

1 – Introduction

The Dirichlet convolution of two arithmetical functions f and g is defined by

(f ∗ g)(n) =
∑

d|n

f(d) g(n/d) .

There is a large number of analogues and generalizations of the Dirichlet convo-

lution in the literature (for general accounts, see e.g. [7], [12], [14]). One such

analogue is the exponential A-convolution. In 1972, Subbarao [14] defined the

exponential convolution by

(1.1)















(f ¯ g)(1) = f(1) g(1) ,

(f ¯ g)(n) =
∑

d1|n1

∑

d2|n2

· · ·
∑

du|nu

f(pd1
1 pd2

2 · · · p
du
u ) g(p

n1/d1

1 p
n2/d2

2 · · · pnu/du
u ) ,

where n (> 1) has the canonical factorization

(1.2) n = pn1
1 pn2

2 · · · pnu
u , n1, n2, ..., nu > 0 .
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The exponential A-convolution was introduced in 1977 independently by Hanu-

manthachari [6] and Shindo [10] (see also [14, §8]). It is obtained by generalizing

the exponential convolution using the idea of Narkiewicz’s [8] A-convolution (for

definition, see Section 2).

An arithmetical function f is said to be multiplicative if f(1) = 1 and

(1.3) f(mn) = f(m) f(n) ,

whenever (m,n) = 1. There are several analogues and generalizations of multi-

plicativity in the literature, see e.g. [7], [12], [14]. An analogue closely related to

exponential convolution is the concept of exponentially multiplicative functions.

Let γ(n) be the product of distinct prime divisors of n with γ(1) = 1. We define

a multiplicative function f to be exponentially multiplicative if f(γ(n)) 6= 0 for

each positive integer n and

(1.4) f(pn) = f(pd) f(pn/d)

for all primes p and all positive integers d and n with d|n and (d, n/d) = 1. It

is easy to see that if f is exponentially multiplicative, then f(γ(n)) = 1 for each

positive integer n.

A multiplicative function is said to be completely multiplicative if (1.3) holds

for all m and n. It is well known that completely multiplicative functions possess

a large number of properties with respect to the Dirichlet convolution (see [1], [2,

Chapter 2], [3], [7, Chapter 1], [11], [12]).

Yocom [15] defined A-multiplicative functions as an analogue of completely

multiplicative functions in the setting of Narkiewicz’s A-convolution and showed

that A-multiplicative functions under A-convolution share many properties with

completely multiplicative functions under Dirichlet convolution.

In this paper we define an analogue of completely multiplicative functions in

the setting of exponential A-convolution. We refer to these functions as exponen-

tially A-multiplicative functions (for definition, see Section 3). We derive a large

number of properties for exponentially A-multiplicative functions. These proper-

ties are similar in character to the properties of completely multiplicative func-

tions. In Section 4 we present characterizations of exponentially A-multiplicative

functions which may be referred to as characterizations of Apostol [1] type. In

Section 5 we introduce an analogue of Rearick’s [9] logarithm transformation and

give a characterization of exponentially A-multiplicative functions involving this

transformation (for a characterization in the classical case, see Carroll [5]). In

Section 6 we apply the logarithm transformation in finding solutions for the func-

tional equations f ◦f ◦· · ·◦f = g and f ◦f ◦· · ·◦f = fg, where ◦ is the exponential
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A-convolution. Note that Hanumanthachari [6] studied the functional equation

f ◦ f ◦ · · · ◦ f = g. This type of functional equation has also been studied under

other convolutions in the literature (see e.g. [4], [13]).

We assume that the reader is familiar with the elements of arithmetical func-

tions. General background material on arithmetical functions can be found in

most texts on number theory and more specialized material in the books by

Apostol [2], McCarthy [7] and Sivaramakrishnan [12].

2 – Exponential A-convolution

Let A be a mapping from the set N of positive integers to the set of subsets

of N such that for each n ∈ N, A(n) is a subset of the set of the positive divisors

of n. Then the A-convolution of two arithmetical functions f and g is defined by

(2.1) (f ∗A g)(n) =
∑

d∈A(n)

f(d) g(n/d) .

Narkiewicz [8] defined an A-convolution to be regular if

a) the set of arithmetical functions forms a commutative ring with respect to

the ordinary addition and the A-convolution,

b) the A-convolution of multiplicative functions is multiplicative,

c) the function E, where E(n) = 1 for all n, has an inverse µA with respect

to the A-convolution, and µA(n) = 0 or −1 whenever n is a prime power.

It can be proved (cf. [8]) that an A-convolution is regular if, and only if,

i) A(mn) = {de : d ∈ A(m), e ∈ A(n)} whenever (m,n) = 1,

ii) for each prime power pa > 1 there exists a divisor t of a such that

A(pa) = {1, pt, p2t, ..., prt} ,

where rt = a, and

A(pit) = {1, pt, p2t, ..., pit} , 0 ≤ i ≤ r .

The divisor t of a is said to be the A-type of pa, and it is denoted by

t = tA(p
a).

For example, if D(n) is the set of all positive divisors of n and U(n) is the set

of unitary divisors of n (that is, U(n) = {d > 0 : d|n, (d, n/d) = 1}), then the

D-convolution and the U -convolution are regular. Note that D-convolution and

U -convolution are the classical Dirichlet convolution and the unitary convolution

(see e.g. [7, Chapter 4], [12, Section I.2]), respectively.
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We assume throughout this paper that A-convolution is an arbitrary but fixed

regular A-convolution.

A positive integer n is said to be A-primitive if A(n) = {1, n}. The generalized

Möbius function µA is the multiplicative function given by

µA(p
a) =

{

−1 if pa (> 1) is A-primitive,
0 if pa is non-A-primitive .

The A-analogue τA(n) of the divisor function is defined as the number of

A-divisors of n, that is τA = E ∗A E. The A-analogue ϕA(n) of Euler’s func-

tion is given by ϕA(n) = (N ∗A µA)(n), where N(n) = n for all n. For further

information on Narkiewicz’s A-convolution we refer to [7, Chapter 4] and [8].

The exponential A-convolution of two arithmetical functions f and g is defined

by

(2.2)















(f ◦ g)(1) = f(1) g(1) ,

(f ◦ g)(n) =
∑

d1∈A(n1)

· · ·
∑

du∈A(nu)

f(pd1
1 · · · p

du
u ) g(p

n1/d1

1 · · · pnu/du
u ) ,

where n (> 1) has the canonical factorization (1.2). This definition is due to

Hanumanthachari [6] and Shindo [10] (see also [14, §8]). In the sense of the

notation ∗A it would be natural to denote the exponential A-convolution by the

symbol ¯A. We, however, adopt the brief notation ◦ by Hanumanthachari [6].

It is known [6] that the set of all arithmetical functions forms a commutative

semigroup under the exponential A-convolution with identity |µ| where µ is the

Möbius function. Units are functions f for which f(γ(n)) 6= 0 for each positive

integer n. The condition f(γ(n)) 6= 0 for each positive integer n means that

f(1) 6= 0 and f(p1 p2 · · · pu) 6= 0 whenever p1, p2, ..., pu are distinct primes. The

inverse of f under the exponential A-convolution is denoted by f−1, that is,

f ◦ f−1 = f−1 ◦ f = |µ|.

Further, it can be verified that the set of all exponentially multiplicative func-

tions forms an Abelian group under the exponential A-convolution (cf. [6], Lem-

mas 1.1–1.3). For example, the inverse of the function E is given by E−1 = µ
(e)
A ,

where µ
(e)
A is the exponential analogue of the Möbius function defined by

(2.3)







µ
(e)
A (1) = 1 ,

µ
(e)
A (n) = µA(n1) · · ·µA(nu) ,

where n (> 1) has the canonical factorization (1.2). Clearly, µ
(e)
A is a multiplica-

tive function and also exponentially multiplicative.
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3 – Exponentially A-multiplicative functions

Definition. An arithmetical function f is said to be exponentially A-multi-

plicative if f(γ(n)) 6= 0 for each positive integer n and (1.4) holds for all primes

p and positive integers d and n with d ∈ A(n).

Note that exponentially U -multiplicative functions are exponentially multi-

plicative functions, and exponentially D-multiplicative functions are functions

for which (1.4) holds for all d and n with d|n. Exponentially A-multiplicative

functions have not previously been defined in the literature.

The definition of exponentially multiplicative functions (or exponentially

U -multiplicative functions) is attributable to Subbarao [14]. It should be noted

that Subbarao does not require that each exponentially multiplicative function f

possess the property f(γ(n)) 6= 0 for all positive integers n. Thus the exponen-

tially multiplicative functions of this paper are unit exponentially multiplicative

functions of Subbarao. However, since we use the inverse under the exponential

A-convolution in our characterizations of exponentially A-multiplicative functions

and transformations of arithmetical functions, it is practical to assume that expo-

nentially multiplicative functions are units. Further, multiplicative-like functions

are often defined to be units under the related convolution in the literature.

We are now in a position to present the properties of exponentially A-multipli-

cative functions mentioned in the introduction.

4 – Characterizations of the Apostol type

In this section we derive characterizations of exponentially A-multiplicative

functions (see Theorems 4.1–4.11 below). Most of these characterizations are

similar to those given for the classical completely multiplicative functions by

Apostol and others (see [1], [2], [3], [7, Chapter 1], [11]) and two characteriza-

tions (Theorems 4.7 and 4.8) are similar to those introduced by Yocom [15] for

A-multiplicative functions. All these characterizations (except for Theorem 4.1)

are related to the exponential A-convolution. In the proofs of the characteriza-

tions we use the following observation. If f is an exponentially multiplicative

function, then

f(pn) = f(pq
n1
1 ···qnu

u ) =
u
∏

i=1

f(pq
ni
i ) .

Thus it is enough to consider f at pqn
, where p and q are primes and n a positive

integer. For the sake of brevity we omit the proofs of Theorems 4.1–4.7 and 4.10.
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Theorem 4.1. An exponentially multiplicative function f is exponentially

A-multiplicative if, and only if,

(4.1) f(pqn
) = f(pqt

)n/t

for all primes p and q and positive integers n, where t = tA(q
n).

Theorem 4.2. An exponentially multiplicative function f is exponentially

A-multiplicative if, and only if,

(4.2) f−1 = µ
(e)
A f ,

where µ
(e)
A is as given in (2.3).

Theorem 4.3. An exponentially multiplicative function f is exponentially

A-multiplicative if, and only if,

(4.3) f−1(pqn
) = 0

for all primes p and all non-A-primitives qn.

Theorem 4.4. An exponentially multiplicative function f is exponentially

A-multiplicative if, and only if,

(4.4) f(g ◦ h) = fg ◦ fh

for all arithmetical functions g and h.

Theorem 4.5. An exponentially multiplicative function f is exponentially

A-multiplicative if, and only if,

(4.5) (fg)−1 = fg−1

for all unit functions g.

Theorem 4.6. An exponentially multiplicative function f is exponentially

A-multiplicative if, and only if,

(4.6) f τ
(e)
A = f ◦ f ,

where τ
(e)
A is the multiplicative function defined by τ

(e)
A (pn) = τA(n) for all prime

powers pn (> 1).
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Theorem 4.7. An exponentially multiplicative function f is exponentially

A-multiplicative if, and only if,

(4.7) f(g ◦ g) = fg ◦ fg

for some exponentially A-multiplicative function g which is never zero.

Theorem 4.8. An exponentially multiplicative function f is exponentially

A-multiplicative if, and only if,

(4.8) f(E ◦ g) = fE ◦ fg

for some arithmetical function g which is strictly positive.

Proof: If f is exponentially A-multiplicative, then (4.8) is clear by Theo-

rem 4.4.

Conversely, assume that (4.8) holds for some arithmetical function g which is

strictly positive. We prove that (4.1) holds. We denote A(qn) = {1, qt, q2t, ..., qrt},

where rt = n, and proceed by induction on τ
(e)
A (pqn

), the number of elements in

A(qn). If τ
(e)
A (pqn

) = 2, the result is clear.

Suppose that equation f(pqn
) = f(pqt

)n/t holds for all τ
(e)
A (pqn

) with 2 ≤

τ
(e)
A (pqn

) < r + 1. If τ
(e)
A (pqn

) = r + 1, then by (4.8) and induction hypothesis

f(pqrt
)

∑

d∈A(qrt)

g(pqrt/d) =
∑

d∈A(qrt)

f(pd) f(pqrt/d) g(pqrt/d)

= f(pqrt
)
[

g(pqrt
) + g(p)

]

+ f(pqt
)r

∑

d∈A(qrt)

d6=1,qrt

g(pd)

and thus

f(pqrt
)

∑

d∈A(qrt)

d6=1,qrt

g(pd) = f(pqt
)r

∑

d∈A(qrt)

d6=1,qrt

g(pd) .

Since g is strictly positive, the sum in above equation is always nonzero. Thus

f(pqrt
) = f(pt)r. This completes the proof.

Theorem 4.9. Suppose that g and G are two arithmetical functions such

that g = G ◦ µ
(e)
A . An exponentially multiplicative function f is exponentially

A-multiplicative if, and only if,

(4.9) fG ◦ f−1 = fg
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for some G satisfying G(p) = 1 and G(pqn
) 6= 1 for all prime numbers p and q

and positive integers n.

Proof: If f is exponentially A-multiplicative, we get by Theorems 4.2 and

4.4 the equations

fG ◦ f−1 = fG ◦ fµ
(e)
A = f(G ◦ µ

(e)
A ) = fg .

Conversely, we show that if (4.9) holds, then (4.3) holds or f−1(pqn
) = 0 for

all non-A-primitive qn. Let A(qn) = {1, qt, q2t, ..., qrt} and proceed by induction

on the number of elements of A(qn). If qn = q2t, where qt is A-primitive, the

equation (4.9) gives

f−1(pq2t
) + f(pqt

)G(pqt
) f−1(pqt

) + f(pq2t
)G(pq2t

) = f(pq2t
) g(pq2t

) .

Using g = G ◦ µ
(e)
A this becomes

f−1(pq2t
) = G(pqt

)
[

−f(pq2t
)− f(pqt

) f−1(pqt
)
]

.

By equation (f ◦f−1)(pq2t
) = |µ(pq2t

)| = 0 the expression in the brackets reduces

to f−1(pq2t
). Since G(pqt

) 6= 1, we obtain f−1(pq2t
) = 0.

Suppose that f−1(pqjt
) = 0 for all j with 2 ≤ j < r, where qt is A-primitive.

If qn = qrt, then, by (4.9)

f(pqrt
) g(pqrt

) = f−1(pqrt
) + f(pq(r−1)t

)G(pq(r−1)t
) f−1(pqt

) + f(pqrt
)G(pqrt

) .

On the other hand, we have

f(pqrt
) g(pqrt

) = f(pqrt
)
[

−G(pq(r−1)t
) +G(pqrt

)
]

.

Thus combining the above results we get

f−1(pqrt
) = G(pq(r−1)t

)
[

−f(pq(r−1)t
) f−1(pqt

)− f(pqrt
)
]

.

By equation (f ◦f−1)(pqrt
) = |µ(pqrt

)| = 0 the expression in the brackets reduces

to f−1(pqrt
). Since G(pq(r−1)t

) 6= 1, we obtain

f−1(pqrt
) = 0 .

This completes the proof.
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Theorem 4.10. An exponentially multiplicative function f is exponentially

A-multiplicative if, and only if,

(4.10)
∑

d∈A(n)

f(pd) f−1(pn/d) d = f(pn)ϕ
(e)
A (pn) ,

where ϕ
(e)
A is the multiplicative function defined by ϕ

(e)
A (pn) = ϕA(n) for all prime

powers pn (> 1).

Theorem 4.11. An exponentially multiplicative function f is exponentially

A-multiplicative if, and only if,

(4.11) f(ϕ
(e)
A ◦ E) = f ϕ

(e)
A ◦ fE .

Proof: The result is clear by Theorem 4.8, since ϕ
(e)
A is a strictly positive

arithmetical function.

5 – Transformations

In this section we define Rearick’s [9] logarithm transformation in the setting

of exponential A-convolution and introduce its basic properties. We also give a

characterization of exponentially A-multiplicative functions in terms of this trans-

formation. The characterization is an analogue of Carroll’s [5] characterization

for completely multiplicative functions.

Let F1 denote the set of arithmetical functions f such that f(γ(n)) = 1 for

all positive integers n, and let F0 denote the set of arithmetical functions f

such that f(γ(n)) = 0 for all positive integers n. Let P denote the arithmetical

function defined by P (1) = 1 and P (n) = n1 n2 · · ·nu for n (> 1) having the

canonical factorization (1.2). For each arithmetical function f denote f ′(n) =

f(n) logP (n).

Definition. The logarithm transformation is a mapping L : F1 → F0 defined

by

(5.1) Lf = f ′ ◦ f−1 .

Remark 5.1. It is easy to verify that

(Lf)(n) =

{

0 if γ(n) = n,

(f ′ ◦ f−1)(n) otherwise .

Theorem 5.1. The logarithm transformation is a one-to-one mapping of F1

onto F0.
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Proof: Let g ∈ F0. We proceed inductively to define f(n) uniquely such

that Lf = g. Firstly, we define f(γ(n)) = 1 for all n. Secondly, we assume that

the values f(k) are defined for k < n (n 6= γ(n)). The values f−1(k) are obtained

from

(f ◦ f−1)(k) = |µ|(k) ,

and thus f(n) can be found uniquely from

(f ′ ◦ f−1)(n) = g(n) .

This completes the proof.

Remark 5.2. By Theorem 5.1 we can define a transformation E of F0 onto

F1 by

E(Lf) = f .

The transformation E may be referred to as the exponential transformation.

Theorem 5.2. For f, g ∈ F1,

L(f ◦ g) = Lf + Lg .

Proof: We have (f ◦ g)′ = f ′ ◦ g + f ◦ g′ and consequently

L(f ◦ g) = (f ′ ◦ g + f ◦ g′) ◦ (f ◦ g)−1 = f ′ ◦ f−1 + g′ ◦ g−1 = Lf + Lg .

Corollary. The groups (F1, ◦) and (F0,+) are isomorphic.

Theorem 5.3. If g is an exponentially A-multiplicative function, then

L(fg) = g Lf

for all f ∈ F1.

Proof: By Theorems 4.4 and 4.5,

L(fg) = (fg)′ ◦ (fg)−1 = f ′g ◦ f−1g = (f ′ ◦ f−1) g = g Lf .

Lemma 5.1. A multiplicative function f is exponentially multiplicative if,

and only if,

(5.2) (Lf)(pa) = 0 ,

for all primes p, whenever a is not a positive power of prime.

Proof: Assume that f is exponentially multiplicative. If a = 1, then (5.2) is

clear. Suppose that a is not a positive prime power. Then a is of the form mn,
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where m,n > 1 and (m,n) = 1. Thus

(Lf)(pmn) =
∑

d∈A(mn)

f(pd) f−1(pmn/d) log d

=
∑

d1∈A(m)

∑

d2∈A(n)

f(pd1d2) f−1(pmn/d1d2) log(d1d2)

=
∑

d1∈A(m)

∑

d2∈A(n)

f(pd1) f(pd2) f−1(pm/d1) f−1(pn/d2)[log d1 + log d2]

=
∑

d1∈A(m)

f(pd1) f−1(pm/d1) log d1

∑

d2∈A(n)

f(pd2) f−1(pn/d2)

+
∑

d2∈A(n)

f(pd2) f−1(pn/d2) log d2

∑

d1∈A(m)

f(pd1) f−1(pm/d1)

= (Lf)(pm) |µ(pn)|+ (Lf)(pn) |µ(pm)| = 0 .

Conversely, suppose that (5.2) holds. Define g(1) = 1 and

g(pa1
1 pa2

2 · · · p
ar
r ) =

r
∏

i=1

∏

qk||ai

f(pqk

i )

for n = pa1
1 pa2

2 · · · p
ar
r > 1, where a1, ..., ar > 0. The function g is exponentially

multiplicative and we shall show that g = f . Since g and f are multiplicative, it

is enough to proof that f = g at prime powers pa.

If a = 1, then g(p) = f(p) = 1 and (Lf)(p) = (Lg)(p) = 0.

Suppose that a = qn = qrt > 1. Then g(pqn
) =

∏

qk||qn f(pqk
) = f(pqn

). By

the equation f ◦ f−1 = |µ|, the values of f−1(pqrt
) depend only on the values of

f(pqit
), where 0 ≤ i ≤ r. Therefore also f−1(pqn

) = g−1(pqn
). Thus from the

definition of L it follows that (Lf)(pqn
) = (Lg)(pqn

).

Suppose that a is not a positive prime power. Since g is exponentially mul-

tiplicative, the first part of this proof shows that then (Lg)(pa) = 0 and by the

hypothesis (5.2) also (Lf)(pa) = 0. Therefore Lf and Lg agree for all prime

powers, so f = g at prime powers pa by Theorem 5.1. This completes the proof.

Lemma 5.2. Let p and q be primes and n a positive integer. Suppose that

f is an exponentially multiplicative function such that

(5.3) f(pqkt
) = f(pqt

)k

for all k with 2 ≤ k ≤ n/t and t = tA(q
n). Then

(5.4) f−1(pqkt
) = 0

for all k with 2 ≤ k ≤ n/t and t = tA(q
n).
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Lemma 5.2 is similar to the first part of Theorem 4.2. Therefore we omit the

proof.

Theorem 5.4. An exponentially multiplicative function f is exponentially

A-multiplicative if, and only if,

(5.5) (Lf)(pqn
) = t f(pqt

)n/t log q

for all primes p and q and positive integers n, where t = tA(q
n).

Proof: Let A(qn) = {1, qt, q2t, ..., qrt}. Suppose that f is exponentially

A-multiplicative. Thus (4.2) and (4.1) hold. Further, since µ
(e)
A (pqkt

) 6= 0 only if

k = 0 or k = 1, we get

(Lf)(pqn
) =

∑

d∈A(qn)

f(pd) f(pqrt/d)µ
(e)
A (pqrt/d) log d

= f(pqrt
)
∑

d∈A(qn)

µ
(e)
A (pqrt/d) log d

= f(pqt
)r
[

− log q(r−1)t + log qrt
]

= f(pqt
)r t log q .

Conversely, suppose that (5.5) holds and prove that then (4.1) holds. We

proceed by induction on the number of elements of the set A(qn). For qn = q2t,

we get by definition of L

(Lf)(pq2t
) =

∑

d∈A(q2t)

f(pd) f−1(pq2t/d) log d

= −t f(pqt
)2 log q + 2t f(pq2t

) log q .

By (5.5),

(Lf)(pq2t
) = t f(pqt

)2 log q .

Combining these two results we obtain

2t f(pq2t
) log q = 2t f(pqt

)2 log q

and consequently

f(pq2t
) = f(pqt

)2 .

Now, suppose that (4.1) holds for all qn = qkt with 2 ≤ k ≤ r−1. By Lemma 5.2

f−1(pqkt
) = 0 for all k with 2 ≤ k ≤ r − 1. By definition of L and induction
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hypothesis we get

(Lf)(pqrt
) =

∑

d∈A(qrt)

f(pd) f−1(pqrt/d
) log d

= f(pq(r−1)t
) f−1(pqt

) log q(r−1)t + f(pqrt
) log qrt

= −(r − 1) t f(pqt
)r log q + r t f(pqrt

) log q .

By (5.5),

(Lf)(pqrt
) = t f(pqt

)r log q .

Thus

r t f(pqrt
) log q = r t f(pqt

)r log q

and consequently

f(pqrt
) = f(pqt

)r .

Therefore (4.1) holds for qn = qrt. This completes the proof.

6 – Applications to functional equations

In this section we apply the logarithm transformation and its basic properties

to obtain solution for the functional equations f r = g and f r = fg, where f r is

the rth power of f under the exponential A-convolution, that is,

f r = f ◦ f ◦ · · · ◦ f (r times) .

Lemma 6.1. Suppose that f ∈ F1. Then f is exponentially multiplicative

if, and only if, f r is exponentially multiplicative.

Theorem 6.1. Let r be a positive integer and let g ∈ F1. Then the equation

f r = g has a unique solution f ∈ F1 given by

(6.1) f = E

(

1

r
Lg

)

.

The solution is exponentially multiplicative if, and only if, g is exponentially

multiplicative.

Proof: By Theorem 5.2, we have r Lf = Lg. Thus, by Remark 5.2, we

obtain (6.1). The result for exponentially multiplicative functions follows from

Lemma 6.1.
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Theorem 6.2. Let r be a positive integer, and let g be an exponentially

A-multiplicative function such that g(n) 6= r for all n with n 6= γ(n). Then the

functional equation f r = fg has exactly one solution in F1, namely f = |µ|.

Proof: By Theorems 5.2 and 5.3, we have r Lf = g Lf . Thus Lf ≡ 0; hence

f = |µ|. This completes the proof of Theorem 6.2.
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