PORTUGALIAE MATHEMATICA Vol. 53 Fasc. 3 – 1996

SOME REMARKS ON LIFTING OF ISOMORPHIC PROPERTIES TO INJECTIVE AND PROJECTIVE TENSOR PRODUCTS*

G. Emmanuele

In this short note we want to present two remarks improving two results contained in the papers [C] and [O], the first one about the Dunford–Pettis property and the second one about the containment of complemented copies of l_1 in certain tensor products of Banach spaces. Before starting we remark that our notations are taken from the book [DF].

The first result is about the well-known Dunford–Pettis property.

Definition. We shall say that a Banch space X has the Dunford–Pettis property if any weakly compact operator defined on it is a Dunford–Pettis operator, i.e. it maps weakly null sequences into norm null sequences.

It is well known that this property does not necessarily lift from two Banach spaces E, F to $E \otimes_{\pi} F$, as Talagrand proved in his paper [T]. However, in [C] some positive results were got; here we improve these last results, presenting a Proposition that follows from the next

Lemma 1. Let E, F be Banach spaces such that E^{**} or F has the Bounded Approximation Property. Then $E^{**} \widetilde{\otimes}_{\pi} F$ is isomorphic to a closed subspace of $(E \widetilde{\otimes}_{\pi} F)^{**}$.

Proof: The canonical map $\Phi \colon E^{**} \widetilde{\otimes}_{\pi} F \to (E \widetilde{\otimes}_{\pi} F)^{**} = (L(E, F^*))^*$ is given by the "trace duality"

$$\langle \Phi(z), \phi \rangle := \langle \phi, z \rangle$$

(see [DF], p. 161) and has norm 1. On the other hand, it follows from [DF] (p. 179, 182, 60) that the canonical map $I: E^{**} \widetilde{\otimes}_{\pi} F \to (E^* \widetilde{\otimes}_{\varepsilon} F^*)^* = (K(E, F^*))^*$ is an

Received: May 19, 1995; Revised: November 3, 1995.

^{*} Work partially supported by M.U.R.S.T. of Italy (40%, 1993).

G. EMMANUELE

isomorphic embedding since E^{**} or F has the B.A.P.. If $\rho : (L(E, F^*))^* \to (K(E, F^*))^*$ denotes the restriction map, it is easy to see that $\rho \Phi = I$, hence Φ is an isomorphic embedding as well. We are done.

Remark 1. It is clear from the above proof and the results in [DF], p. 291, that the above Lemma 1 holds for all accessible tensornorms α ; if α is totally accessible, it also holds true for all E and F.

Remark 2. It is also clear from the above proof and the result in [DF], p. 60, that if E^{**} or F has the Metric Approximation Property then $E^{**} \widetilde{\otimes}_{\pi} F$ is isometrically isomorphic to a closed subspace of $(E \widetilde{\otimes}_{\pi} F)^{**}$.

Proposition 1. Let E be a \mathcal{L}_1 -space and F be a Banach space such that $L_1(\mu, F)$ has the Dunford–Pettis Property for any measure μ . Then $E \otimes_{\pi} F$ has the Dunford–Pettis Property.

Proof: Let us consider a weakly compact operator T defined on $E \otimes_{\pi} F$; T^{**} defined on $(E \otimes_{\pi} F)^{**}$ is also weakly compact as well as its restriction \widetilde{T} to the isomorphic copy of $E^{**} \otimes_{\pi} F$ which existence is guaranteed by Lemma 1. But E^{**} is isomorphic to a complemented subspace of some $L_1(\mu)$ space and so $E^{**} \otimes_{\pi} F$ is isomorphic to a complemented subspace of $L_1(\mu, F)$ that has the Dunford–Pettis Property by assumptions; hence $E^{**} \otimes_{\pi} F$, and its copy inside of $(E \otimes_{\pi} F)^{**}$, too, have the same property; this gives that \widetilde{T} is a Dunford–Pettis operator. Clearly its restriction to $E \otimes_{\pi} F$ is just T that must be so a Dunford–Pettis operator. We are done.

Remark 3. In [C] it is proved that \mathcal{L}_1 -spaces and \mathcal{L}_∞ -spaces F satisfy the hypothesis of Proposition 1.

The second and last result is about injective tensor products and improves an old result by Oja about the existence of complemented copies of l_1 ; it shows that an application of a result due to Heinrich and Manckiewicz can be used to drop a separability assumption considered in the paper [O].

Proposition 2. Let E be a Banach space such that E^* has the Radon-Nikodym Property and the Approximation Property. If F is another Banach space, then $E \otimes_{\varepsilon} F$ contains a complemented copy of l_1 if and only if F does the same.

254

Some remarks on lifting of isomorphic properties 255

Proof: Clearly we have to show just the "only if" part. By a result in [HM] (Proposition 3.4) there is a separable closed subspace E_0 of E such that $E_0 \otimes_{\varepsilon} F$ contains the complemented copy of l_1 living inside $E \otimes_{\varepsilon} F$ and E_0^* is isometrically isomorphic to a norm one complemented subspace of E^* ; clearly also $E_0 \otimes_{\varepsilon} F$ contains a complemented copy of l_1 (actually the same copy as $E \otimes_{\varepsilon} F$) and moreover E_0^* is separable, since E^* has the Radon–Nikodym Property (see [DU], p. 198), and it has the Approximation Property. A result in [O] allows us to conclude that F must contain a complemented copy of l_1 .

REFERENCES

- [C] CILIA, R. A remark on the Dunford–Pettis property in $L_1(\mu, X)$, Proc. Amer. Math. Soc., 120 (1994), 183–184.
- [DF] DEFANT, A. and FLORET, K. Tensor norms and Operator Ideals, Math. Studies 176, North-Holland, 1993.
- [DU] DIESTEL, J. and UHL, J.J.JR. Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
- [HM] HEINRICH, S. and MANKIEWICZ, P. Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, *Studia Math.*, 73 (1982), 225–251.
 - [O] OJA, E. Sur la Réproductibilité des espaces c_0 et l_1 dans les produits tensoriels, Revue Roumanie de Math. Pures et Appl., XXIX(4) (1984), 335–339.
 - [T] TALAGRAND, M. La propriété de Dunford–Pettis dans C(K, E) et $L^1(E)$, Israel J. Math., 44 (1983), 317–321.

G. Emmanuele, Department of Mathematics, University of Catania, Viale A. Doria 6, 95125 Catania – ITALY E-mail: Emmanuele@Dipmat.Unict.It