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ON AN ANALOGUE OF COMPLETELY
MULTIPLICATIVE FUNCTIONS

P. HAUKKANEN and P. RUOKONEN

Abstract: We introduce exponentially A-multiplicative functions which serve as an
analogue of completely multiplicative functions in the setting of exponential A-convolu-
tion, where A is Narkiewicz’s regular convolution. We show that exponentially A-multi-
plicative functions under exponential A-convolution possess properties similar to the

familiar properties of completely multiplicative functions under the Dirichlet convolution.

1 — Introduction

The Dirichlet convolution of two arithmetical functions f and g is defined by
(fxg)(n) =" f(d) g(n/d)
dln

There is a large number of analogues and generalizations of the Dirichlet convo-
lution in the literature (for general accounts, see e.g. [7], [12], [14]). One such
analogue is the exponential A-convolution. In 1972, Subbarao [14] defined the
exponential convolution by

(fog)=F1)g(1),
DY Fogm =3 S Y R g g(prt ey

d1|n1 dg‘nz d |Tbu

where n (> 1) has the canonical factorization

(1.2) n=ptpy? - pit, ny,ng, .,y >0
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The exponential A-convolution was introduced in 1977 independently by Hanu-
manthachari [6] and Shindo [10] (see also [14, §8]). It is obtained by generalizing
the exponential convolution using the idea of Narkiewicz’s [8] A-convolution (for
definition, see Section 2).

An arithmetical function f is said to be multiplicative if f(1) =1 and

(1.3) f(mn) = f(m) f(n)

whenever (m,n) = 1. There are several analogues and generalizations of multi-
plicativity in the literature, see e.g. [7], [12], [14]. An analogue closely related to
exponential convolution is the concept of exponentially multiplicative functions.
Let y(n) be the product of distinct prime divisors of n with (1) = 1. We define
a multiplicative function f to be exponentially multiplicative if f(y(n)) # 0 for
each positive integer n and

(1.4) F®") = f%) f(™?)

for all primes p and all positive integers d and n with d|n and (d,n/d) = 1. It
is easy to see that if f is exponentially multiplicative, then f(y(n)) =1 for each
positive integer n.

A multiplicative function is said to be completely multiplicative if (1.3) holds
for all m and n. It is well known that completely multiplicative functions possess
a large number of properties with respect to the Dirichlet convolution (see [1], [2,
Chapter 2|, [3], [7, Chapter 1], [11], [12]).

Yocom [15] defined A-multiplicative functions as an analogue of completely
multiplicative functions in the setting of Narkiewicz’s A-convolution and showed
that A-multiplicative functions under A-convolution share many properties with
completely multiplicative functions under Dirichlet convolution.

In this paper we define an analogue of completely multiplicative functions in
the setting of exponential A-convolution. We refer to these functions as exponen-
tially A-multiplicative functions (for definition, see Section 3). We derive a large
number of properties for exponentially A-multiplicative functions. These proper-
ties are similar in character to the properties of completely multiplicative func-
tions. In Section 4 we present characterizations of exponentially A-multiplicative
functions which may be referred to as characterizations of Apostol [1] type. In
Section 5 we introduce an analogue of Rearick’s [9] logarithm transformation and
give a characterization of exponentially A-multiplicative functions involving this
transformation (for a characterization in the classical case, see Carroll [5]). In
Section 6 we apply the logarithm transformation in finding solutions for the func-
tional equations fofo---of = gand fofo---of = fg, where o is the exponential
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A-convolution. Note that Hanumanthachari [6] studied the functional equation
fofo---of=g. This type of functional equation has also been studied under
other convolutions in the literature (see e.g. [4], [13]).

We assume that the reader is familiar with the elements of arithmetical func-
tions. General background material on arithmetical functions can be found in
most texts on number theory and more specialized material in the books by
Apostol [2], McCarthy [7] and Sivaramakrishnan [12].

2 — Exponential A-convolution

Let A be a mapping from the set N of positive integers to the set of subsets
of N such that for each n € N, A(n) is a subset of the set of the positive divisors
of n. Then the A-convolution of two arithmetical functions f and g is defined by

(2.1) (frag)n)= > f(d)g(n/d).
deA(n)
Narkiewicz [8] defined an A-convolution to be regular if

a) the set of arithmetical functions forms a commutative ring with respect to
the ordinary addition and the A-convolution,

b) the A-convolution of multiplicative functions is multiplicative,

c) the function E, where E(n) = 1 for all n, has an inverse p4 with respect
to the A-convolution, and p4(n) = 0 or —1 whenever n is a prime power.

It can be proved (cf. [8]) that an A-convolution is regular if, and only if,

i) A(mn) = {de: d € A(m), e € A(n)} whenever (m,n) =1,

ii) for each prime power p® > 1 there exists a divisor ¢ of a such that

A(p™) ={1,p", 0", ... 0"},
where rt = a, and

A@p™y = {1,p",p*,..,p"}, 0<i<r.

The divisor t of a is said to be the A-type of p%, and it is denoted by
t=ta(p").

For example, if D(n) is the set of all positive divisors of n and U(n) is the set
of unitary divisors of n (that is, U(n) = {d > 0: d|n, (d,n/d) = 1}), then the
D-convolution and the U-convolution are regular. Note that D-convolution and
U-convolution are the classical Dirichlet convolution and the unitary convolution
(see e.g. [7, Chapter 4], [12, Section I1.2]), respectively.
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We assume throughout this paper that A-convolution is an arbitrary but fixed
regular A-convolution.

A positive integer n is said to be A-primitive if A(n) = {1,n}. The generalized
Mobius function w4 is the multiplicative function given by

—1 if p® (> 1) is A-primitive,
pa(p®) = : pa(- ) "
0 if p® is non- A-primitive .

The A-analogue 74(n) of the divisor function is defined as the number of
A-divisors of n, that is 74 = E %4 E. The A-analogue ¢4(n) of Euler’s func-
tion is given by w4(n) = (N %4 pa)(n), where N(n) = n for all n. For further
information on Narkiewicz’s A-convolution we refer to [7, Chapter 4] and [8].

The exponential A-convolution of two arithmetical functions f and g is defined
by

(fog)(1)=f(1)g(1),
(22) (fog)n)= > o 3 fph-ple)g(pit/ M pid )

dy GA(nl) duEA(nu)

where n (> 1) has the canonical factorization (1.2). This definition is due to
Hanumanthachari [6] and Shindo [10] (see also [14, §8]). In the sense of the
notation * 4 it would be natural to denote the exponential A-convolution by the
symbol ®4. We, however, adopt the brief notation o by Hanumanthachari [6].

It is known [6] that the set of all arithmetical functions forms a commutative
semigroup under the exponential A-convolution with identity |u| where p is the
Mbobius function. Units are functions f for which f(y(n)) # 0 for each positive
integer n. The condition f(vy(n)) # 0 for each positive integer n means that
f(1) # 0 and f(p1p2---pu) # 0 whenever pi,pa, ..., p, are distinct primes. The
inverse of f under the exponential A-convolution is denoted by f~!, that is,
foft=f"of=|ul.

Further, it can be verified that the set of all exponentially multiplicative func-
tions forms an Abelian group under the exponential A-convolution (cf. [6], Lem-

mas 1.1-1.3). For example, the inverse of the function F is given by E~! = uff),

where uff) is the exponential analogue of the Mobius function defined by

{ui?m —1,

(2.3) '
py (n) = pa(na)- - pa(ng)

where n (> 1) has the canonical factorization (1.2). Clearly, M(Ae) is a multiplica-

tive function and also exponentially multiplicative.
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3 — Exponentially A-multiplicative functions

Definition. An arithmetical function f is said to be exponentially A-multi-
plicative if f(y(n)) # 0 for each positive integer n and (1.4) holds for all primes
p and positive integers d and n with d € A(n).

Note that exponentially U-multiplicative functions are exponentially multi-
plicative functions, and exponentially D-multiplicative functions are functions
for which (1.4) holds for all d and n with d|n. Exponentially A-multiplicative
functions have not previously been defined in the literature.

The definition of exponentially multiplicative functions (or exponentially
U-multiplicative functions) is attributable to Subbarao [14]. It should be noted
that Subbarao does not require that each exponentially multiplicative function f
possess the property f(v(n)) # 0 for all positive integers n. Thus the exponen-
tially multiplicative functions of this paper are unit exponentially multiplicative
functions of Subbarao. However, since we use the inverse under the exponential
A-convolution in our characterizations of exponentially A-multiplicative functions
and transformations of arithmetical functions, it is practical to assume that expo-
nentially multiplicative functions are units. Further, multiplicative-like functions
are often defined to be units under the related convolution in the literature.

We are now in a position to present the properties of exponentially A-multipli-
cative functions mentioned in the introduction.

4 — Characterizations of the Apostol type

In this section we derive characterizations of exponentially A-multiplicative
functions (see Theorems 4.1-4.11 below). Most of these characterizations are
similar to those given for the classical completely multiplicative functions by
Apostol and others (see [1], [2], [3], [7, Chapter 1], [11]) and two characteriza-
tions (Theorems 4.7 and 4.8) are similar to those introduced by Yocom [15] for
A-multiplicative functions. All these characterizations (except for Theorem 4.1)
are related to the exponential A-convolution. In the proofs of the characteriza-
tions we use the following observation. If f is an exponentially multiplicative
function, then

u
ni

Fom) = fn ) = [ Fo%) .

i=1
Thus it is enough to consider f at p?", where p and ¢ are primes and n a positive
integer. For the sake of brevity we omit the proofs of Theorems 4.1-4.7 and 4.10.
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Theorem 4.1. An exponentially multiplicative function f is exponentially
A-multiplicative if, and only if,

t
(4.1) F™) = )
for all primes p and q and positive integers n, where t =t o(q").

Theorem 4.2. An exponentially multiplicative function f is exponentially
A-multiplicative if, and only if,

(4.2) Fr=u9r,

where uff) is as given in (2.3).

Theorem 4.3. An exponentially multiplicative function f is exponentially
A-multiplicative if, and only if,

(4.3) o
for all primes p and all non-A-primitives q".

Theorem 4.4. An exponentially multiplicative function f is exponentially
A-multiplicative if, and only if,

(4.4) flgoh)=fgo fh
for all arithmetical functions g and h.

Theorem 4.5. An exponentially multiplicative function f is exponentially
A-multiplicative if, and only if,

(4.5) (fg) ™ =fg™
for all unit functions g.

Theorem 4.6. An exponentially multiplicative function f is exponentially
A-multiplicative if, and only if,

(4.6) i =rorf,

where Tﬁf) is the multiplicative function defined by 7'516) (p™) = Ta(n) for all prime

powers p" (> 1).
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Theorem 4.7. An exponentially multiplicative function f is exponentially
A-multiplicative if, and only if,

(4.7) flgog) =rFgofyg
for some exponentially A-multiplicative function g which is never zero.

Theorem 4.8. An exponentially multiplicative function f is exponentially
A-multiplicative if, and only if,

(4.8) f(Eog)=fEofg
for some arithmetical function g which is strictly positive.

Proof: If f is exponentially A-multiplicative, then (4.8) is clear by Theo-
rem 4.4.

Conversely, assume that (4.8) holds for some arithmetical function g which is
strictly positive. We prove that (4.1) holds. We denote A(¢") = {1,¢%,¢*, ..., ¢"*},
where rt = n, and proceed by induction on rﬁf) (pqn), the number of elements in
A(g™). If Tlge) (p?") = 2, the result is clear.

Suppose that equation f(p?") = f(p?)™* holds for all Tﬁf) (p?") with 2 <
Tﬁf) (p?") <r+1.1If 71(46) (p?") = r + 1, then by (4.8) and induction hypothesis

FT) Y g™ = N feh Fe ) g(p? )

deA(qmt) deA(q™)
rt rt t
= f0") |90 + 90)] + FOT) Y 9"
deA(qTt)
d#l,q’"t
and thus
rt t
) D0 g =) > gk .
deA(g™) deA(q™)
d;él,q""t d;,,gl’qrt

Since g is strictly positive, the sum in above equation is always nonzero. Thus
f (pq”) = f(p")". This completes the proof. m

Theorem 4.9. Suppose that g and G are two arithmetical functions such
that g = G o ,uff). An exponentially multiplicative function f is exponentially
A-multiplicative if, and only if,

(4.9) fGof™ =fg
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for some G satisfying G(p) = 1 and G(p?") # 1 for all prime numbers p and q
and positive integers n.

Proof: If f is exponentially A-multiplicative, we get by Theorems 4.2 and
4.4 the equations

fGof™ = fGofu) = f(Goul) = fg.

Conversely, we show that if (4.9) holds, then (4.3) holds or f~1(p?") = 0 for
all non-A-primitive ¢". Let A(q") = {1,4%,¢*,...,q""} and proceed by induction
on the number of elements of A(¢g"). If ¢" = ¢*, where ¢’ is A-primitive, the
equation (4.9) gives

t 2t 2t 2t

FO7) + fT) GOT) 1) + FrT) Gt

Using g =G o ,uff) this becomes

By equation (fo f~1)(p?") = |u(p?™")| = 0 the expression in the brackets reduces
to f~1(p?"). Since G(p?') # 1, we obtain f~1(p?") = 0.

Suppose that f_l(qut) =0 for all j with 2 < j < r, where ¢’ is A-primitive.
If ¢" = ¢"t, then, by (4.9)

Tt i Tt

) g™ = ;) + feY G ) + F7) G

On the other hand, we have

Tt Tt Tt

FET) g") = F07) [~ + 6]

Thus combining the above results we get
_ Tt (r—1)t (r—1)t _ t Tt
) =6 ) [Sret ) e - )]
By equation (fo f~1)(p?") = |u(p?")| = 0 the expression in the brackets reduces
to f~1(p?"). Since G(pq(ril)t) # 1, we obtain

rt

7)) =0.

This completes the proof. n
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Theorem 4.10. An exponentially multiplicative function f is exponentially
A-multiplicative if, and only if,

(4.10) S reH Y d = M S )

deA(n)
where gpff) is the multiplicative function defined by 4,0548) (p™) = @ a(n) for all prime
powers p" (> 1).

Theorem 4.11. An exponentially multiplicative function f is exponentially
A-multiplicative if, and only if,

(4.11) FeS 0By = o fE .

Proof: The result is clear by Theorem 4.8, since (p(j) is a strictly positive

arithmetical function. m

5 — Transformations

In this section we define Rearick’s [9] logarithm transformation in the setting
of exponential A-convolution and introduce its basic properties. We also give a
characterization of exponentially A-multiplicative functions in terms of this trans-
formation. The characterization is an analogue of Carroll’s [5] characterization
for completely multiplicative functions.

Let Fy denote the set of arithmetical functions f such that f(y(n)) =1 for
all positive integers n, and let Fy denote the set of arithmetical functions f
such that f(y(n)) = 0 for all positive integers n. Let P denote the arithmetical
function defined by P(1) = 1 and P(n) = nina---n, for n(> 1) having the
canonical factorization (1.2). For each arithmetical function f denote f'(n) =

f(n)log P(n).

Definition. The logarithm transformation is a mapping L: F; — Fy defined
by

(5.1) Lf=foft.
Remark 5.1. It is easy to verify that

0
(Lf)(n) = { (f/ ° f*l)(n) otherwise .

if y(n) =n,

Theorem 5.1. The logarithm transformation is a one-to-one mapping of F}
onto Fy.
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Proof: Let g € Fy. We proceed inductively to define f(n) uniquely such
that Lf = g. Firstly, we define f(vy(n)) =1 for all n. Secondly, we assume that
the values f(k) are defined for k < n (n # (n)). The values f~!(k) are obtained
from

(fo f7H(K) = |ul(k) ,
and thus f(n) can be found uniquely from

(f o fH)n) =g(n) .
This completes the proof. u

Remark 5.2. By Theorem 5.1 we can define a transformation F of Fjy onto
F1 by
E(Lf)=F.

The transformation E may be referred to as the exponential transformation.

Theorem 5.2. For f,g € F,
L(fog)=Lf+Lg.
Proof: We have (fog) = f og+ fog" and consequently

L(fog)=(flog+fog)o(fog) '=Ffof +gog'=Lf+Lg.n

Corollary. The groups (Fy,0) and (Fy,+) are isomorphic.
Theorem 5.3. If g is an exponentially A-multiplicative function, then
L(fg) =gLf
for all f € Fy.
Proof: By Theorems 4.4 and 4.5,

L(fg)=(fg) o (fg) ' =flgoflg=(fof )g=gLf . u

Lemma 5.1. A multiplicative function f is exponentially multiplicative if,
and only if,

(5.2) (Lf)(p*) =0,
for all primes p, whenever a is not a positive power of prime.

Proof: Assume that f is exponentially multiplicative. If a = 1, then (5.2) is
clear. Suppose that a is not a positive prime power. Then a is of the form mn,
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where m,n > 1 and (m,n) = 1. Thus

LHE™) = > feY) ™) logd
de A(mn)
= 33 pphd) plpmhdz) og(dydy)
d1€A(m) da€A(n)

= > T ™) ) ™M) £ (M) log di + log da

di€A(m) d2€A(n)

= > fEM M) logdr 3 f®) £ M)

di€A(m) dz€A(n)
2 SO M) logdy 3o ™) FTHE™M)
da€A(n) di1€A(m)

= (LA@™) (") + (L") (™) = 0.
Conversely, suppose that (5.2) holds. Define g(1) = 1 and

g pE i =TI TI £o7)

for n = p{* p5%---pf > 1, where ay,...,a, > 0. The function g is exponentially

multiplicative and we shall show that g = f. Since g and f are multiplicative, it
is enough to proof that f = g at prime powers p®.

If a =1, then g(p) = f(p) = 1 and (Lf)(p) = (Lg)(p) = 0.

Suppose that a = ¢" = ¢"* > 1. Then g(pqn) = Tlgk(qn fo®) = f(»”"). By
the equatlon fof~t=|ul, the values of f~ ( ) depend only on the values of
F(p”"), where 0 < i < r. Therefore also f~1(p?") = ¢g~'(p?"). Thus from the
definition of L it follows that (Lf)(p?") = (Lg)(p?").

Suppose that a is not a positive prime power. Since g is exponentially mul-
tiplicative, the first part of this proof shows that then (Lg)(p®) = 0 and by the
hypothesis (5.2) also (Lf)(p*) = 0. Therefore Lf and Lg agree for all prime
powers, so f = g at prime powers p® by Theorem 5.1. This completes the proof. m

Lemma 5.2. Let p and g be primes and n a positive integer. Suppose that
f is an exponentially multiplicative function such that

(5-3) FO™) = fp*)F
for all k with 2 < k <n/t and t =t4(q"). Then
(5.4) S =

for all k with 2 < k <n/t and t = t4(q").
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Lemma 5.2 is similar to the first part of Theorem 4.2. Therefore we omit the
proof.

Theorem 5.4. An exponentially multiplicative function f is exponentially
A-multiplicative if, and only if,

(5.5) (LH @) =t f(p” )" logq
for all primes p and q and positive integers n, where t =t o(q").

Proof: Let A(¢") = {1,¢',¢*,...,¢""}. Suppose that f is exponentially
A-multiplicative. Thus (4.2) and (4.1) hold. Further, since HE4 (pq ") # 0 only if
k=0or k=1, we get

LHE™Y = 3 N LT W) 7 ) log d

deA(q™)

=) Y WY@ logd

deA(q™)
= (") [~ logq" V" +log "]
= f(p*) tlogq .

Conversely, suppose that (5.5) holds and prove that then (4.1) holds. We
proceed by induction on the number of elements of the set A(¢™). For ¢" = ¢*,
we get by definition of L

(Lf = > flp /) log d

deA(g?t)
= —t f(p*)logq + 2t f(p”")logq .

By (5.5), ) t
(LT ) =t f(p?)*logq .

Combining these two results we obtain

2t t
2t f(p?” ) logq = 2t f(p? ) loggq

and consequently

Now, suppose that (4.1) holds for all ¢" = ¢** with 2 < k <r —1. By Lemma 5.2
f1(p? kt) = 0 for all £ with 2 < k < r — 1. By definition of L and induction
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hypothesis we get

LHETY = S feh) e ) logd

deA(q™)
= Fe") ) log gV + F(p* ) log "
=—(r—1)tf(p?) logq+rtf(p! )logq .
By (5.5), . t
(LT ) =tf(p?) logq .
Thus

rt t
rt f(p? )logq=rt f(p? ) logq

and consequently
rt t

feT ) =f0")".
Therefore (4.1) holds for ¢" = ¢"t. This completes the proof. m

6 — Applications to functional equations

In this section we apply the logarithm transformation and its basic properties
to obtain solution for the functional equations f" = g and f" = fg, where f" is
the r*" power of f under the exponential A-convolution, that is,

ff=fofo---of (rtimes).
Lemma 6.1. Suppose that f € Fy. Then f is exponentially multiplicative
if, and only if, f" is exponentially multiplicative.

Theorem 6.1. Let r be a positive integer and let g € Fy. Then the equation
f" = g has a unique solution f € I given by

6 1= 1g).

The solution is exponentially multiplicative if, and only if, g is exponentially
multiplicative.

Proof: By Theorem 5.2, we have r Lf = Lg. Thus, by Remark 5.2, we
obtain (6.1). The result for exponentially multiplicative functions follows from
Lemma 6.1. u
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Theorem 6.2. Let r be a positive integer, and let g be an exponentially
A-multiplicative function such that g(n) # r for all n with n # ~(n). Then the
functional equation f" = fg has exactly one solution in Fy, namely f = |p|.

Proof: By Theorems 5.2 and 5.3, we have r Lf = g Lf. Thus Lf = 0; hence
f = |u|. This completes the proof of Theorem 6.2. u
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