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AN EXISTENCE THEOREM
FOR HAMMERSTEIN INTEGRAL EQUATIONS*

G. Emmanuele

1 – Introduction

After the publication of the paper [8] the following (nonlinear) Hammerstein

integral equation

(HIE) x(t) = g(t) + λ

∫

D
k(t, s) f(s, x(s)) ds

(D a compact subset of IRn, g, k, f functions with values in finite dimensional Ba-

nach spaces) has been very often investigated in spaces of summable functions,

because of its usefulness in applications (see [5], [9], [10], [12] and references

there). The most common hypotheses used in this study have been assump-

tions of regularity, coercivity, differentiability and monotonicity on k, f and on

the superposition operator (Fy)(·) = f(·, y(·)) and the linear integral operator

(Kz)(·) =
∫

D k(t, s) z(s) ds (note that we shall use the same notations through

all the paper) (see [2], [5], [9], [10], [11], [12]).

In the recent paper [7] we have been able to dispense with all of these as-

sumptions just assuming that k and f satisfy Caratheodory conditions; but, as

observed by Prof. J. Banas, even if such an hypothesis is completely natural for

f (see [9], [12]), it is sometime restrictive when applied to k; for instance, if

k(t, s) = p(t) q(s) it implies the continuity of q, whereas requiring that q belongs

to some Lr-space would be more natural. We take this opportunity to thank

Prof. J. Banas for this remark that motivated the present paper.

Here we want to show that actually it is possible to have solutions of (HIE) un-

der this more general hypothesis; indeed, we present a result in which we assume
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that f is a Caratheodory function such that F maps L1(D,X) into L1(D,Y ),

continuously, and k is a measurable function such that the functions s→ k(t, s)

belong to L∞ andK is a linear, continuous operator from L1(D,Y ) into L1(D,X),

where X, Y are finite dimensional Banach spaces (in the sequel, ‖K‖ will denote

the operator norm of K).

2 – Main result

The main tools in the proof of our Theorem below are the following measures

of weak noncompactness and of nonequiabsolute continuity introduced by

F.S. De Blasi in [4] and by J. Appell and E. De Pascale in [1], respectively.

Definition 1 ([9]). Let H be a bounded subset of a Banach space B.

We call measure of weak noncompactness of H the number

β(H) = inf
{

ε > 0: there is a weakly compact set C s.t. H ⊂ C + εB1

}

(B1 the unit ball of B).

β has the following useful properties (see [4] for a proof):

i) β(H) = 0 if and only if H is relatively weakly compact;

ii) β(H1) ≤ β(H2) if H1 ⊆ H2;

iii) β(H) = β(co(H));

iv) β(rH) = |r|β(H), r ∈ IR;

v) If (Hn) is a decreasing sequence of nonempty, bounded, closed and convex

subsets of B with β(Hn) → 0, then H =
⋂

Hn is nonempty (obviously, it is

closed, convex and relatively weakly compact by i) and ii)).

Definition 2 ([1]). Let H be a bounded subset of L1(D,X), X a Banach

space. We call measure of nonequiabsolute continuity of H the number

π1(H) = lim sup
δ→0

{

sup
{

∫

D0

‖x(t)‖ dt : m(D0) < δ
}

: x ∈ H

}

.

As in [1], p. 150, we can prove the following result.

Proposition 1. Let X be a finite dimensional Banach space and H be a

bounded subset of L1(D,X). Then β(H) = π1(H).
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We are now ready to show our result improving the main Theorem of [7]

(where A is the operator defined by putting A(x) = g + λKF (x)).

Theorem. Let X, Y be finite dimensional Banach spaces. We consider the

following hypotheses :

a) g ∈ L1(D,X);

b) f : D ×X → Y verifies Caratheodory hypotheses, i.e. f is strongly mea-

surable with respect to t ∈ D, for all x ∈ X, and continuous with respect

to x ∈ X, for almost all t ∈ D;

c) there are a ∈ L1(D) and b ≥ 0 such that

‖f(t, x)‖ ≤ a(t) + b‖x‖ , t ∈ D, x ∈ X ;

d) k : D × D → L(Y,X) (the space of bounded linear operators from Y

into X) is strongly measurable and the linear operator K defined in the

introduction maps L1(D,Y ) into L1(D,X) continuously;

e) The functions s→ k(t, s) are in L∞(D,L(Y,X)) for almost all t ∈ D;

f) |λ| b‖K‖ < 1.

Then the equation (HIE) has at least a solution x ∈ L1(D,X).

Proof: Let us put s = (‖g‖+ |λ| ‖K‖ ‖a‖)/(1− |λ| b‖K‖). If Bs denotes the

ball of L1(D,X) centered at θ with radius s, it is very easy to see that A maps

Bs into itself, continuously. Now, we observe that for all D0 ⊆ D we have

∫

D0

‖Fy(t)‖ dt ≤

∫

D0

a(t) dt+ b

∫

D0

‖y(t)‖ dt

from which it follows very easily that

(1) π1(FH) ≤ b π1(H)

for any bounded subset H of L1(D,X); on the other hand, for any bounded

susbset Z of L1(D,Y ) we have β(KZ) ≤ ‖K‖β(Z), because of the linearity and

continuity of K. Using Proposition 1 we see very easily that

β(AH) ≤ |λ| b‖K‖β(H)

for any bounded subset H of L1(D,E) where A is not necessarily compact.
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Moreover, we recall that h = |λ| b‖K‖ < 1 by virtue of f). Now, define

Y1 = Bs, Yn+1 = coAYn for n ∈ IN. It is easy to see that (Yn) verifies all of the

assumptions in v) because h < 1, and so Y =
⋂

Yn is a nonempty, closed, convex,

relatively weakly compact subset of L1(D,Y ) that is easily seen to be invariant

under A. So it remains only to prove that AY is relatively compact, in such a

way that an application of Schauder fixed point Theorem concludes the proof.

Let (yn) be a sequence in Y ; Proposition 1 and (1) give that (Fyn) has a weak

converging subsequence (Fyh(n)) in L1(D,Y ). Since, by virtue of e) the operator

z →
∫

D k(t, s) z(s) ds for almost all t ∈ D is weakly continuous on L1(D,Y ),

we obtain that (KFyh(n)) and so (Ayh(n)) is pointwise converging, for almost all

t ∈ D. On the other hand, AY is equiabsolutely continuous in L1(D,X) since

AY ⊆ Y ; hence it is enough to apply Vitali convergence Theorem (see [6]) to

prove that (Ayh(n)) must be strongly converging in L1(D,X). We are done.

At the end, we observe that if one assumes the existence of a third function

h verifying assumptions similar to b) and c), it is possible to prove the existence

of solutions of the following more general functional-integral equation

x(t) = h
(

t, λ

∫

D
k(t, s) f(s, x(s)) ds

)

recently considered in [3] and [7].
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