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ON CLASSIFICATION PROBLEMS IN

THE THEORY OF DIFFERENTIAL EQUATIONS:

ALGEBRA + GEOMETRY

Pavel Bibikov and Alexander Malakhov

Abstract. We study geometric and algebraic approaches to classification
problems of differential equations. We consider the so-called Lie problem:
provide the point classification of ODEs y′′ = F (x, y). In the first part of the
paper we consider the case of smooth right-hand side F . The symmetry group
for such equations has infinite dimension, so classical constructions from the
theory of differential invariants do not work. Nevertheless, we compute the
algebra of differential invariants and obtain a criterion for the local equiva-
lence of two ODEs y′′ = F (x, y). In the second part of the paper we develop
a new approach to the study of subgroups in the Cremona group. Namely,
we consider class of differential equations y′′ = F (x, y) with rational right
hand sides and its symmetry group. This group is a subgroup in the Cremona
group of birational automorphisms of C2, which makes it possible to apply for
their study methods of differential invariants and geometric theory of differ-
ential equations. Also, using algebraic methods in the theory of differential
equations we obtain a global classification for such equations instead of local
classifications for such problems provided by Lie, Tresse and others.

The problem of the classification of ordinary differential equations with respect
to the contact or point transformations is one of the most important problems in
mathematics, which was studied by many famous mathematicians during the XIX-
th and XX-th centuries. The main ideas and approaches in their works belong to
the geometry of differential equations, which is actively studied nowadays.

The most simple (and perhaps the most fundamental) case of ordinary differ-
ential equations consists of differential equations, which can be solved with respect
to the highest derivative:

y(n) = F (x, y, y′, . . . , y(n−1)).

The problem of classifications for such equations has a long and interesting history
(for general theory of symmetries of differential equations see [18,31]).
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The first results in this problem were obtained by Lie (see, for example, [1]). He
proved that each first order ODE is point equivalent to the trivial ODE y′ = 0 in the
neighborhood of a regular point, and each second order ODE is contact equivalent
to the trivial ODE y′′ = 0 in the neighborhood of a regular point (see [26]).

More than 100 years ago Lie and Tresse calculated sub-differential invariants
for the action of point pseudogroup on the second order ODEs (see [36]). Absolute
differential invariants and the classification of non-degenerated ODEs were found
by Kruglikov in [23]. Some other interesting results in this question are obtained
in [4,19,29,30,35].

Contact classification for third-order equations was studied by Chern [11], and
for fourth-order equations—by Chen and Li [10]. But they did not find all differ-
ential invariants for these equations. Moreover, it seems, that the methods they
used can not be applied to differential equations of higher order.

Dubrov in [13] constructed a set of subdifferential invariants for differential
equations of arbitrary order. Using these invariants he solved the problem of the
contact trivialization of differential equations. Then in [14] he obtained a set of
sub-differential invariants for the systems of differential equations of arbitrary order.

Finally, Dubrov, Komrakov and Morimoto constructed [15] the Cartan con-
nection associated with every ODE (and, more generally, with every holonomic
system of differential equations), and reduced the contact equivalence problem to
the classical problem of the equivalence of {e}-structures.

In [6] the first author suggested a new approach to the classification of ODEs
and the calculation of their differential invariants. Using this approach (which is
based on the ideas of Kushner and Lychagin, see [25]), he described the algebra of
contact differential invariants for ODEs of arbitrary order and solved the classifi-
cation problem or nondegenerated ODEs in terms of this algebra.

It is important to note that all these results were obtained only for non-
degenerated ODEs (the conditions of non-degeneration are different for different
classifications). But many interesting differential equations don’t fall into these
classifications. For example, in the case of second order ODEs the Kruglikov–
Tresse–Lie classification does not contain the equations

(0.1) y′′ = a0(x, y)(y′)3 + a1(x, y)(y′)2 + a2(x, y)(y′) + a3(x, y),

which are closely connected with different geometric problems (for example, with
projective geometry; see [2, 9, 34]). Such equations were studied by Lie, Tresse,
Cartan, Liuville, etc. (see, for example, [27]). The final solution of the classification
problem for the regular ODEs of such type was obtained by Yumaguzhin in [39].

While studying the class of differential equations (0.1), Lie set the following
problem: find differential invariants and classify differential equations y′′ = F (x, y)
with respect to the pseudogroup of point transformations. We note that these
equations do not fall into Yumaguzhin’s classification. Despite considerable efforts,
Lie could not solve this problem; moreover, he failed to find even one differential
invariant in this problem.
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In the present paper we study this problem in different ways. In the first section
we present the full solution of the Lie problem: we compute the field of differen-
tial invariants and find the criterion for the equivalence of two non-degenerated
differential equations of the type y′′ = F (x, y).

However, these results of ours as well as many other results in this area (see,
for example, [16,17,20–22,33]) have two significant disadvantages: they are local
(i.e., they can be applied only in the neighborhood of some point) and they are not
computable (with the help of the computer). On the other hand, during the last
years in works [8,24] there were developed some applications of the theory of dif-
ferential equations in algebra and algebraic geometry and vice versa. In particular,
Kruglikov and Lychagin proved the global version of the Lie–Tresse theorem of the
global finite generation for the field of rational differential invariants, and Bibikov
and Lychagin classified the homogeneous forms with respect to the linear actions
of algebraic groups and also studied the representations of these groups with the
help of differential invariants.

In the second part of the paper we introduce the algebraic structure in our dif-
ferential equations. Namely, we consider differential equations with rational right-
hand sides and study the symmetry group only with rational morphisms. Then this
symmetry group will become a subgroup of plane Cremona group Cr(2) (see [12]).
Such observation makes it possible to provide an effective (i.e., computable) crite-
rion for the local equivalence of differential equations.

Recall that Cremona group Cr(n) is a group of birational automorphisms of
the projective space CP n. Group Cr(1) is isomorphic to the projective linear group
PGL(2). In the case n = 2 the structure of the group Cr2(C) is not well understood
in spite of extensive research (see [12]). The representation of a Cremona subgroup
as a symmetry group of the ODEs y′′ = F (x, y) makes it possible to study this
subgroup using the geometry of differential equations and the differential-geometric
technique. Also, this idea allows us to obtain not a local but a global classification
of differential equations with rational coefficients.

1. Differential equations with smooth right hand sides

In this section we present the full solution of the original Lie problem (see
also [7]). First of all, we recall the necessary notation and definition. Then, we
compute the number of independent differential invariants and isotropy subalge-
bras. Using these computations we describe the field of differential invariants.
Finally, with the help of this field we obtain a criterion of local point equivalence
of two non-degenerated differential equations.

1.1. Lie algebra ĝ. First of all let us introduce the important notation (de-
tails can be found in [1]). Let J2R be the 2-jet space of functions f : R → R

with the canonical coordinates (x, y, p, q). Consider the differential equations {q =
F (x, y)} ⊂ J2R2, which do not depend on p.

We start from the computation of the point symmetry group and its Lie algebra
for such class of equations (it means that the actions of this group and the shifts
along the vector fields from this algebra map the equation of such type into another
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equation of the same type). Note that symmetry group and symmetry algebra were
computed by Lie.

Proposition 1.1. 1. Point symmetry pseudogroup G consists of transforma-
tions

x 7→ X(x), y 7→ C ·
√
|X ′(x)|y + A(x),

where A, X ∈ C∞(R) are arbitrary smooth functions and C ∈ R is a real constant.
2. Lie algebra g of the pseudogroup G consists of vector fields

(1.1) X := a(x)∂x +
(
(a′(x)/2 + c)y + b(x)

)
∂y,

where a, b ∈ C∞(R) are arbitrary smooth functions and c ∈ R is a real constant.

Proof. To prove Statement 2 we will use the standard constructions from the
theory of differential equations (see, for example, [1]). Let X = α(x, y)∂x+β(x, y)∂y

be an arbitrary vector field on the 0-jet space J0R2. Denote by X(2) its prolongation
in 2-jet space J2R. Then the class of equations {q = F (x, y)} is preserved after

shifts along field X(2) if and only if X(2)(q−F (x, y))
∣∣
q=F (x,y) = F̃ (x, y) (here F is

an arbitrary function).
This condition is the system of differential equations on the coefficients α and

β of the vector field X . With the help of DETools package of the Maple software,
we obtain

αy = 0, βyy − 2αxy = 0, 2βxy − αxx = 0.

From the first equation we get α(x, y) = a(x), from the second one—β(x, y) =
k(x)y + b(x), and from the third one—k(x) = a′(x)/2 + c. Hence, an arbitrary
vector field X , which preserves the class of equations {q = F (x, y)}, has form (1.1).

Statement 1 immediately follows from Statement 2. �

For reasons of simplicity we will consider not point symmetry pseudogroup
G itself but only its connected component of the identity G+. Pseudogroup G+

consists of transformations

x 7→ X(x), y 7→ C ·
√

X ′(x) y + A(x),

where C > 0 and X ′(x) > 0. Then differential invariants for the Lie algebra g and
pseudogroup G+ coincide (see Theorem 1.2).

The action of the Lie algebra ĝ on differential equations q = F (x, y) induces
the action on the right hand sides of these equations. This action is defined by
vector fields
(1.2)

X̂ := a(x)∂x +
(
(a′(x)/2 + c)y + b(x)

)
∂y +

(
a′′′(x)y/2 + b′′(x)− (3a′(x)/2− c)F

)
∂F .

Denote the Lie algebra of these vector fields by ĝ.
The corresponding action of the pseudogroup G+ looks as follows:

x 7→ X(x), y 7→ C ·
√

X ′(x)y + A(x),(1.3)

F 7→
√

X ′
3

C
F − 2X ′X ′′′ − 3(X ′′)2

4(X ′)2 y − A′′X ′ −A′X ′′

C
√

X ′
3 .
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The pseudogroup of these transformations will be denoted by Ĝ+.

Remark 1.1. Note that the pseudogroup Ĝ+ preserves the class of ODEs
y′′ = F (x, y) with the rational right hand side in variable y. Moreover, it preserves
the degrees of the numerator and denominator of the right hand side F .

Now we study the action of the group Ĝ+ on the right hand sides F of our ODEs
{q = F (x, y)}. We shall count the number of independent differential invariants
in each order and after that we calculate the algebra of differential invariants of

Ĝ+-action.

Remark 1.2. The calculations of differential invariants with the help of Car-
tan’s moving frame method was developed by school of Olver (see, for exam-
ple, [16, 17, 20–22, 31–33, 37]). Here we use an alternative technique based on
the geometry of jet spaces and theory of differential equations (see, for exam-
ple, [1,5,7,23,25]).

1.2. Number of independent differential invariants. Denote by Jk the
k-jet space of functions F ∈ C∞(R2). Canonical coordinates on this space will
be denoted as (x, y, u, u10, u01, . . . , uij), where i + j 6 k. Actions (1.3) and (1.2)

of the pseudogroup Ĝ+ and Lie algebra ĝ on the space J0 canonically prolong to
the actions on k-jet space Jk for all k and to the actions on the infinite-jet space

J∞ := lim←−Jk. Denote by X̂(k) the prolongations of the vector fields X̂ ∈ g, by ĝ
(k)

the prolongation of Lie algebra ĝ and by Ĝ
(k)
+ the prolongation of pseudogroup Ĝ+.

Recall the following definition.

Definition 1.1. 1. A differential invariant of order 6 k for the action of

pseudogroup Ĝ+ on space Jk is function I, which is constant along all vector fields

X̂(k) ∈ ĝ
(k), i.e., X̂(k)(I) = 0.

2. An invariant derivation is derivation ∇ : C∞(J∞)→ C∞(J∞), which com-

mutes with the action of Lie algebra ĝ
(∞), i.e., ∇ ◦ X̂(∞) = X̂(∞) ◦ ∇ for all

X̂(∞) ∈ ĝ
(∞).

Remark 1.3. According to the Lie–Tresse theorem, the algebra of differential
invariants is locally generated by the finite number of differential invariants and
invariant derivations. It is proved in work [24] that under certain conditions this
theorem is true not locally, but globally. But it is necessary to clarify the notion of
a differential invariant. Namely, in [24] it is required from invariants to be rational
functions on jet space. In this section we do not require this condition, because
derivation ∇2 includes the factor

√
u03 (see Theorem 1.1). Although it is possible

to overcome this difficulty, the computations and formulas will become much more
complicated. That’s why we will consider only a local description in this section
(for the global results see section 2).

The first main result in this section is the computation of the numbers of
independent differential invariants of pure order k.
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Theorem 1.1. The numbers of independent differential invariants of pure or-

der k for the action of the pseudogroup Ĝ
(k)
+ on k-jet space Jk are given in the

following table:

order of invariants 6 3 4 5 6 . . . k

number of invariants 0 2 4 5 . . . k − 1

Proof. To compute the number of independent differential invariants we use
the construction from [5, 23]. First of all, we describe the prolongations of the
vector field (1.2) in k-jet spaces Jk. Denote
(1.4)
Φ := −a(x)u10−

(
(a′(x)/2 + c)y + b(x)

)
u01 +

(
a′′′(x)y/2 + b′′(x)− (3a′(x)/2− c)u

)

the generating function of this vector field (see [1]). Then the prolongation X̂(k)

can be written in the following way:

X̂(k) =
[
a(x)

d

dx
+

(
(a′(x)/2 + c)y + b(x)

) d

dy

]∣∣∣
Jk

+
∑

i+j6k

dkΦ

dxidyj
∂uij .

Now consider the canonic projection πk,k−1 : Jk → Jk−1, the jet sequence
θi := [F ]i(0,0) (where F ∈ C∞(R2) is an arbitrary smooth function in the general

position) and the fiber Vθk−1
of this projection over jet θk−1. Introduce the isotropy

subalgebra ĝθk−1
⊂ ĝ

(k), which consists of the tangent vectors X̂
(k)
θk−1

vanishing in

point θk−1:

ĝθk−1
=

{
X̂

(k)
θk−1

: X̂
(k−1)
θk−1

= 0
}

.

It follows from formula (1.4) that the vectors from the isotropy subalgebra
ĝθk−1

depend on the variables ai := a(i)(0), bj := b(j)(0), c, where i, j 6 k + 2.
Isotropy subalgebra ĝθk−1

acts on the fiber Vθk−1
. The number of independent

differential invariants of pure order k equals the codimension of the general orbit
of this action.

The dimension of the fiber Vθk−1
equals (k+1). Now let us compute the isotropy

subalgebras.

Put Fij := ∂i+jF
∂xi∂yj (0, 0) (we recall that these numbers are the coordinates of

jets θk−1). We shall prove that these algebras look as follows:

ĝθ0
=

{[
b3 − 5F10a1/2− 3Fa2/2− F01b1 + F10c

]
∂u10 +

[
a3/2− 2F01a1

]
∂u01

}
,

ĝθ1
=

{[
b4 − 4F10a2 − (7F20 + 15FF01)a1/2− 2F11b1 + (F20 + FF01)c

]
∂u20

+
[
a4/2− 2F01a2 − 3F11a1 − F02b1

]
∂u11 − (F02/2)

[
5a1 + 2c

]
∂u02

}
,

ĝθ2
=

{[
b5 − 15(F20 + FF01)a2/2− (7F30 + 21FF11 + 27F10F01)a1

− (3F21 + 3FF02 + F 2
01)b1

]
∂u30

+
[
a5/2− 5F11a2 − (4F21 + 4FF02 + 8F 2

01)a1 − 2F12b1
]
∂u21

+
[
5F02a2/2 + F12a1 + F03b1

]
∂u12 −

[
2F03a1

]
∂u03

}
,

ĝθ3
=

{[
b6 −

2

5F02

(
10F31F02 − 12F30F03 + 32F10F01F03 − 21FF11F03
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+ 15FF02F12 + 15F01F11F02 + 35F10F 2
02

)
b1

]
∂u40

+
[
a6/2− 1

5F02

(
15F02F22 − 18F03F21 − 3FF02F03

− 16F 2
01F03 + 25F01F 2

02

)
b1

]
∂u31

−
[ 2

5F02
(5F02F13 − 6F12F03)b1

]
∂u22 −

[ 1

5F02
(5F02F04 − 6F 2

03)b1

]
∂u13

}
,

ĝθk−1
=

{[
bk+2

]
∂uk,0 +

[
ak+2/2

]
∂uk−1,1

}

(here k > 5; vector coefficients are in the square brackets).
Isotropy subalgebras ĝθ0

, . . . , ĝθ3
were found by direct computations with the

help of DETools package of the Maple software. To prove the general formula
for ĝθk−1

we use the induction by k. For k = 5 this formula is true. From the

conditions X̂
(k−1)
θk−1

= 0, formula (1.1) and the induction hypothesis, we can find

ai = bj = c = 0 for all i, j 6 k + 1. Then we get di+jΦ
dxidyj (θk−1) = 0 for all i, j

such that i + j 6 k, except cases (i, j) = (k, 0) and (i, j) = (k − 1, 1) (in the first
case the derivative of function Φ contains bk+2, and in the second case it contains
ak+2/2). Hence, according to formula (1.1) the vectors from isotropy subalgebras
ĝθk−1

equal

X̂
(k)
θk−1

=
dk+2Φ

dxk+2 (θk−1)∂uk,0 +
dk+2Φ

dxk+1dy
(θk−1)∂uk−1,1

= bk+2∂uk,0 + (ak+2/2)∂uk−1,1.

Finally, we obtain that co-dimensions of the orbits for the action of isotropy
subalgebras ĝθk−1

on the fibers Vθk−1
equal 0 if k 6 3, 2 if k = 4 and (k − 1) if

k > 5. �

Remark 1.4. The description of the singular k-jets (i.e., k-jets with non-
maximal dimension of the ĝθk−1

-orbits) follow from the proof of Theorem 1.1.
Namely, the singular jets are

• 2-jets and 3-jets in set {u02 = 0},
• 4-jets in sets

{u02 = 0}, {5u02u04 − 6u2
03 = 0}, {5u02u13 − 6u12u03 = 0},

• k-jets (k > 5), which project to the singular 4-jets.

The right hand sides of ODEs q = F (x, y) in these singular cases are equal to

F (x, y) = C0(x) + C1(x)y +
C2(x)

(y + C3(x))3 or

F (x, y) = C0(x) + C1(x)y +

∫ ( ∫
dy

(
C2(x) + C3(y)

)5

)
dy.

Also note that according to the classical result of Cartan [9], all second order
differential equations with the right-hand side F (x, y) = C1(x)y + C2(x) are point-
equivalent.
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1.3. Algebra of differential invariants. Using Theorem 1.1, we now solve
the first part of the original Lie problem. Namely, we describe the algebra of

differential invariants for the action (1.3) of pseudogroup Ĝ+ on the space of smooth
functions C∞(R2).

Theorem 1.2. 1. The algebra of differential invariants for the action of pseu-

dogroup Ĝ+ on the space of smooth functions C∞(R2) is locally generated by dif-
ferential invariants

J :=
u02u04

u2
03

,

K :=
u03

u3
02

(
(u22 + 5u01u02 + uu03) +

12u13u03u12 − 6u04u2
12 − 5u2

13u02

5u04u02 − 6u2
03

)

of order 4 and by invariant derivations

∇1 :=
u02

u03
· d

dy
,∇2 :=

√
u03

u02

( d

dx
− 5u13u02 − 6u12u03

5u04u02 − 6u2
03
· d

dy

)
.

This algebra locally separates the Ĝ+-orbits of non-singular jets.
2. Derivations ∇1 and ∇2 have the following commutation relation:

(1.5) [∇1,∇2] =
5J01

6− 5J
· ∇1 + (J/2− 1) · ∇2.

3. Syzygies of the algebra of differential invariants are generated by a unique
relation between the invariants of order 6:

(5J − 6)
(
(J02 −K20) + (3J − 5)K10 − (2J2K − 7JK + 10J + 6K − 16)

)

+
(
5J10K10 + (3K − 25)J10 − 10J2

01

)
= 0(1.6)

and by the commutative relation (1.5) (here Lij := ∇j
2∇i

1L).

Remark 1.5. Differential invariant J and invariant derivation ∇1 have a sim-
ple geometric sense. Consider an arbitrary point x0 ∈ R in the general position.
Isotropy subalgebra ĝx0

is the Lie subalgebra in affine algebra ga(2) and it acts on
the two-dimensional space with coordinates (y, u). Function J and derivation ∇1

are the invariants for this affine action.
Unfortunately, the geometric sense of invariant K and derivation ∇2 is not

clear. They were obtained by direct computations with the help of DETools package
of the Maple software.

Proof. Statement 2 and the invariance of the objects from Statement 1 can
be checked by direct computations.

Now let us prove Statements 1 and 3. We compute the number of independent
differential invariants of pure order k, which are obtained from the basic invariants
J and K by applying the derivations ∇1 and ∇2.

For k 6 3 there are no differential invariants according to Theorem 1.1.
For k = 4 according to Theorem 1.1 there are only two independent differential

invariants. These invariants are J and K.
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For k = 5 according to Theorem 1.1 there exist four independent differential
invariants. Let us prove that invariants J10, J01, K10 and K01 are independent.
Indeed, denote by d1 and d2 symbols of the total derivations d/dx and d/dy respec-
tively. Then the symbols of invariants J10, J01, K10 and K01 up to the coefficients
are equal to

d5
2, d5

2 + d4
2d1, d5

2 + d4
2d1 + d3

2d2
1, d5

2 + d4
2d1 + d3

2d2
1 + d2

2d3
1.

It is clear that these symbols are independent. Hence, the invariants J10, J01, K10

and K01 are also independent.
Now consider the case k = 6. According to Theorem 1.1, in this case there are

five independent differential invariants. On the other hand, after the differentiation
of functions J and K we get six differential invariants. Hence, there is a unique
syzygy (1.6) between them (this syzygy was also found with the help of Maple).

Now consider the case of arbitrary k > 7. Let us prove that there exist k − 1
independent invariants of order k among invariants Jij , Kij (where i + j = k − 4).

Let us take the invariants Kij (where i + j = k − 4), Jk−4,0 and Jk−3,1. These
invariants are functionally independent, because the symbols of invariants Jk−4,0

and Jk−3,1 up to coefficients equal dk
2 and dk

2 +dk−1
2 d1, whereas symbols of invariants

Kij up to coefficients equal

di+2
2 (dj+2

1 + dj+1
1 d2 + · · ·+ d1dj+1

2 + dj+2
2 ).

So we find (k − 1) independent differential invariants of pure order k.
Finally, after the differentiation of syzygy relation (1.6) and using commutative

relation (1.5) one can express all other invariants through Kij , Jk−4,0 and Jk−3,1.
Hence, all syzygies of our algebra of differential invariants are generated by the
relation (1.6).

Theorem 1.2 is proved. �

Using the commutator trick introduced in [32], we get the following corollary.

Corollary 1.1. The algebra of differential invariants for the action of pseu-

dogroup Ĝ+ on the space of smooth functions C∞(R2) is locally generated by dif-
ferential invariant K and invariant derivations ∇1, ∇2.

1.4. Classification. Now we are ready to solve the second part of the origi-
nal Lie problem and classify ODEs q = F (x, y) with respect to the action of point

symmetry pseudogroup Ĝ+. However, here we have some problems because our

symmetry group Ĝ+ has an infinite dimension. So, if we get the equivalence crite-
rion on the level of jet with arbitrary order, we can not claim that this criterion will
work for smooth and even analytic functions. That’s why the ideas and methods
that we used for the finite-dimensional groups (see, for example, [8]) do not work
here. We suggest another approach.

First of all, we need the following

Definition 1.2. Function F ∈ C∞(R2) is said to be regular, if the restric-
tions of invariants K and K10 on the graph L4

F are functionally independent and
K10K11 −K01K20 6= 0 on L5

F .
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For a regular function F one can express the restrictions of the invariants K01

and K20 through the restrictions of the invariants K and K10:

(1.7) K01(F ) = K01(K(F ), K10(F )), K20(F ) = K20(K(F ), K10(F )).

The following theorem holds.

Theorem 1.3. Let F and F̃ be regular smooth functions, which are analytic

in variable y. Then they are locally Ĝ+-equivalent if and only if the corresponding
sets of dependencies (1.7) coincide.

Proof. If functions F and F̃ are Ĝ+-equivalent, then obviously sets (1.7) for
them coincide. Let us prove the converse statement.

We will follow the ideas of Lychagin from [28]. Functions K(F ) and K10(F ) can

be chosen as coordinate functions in the neighborhood U ⊂ L5
F and functions K(F̃ )

and K10(F̃ ) can be chosen as coordinate functions in the neighborhood Ũ ⊂ L5
F̃

.

As pseudogroup Ĝ+ acts transitively on base J0, then without loss of generality

one can assume that the neighborhoods U and Ũ have a nonempty intersection,
which consists an open subset. Hence, there exist such points a and b ∈ R2 such

that 6-jets [F ]6a and [F̃ ]6b from this intersection are non-singular and have the same
coordinates.

It follows from system (1.7), corollary 1.1 and regularity condition that the

values of all differential invariants of the fifth order in 6-jets [F ]6a and [F̃ ]6b coincide.

So, according to Theorem 1.1 these 6-jets are Ĝ+-equivalent, i.e., there exists an

element ĝ6
(a,b) ∈ Ĝ

(6)
+ such that ĝ6

(a,b) ◦ [F ]6a = [F̃ ]6b .

Taking the prolongations of system (1.7) and applying the same ideas in each

order k > 6 we get that for all k there exists an element ĝk
(a,b) ∈ Ĝ

(k)
+ such that

ĝk
(a,b) ◦ [F ]ka = [F̃ ]kb . Put ĝ∞

(a,b) := {ĝk
(a,b)} ∈ Ĝ

(∞)
+ , hence ĝ∞

(a,b) ◦ [F ]∞a = [F̃ ]∞b .

Now let us prove that there exists an elementĝ ∈ Ĝ+ such that ĝ ◦F = F̃ , i.e.,
that

√
X ′

3

C
F

(
X, C

√
X ′y + A

)
− 2X ′X ′′′ − 3(X ′′)2

4(X ′)2 y(1.8)

− A′′X ′ −A′X ′′

C
√

X ′
3 − F̃ (x, y) = 0.

First of all, note that constant C in (1.8) can be taken from the element ĝk
(a,b).

Then we need to find functions X and A.
Denote by H = H(x, y) the left part of equation (1.8). Let a = (x0, y0) ∈ R2

be such a point, that there exist point b ∈ R2 and element ĝ∞

(a,b) ∈ Ĝ
(∞)
+ such that

ĝ∞

(a,b) ◦ [F ]∞a = [F̃ ]∞b . Consider the system of equations H(x, y0) = Hy(x, y0) = 0.

This is a system of ordinary differential equations in the unknown functions X
and A.

As infinite jets [F ]∞
ã

and [F̃ ]∞
b̃

are Ĝ
(∞)
+ (here ã and b̃ are taken from the small

neighborhoods of points a and b correspondingly) this system is formally integrable
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in each point from a small neighborhood of point a. Hence, this system also has a
smooth solution.

Now we only have to prove that this solution satisfies equation (1.8). Note
that equation (1.8) is formally solvable and functions X and A are found from
the relations H(x, y0) = Hy(x, y0) = 0. Then, all derivatives of function H by
variable y vanish in point y = y0 (because if some derivative of function H in

point ã = (x, y0) is non-zero, then it means that infinite jets [F ]∞
ã

and [F̃ ]∞
b̃

are

not equivalent). Finally, as functions F and F̃ are analytic in variable y, then
function H is also analytic in variable y. Hence, H(x, y) = 0, because all its partial
derivatives in variable y vanish in point y = y0. �

2. Differential equations with algebraic right-hand sides

In this section we solve the so–called algebraic Lie problem. Namely, now we
consider the ODEs y′′ = F (x, y) with rational right hand sides over the field C of
complex numbers. Moreover, we also consider the symmetry group only for this
class of equations. It appears that this group has only one functional parameter

instead of the group Ĝ+ from the previous section, and it is a subgroup of the
plane Cremone group Cr(2) of birational automorphisms of CP 2. In this section
we provide the analogs of the results from the smooth case.

2.1. Action of symmetry group. First of all, we have to find the symmetry
group G for the class of ODEs q = F (x, y) with the rational right hand sides.

Proposition 2.1. 1. Symmetry group G consists of the following transforma-
tions:

x 7→ Ax + B

Cx + D
, y 7→ λ

Cx + D
y + R(x),

where R is a rational function and A, B, C, D, λ ∈ C are arbitrary constants and
λ 6= 0.

2. Lie algebra g associated with G consists of the following vector fields:

X := (ax2 + 2bx + c)∂x + ((ax + b + d)y + r(x))∂y ,

where r is a rational function and a, b, c, d ∈ C are arbitrary constants.

Proof. It follows from proposition 1.1 that transformations from our group
G look as follows:

x 7→ X(x), y 7→ λ ·
√
|X ′(x)|y + R(x).

As function X is rational, then it is a linear fraction: X(x) = Ax+B
Cx+D

. Finally,
function R should also be rational.

Statement 2 follows from Statement 1. �

Remark 2.1. Symmetry group G is connected. Therefore, invariants for the
action of g coincide with the invariants of the action of G.
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Symmetry group G and Lie algebra g act on the class of differential equations
{q = F (x, y)}. This action induces the action on the right-hand sides of these
equations. The latter is given by the vector fields

X̂ := (ax2 + 2bx + c)∂x + ((ax + b + d)y + r(x))∂y + (r′′(x)− (3ax + 3b− d)F )∂F .

By ĝ we denote Lie algebra of such vector fields.
Corresponding action of G is given by the following transformations:

x 7→ Ax + B

Cx + D
, y 7→ λ

Cx + D
y + R(x),

F 7→ F

λ(Cx + D)3 −
R′(x)

λ
− (Cx + D)R′′(x)

λ
.(2.1)

We denote the group of these transformations by Ĝ.

Remark 2.2. Consider theta-function of two complex variables z and τ that
is given by the series θ(z, τ) =

∑
n∈Z

exp(πin2τ + 2πinz). The substitutions in the

variables z, τ for which θ is quasi-periodic form a group SL(2,Z) ⊂ Ĝ which acts
by transformations

(z, τ) 7→
( z

cτ + d
,

aτ + b

cτ + d

)
.

This action is similar to action (2.1) of the symmetry group G on the right hand
sides of the equations q = F (x, y).

2.2. Rational differential invariants. In this section we introduce the so-
called rational differential invariants and invariant derivations in order to describe
the field of differential invariants.

Now by a differential invariant of order 6 k we understand a rational function
I on Jk which is invariant under the prolonged action of ĝ(k).

One defines an invariant derivation as derivation ∇ : C∞(J∞) → C∞(J∞)
which is invariant with respect to prolongations of g and has rational coefficients.

Now let us compute the number of independent differential invariants of order
k.

Theorem 2.1. The number mk of independent differential invariants of order

k for the action of group Ĝ on J
k is presented in the following table:

order 0 1 2 3 4 . . . k
mk 0 0 0 2 4 . . . k

The growth of the dimensions of the space of differential invariants is an im-
portant invariant characterizing the freedom in the equivalence problem.

Consider the Poincare series

P (t) =

∞∑

k=0

mktk = 2t3 +

∞∑

k=4

ktk =
t3(2− t2)

(1 − t)2 .

Poincare function P (t) appears to be rational. One of the problems in [3] is stated
as follows: are the Poincare series of numbers of moduli in jet spaces rational



ON CLASSIFICATION PROBLEMS IN THE THEORY OF DIFFERENTIAL EQUATIONS 45

functions in the majority of local problems in the analysis? For a sufficiently broad
class of problems, the answer to this question is affirmative (see [24]).

Proof. The proof of this Theorem is similar to the proof of Theorem 1.1. We
just give the description of isotropy subalgebras ĝθk−1

and find the singular orbits.
Isotropy algebras have the following form

ĝθ0
= {[r2 + (d− 3b)F ]∂u},

ĝθ1
= {[r3 − 3Fa− F01r1 − 5F10b]∂u10 − [4F01b]∂u01},

ĝθ2
=

{
[r4 − 2F11r1 − 8F10a + F20d + FF01d]∂u20

− [F02r1 + 4F01a]∂u11 − [F02d]∂u02
}

,

ĝθ3
=

{[
r5 −

1

4F01
(4F 3

01 − 3FF01F02 − 15F02F20 + 12F12F01)r1

]
∂u30

−
[ 1

2F01
(4F12F01 − 5F02F11)r1

]
∂u21 −

[ 1

4F01
(4F03F01 − 5F 2

02)r1

]
∂u12

}
,

ĝθk−1
= {[rk+2]∂uk0},

where Fij := ∂i+jF
∂xi∂yj (0, 0), ri := r(i)(0) and k > 4.

The description of singular orbits in space J
k follows from the explicit form of

the isotropy algebras.
There is one orbit {F01 = 0} of incomplete dimension in space J

1.

There are two types of orbits of incomplete dimension in space J
2: orbit {F02 =

0} and orbits, whose projections in J
1 are singular.

In a similar way, the orbits of incomplete dimension in space J
3 are orbits lying

in {4F12F01 − 5F02F11 = 0}, {4F03F01 − 5F 2
02 = 0} and orbits, whose projections

in J2 have an incomplete dimension. All these orbits are called singular. Finally,

Ĝ-orbits in spaces J
k are called singular, if their projections in J

3 are singular.
Now we write down the equations that belong to singular orbits:

F01 = 0⇔ F (x, y) = a(x);

F02 = 0⇔ F (x, y) = a(x)y + b(x);

4F12F01 − 5F02F11 = 0⇔ F (x, y) = c3
√

2c1x + c2 · y + a(x);

4F03F01 − 5F 2
02 = 0⇔ F (x, y) =

a(x)

(y + b(x))3 + c(x). �

2.3. Field of differential invariants. We are ready now to describe the field
of differential invariants.

Theorem 2.2. 1. The field of differential invariants for the Ĝ action is gen-
erated by the differential invariants

J :=
u01u03

u2
02

,

K :=
1

u2
01
·
(4u01u2

12 − 10u02u11u12 + 5u2
11u03

4u03u01 − 5u2
02

− (uu02 + u21

)
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and by invariant derivations

∇1 :=
u02

u03
· d

dy
,

∇2 :=
1

u2
02
·
(

u13 −
4u01u12u04 + 6u11u2

03 − 6u02u03u12 − 5u02u11u04

4u01u03 − 5u2
02

)

·
( d

dx
− 4u01u12 − 5u02u11

4u01u03 − 5u2
02
· d

dy

)
.

2. Derivations ∇1 and ∇2 satisfy the following commutation relation:

(2.2) [∇1,∇2] =
5J01

J(5− 4J)
∇1 +

J11J − J01

2J01J
∇2

3. Syzygies between the invariants are generated by one relation between the
invariants of order 5:

(4J − 5)
(
J02 + 2J2J01K20 − 2(J − 3)JK10J01 − 2(KJ − 2K − 1)J01

)

−
(
(10K10 + 6K + 8)JJ10 − 16J01

)
J01 = 0

and also by (2.2) (where Lij := ∇j
2∇i

1L).

Remark 2.3. Commutative relation (2.2) is more complicated than relation (1.5)
in the smooth case, and the commutator trick from [32] does not work.

Proof. The proof of this Theorem is similar to the proof of Theorem 1.2. We
just need to show that each rational differential invariant can be represented as a
rational function in basic invariants J and K and their invariant derivations.

We have mk = k independent invariants in the field of differential invariants
of order k. Thus, the transcendence degree of this field is equal to k. This implies
that the field of differential invariants of order k is generated by Kij for i+j = k−3
and Jk−3,0, Jk−4,1 due to the corollary of the Rosenlicht theorem (see [38]). �

2.4. Classification theorem. In this subsection we solve the equivalence
problem for the ODEs of the form y′′ = F (x, y) such that F is a rational function.

Equations y′′ = F1(x, y) and y′′ = F2(x, y) are said to be Ĝ-equivalent if there

exists such an element g ∈ Ĝ that g ◦ F1 = F2. Note that this equation can be
interpreted as a differential equation in function R(x) (see (2.1))

1

λ(Cx + D)3 F1

( Ax + B

Cx + D
,

λ

Cx + D
y + R(x)

)

− R′(x)

λ
+

(Cx + D)R′′(x)

λ
= F2(x, y).

Consider J(F ), K(F ), J10(F ), J01(F ), K10(F ), K01(F ), where I(F ) = I|L4
F

is a

restriction of invariant I on the graph L4
F ⊂ J4 of F . Thus, any rational function

F (x, y) defines a rational morphism

πF : C2 → C
6, πF : a 7→

(
J([F ]4a), K([F ]4a), . . . , K01([F ]4a)

)
.
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Denote by DF a set of dependencies between rational functions J(F ), K(F ),. . . ,
K01(F ) and by ΣF a closure of the image of morphism πF in the Zariski topology.
Note that DF is zero ideal of ΣF .

We say that F is regular if invariants J(F ), K(F ) and the restrictions of in-

variant derivations ∇1,∇2 on the graph L4
F ⊂ J

4 of F are well defined.

Theorem 2.3. 1. Equations y′′ = F1(x, y) and y′′ = F2(x, y) with regular

right-hand sides are Ĝ-equivalent if and only if ΣF1
= ΣF2

.
2. Equations y′′ = F1(x, y) and y′′ = F2(x, y) with regular right-hand sides are

Ĝ-equivalent if and only if DF1
= DF2

.

Proof. If F1 and F2 are Ĝ-equivalent, then obviously DF1
and DF2

coincide.
The same is true for ΣF1

and ΣF2
.

Let us prove the converse statements. Assume that for two functions F1 and
F2 one has ΣF1

= ΣF2
= Σ. Following [8] we can say that DF defines ΣF . Then

D = DF1
= DF2

⇔ ΣF1
= ΣF2

.
For any generic point a1 ∈ C2 there exists a point a2 ∈ C2 such that πF1

(a1) =
πF2

(a2). Hence, the values of basic differential invariants of order 4 in 4-jets [F1]4a1

and [F1]4a2
coincide. It follows from Theorem 2.2 that there exists g4

(a1,a2) ∈ Ĝ
(4)
(a1,a2)

such that g4
(a1,a2) ◦ [F1]4a1

= [F2]4a2
, where Ĝ

(4)
(a1,a2) ⊂ Ĝ(n) is a subgroup of diffeo-

morphisms taking a1 to a2.
The values of basic differential invariants of order 4 in 4-jets [F1]4a1

and [F1]4a2

coincide in all generic points a1 ∈ C2. Consider the elements of the ideal D and their
derivatives. Invariants of order 5 are included linearly in the obtained expressions.
Therefore values of these differential invariants in 5-jets [F1]5a1

and [F1]5a2
coincide

in all generic points a1 ∈ C
2. In a similar way differential invariants of order k

coincide for [F1]ka1
and [F2]ka2

. As these invariants separate non-singular orbits, then,

according to Theorem 2.2, we get gk
(a1,a2) ∈ Ĝ

(k)
(a1,a2) such that gk

(a1,a2) ◦ [F1]ka1
=

[F2]ka2
. Then for any generic point a1 ∈ C2 there exists g∞

(a1,a2) = {gk
(a1,a2)} ∈

Ĝ
(∞)
(a1,a2) such that g∞

(a1,a2) ◦ [F1]∞a1
= [F2]∞a2

.

Now we construct g ∈ Ĝ such that g ◦ F1 = F2. Following Lychagin [28], we
consider the equation

H(x, y) = g ◦ F1 − F2 = 0.

Also consider equation H(x, y0) = 0, where (x0, y0) = a1 is a generic point in C2

and x ∈ U(x0) for some neighborhood of x0. Constants A, B, C, D can be found
from the explicit form of g∞. So it takes only to find R(x) to establish required

g ∈ Ĝ. Condition H(x, y0) = 0 is a differential equation on R(x). So it has a

solution that gives us element g ∈ Ĝ such that [g]0a1
◦ [F1]0a1

= [F2]0g(a1) for any

generic point a1 ∈ C2.

Now we prove that the constructed element g ∈ Ĝ transforms F1 into F2,

i.e., H(x, y) = 0. Since [F1]ka1
and [F2]k

g(a1) are Ĝk-equivalent, it follows that

∂k
y H(x, y0) = 0 for every k and any generic point a1 ∈ C

2. It implies that
H(x, y) = 0 if H is holomorphic.
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Finally, we claim that R(x) is rational. Ĝ-action on F (x, y) is linear in the
variable y (see (2.1)). So function R(x) can be found explicitly by equating the
coefficients of yn−1 for the denominators of g ◦ F1 and F2. �

2.5. Examples. Now let us give some examples of dependencies between the
invariants. Due to the computational complexity it is difficult to describe the set
DF , even if the function F is a polynomial. So we calculate the dependencies only
between some of the invariants. Let us put j := J(F ), k := K(F ), j1 := J10(F ),
k1 := K10(F ), j2 := J01(F ) and k2 := K01(F ).

Consider the function F = x2y − x + y3.
1. Dependence between j and j1: j = 1

2 (1− j1).
2. Dependence between j, k and k1:

576k2
1j11 +

(
(−1152− 576k1)k − 1440k2

1 + 3456k1
)
j10

+
(
144k2 + (−720k1 + 8928)k − 16800k1 + 3456 + 900k2

1

)
j9

+
(
720k2 + (−33000 + 1800k1)k + 28200k1 − 20064

)
j8

+
(
900k2 + 58890k− 21450k1 + 39784

)
j7 +

(
− 33690− 45525k + 8025k1

)
j6

+
(
− 1125k1 + 16575k + 13585

)
j5 +

(
− 2325− 2250k

)
j4 + 100 j3 = 0.

3. Dependence between j, k and j2.

288j10k2 + (−288k2 + 576k)j9 + (288 + 72k2 + (−768− 192j2)k)j8

+((336 + 336j2)k − 480− 384j2)j7+ ((−120j2 − 48)k + 296 + 32j2
2 + 1072j2)j6

+ (−80j2
2− 1060j2 − 80)j5+ (8 + 50j2

2 + 460j2)j4− 75j2j3 = 0.

4. Dependence between j, k and k2.

2654208k4j16 + (−1327104k2k2 − 14266368k4 + 15178752k3)j15

+(24976512k4− 83849472k3 + (34587648 + 6884352k2)k2

−8460288kk2 + 165888k2
2)j14

+(−15603840k4 + 160519104k3 + (−202818816− 12441600k2)k2

+(34255872 + 54134784k2)k − 10450944k2− 829440k2
2)j13

+(3175200k4− 127219248k3 + (442974528 + 9201600k2)k2

+(−214472448− 136926720k2)k + 76806144k2 + 1555200k2
2 + 12192768)j12

+(41576760k3+ (−2268000k2− 461963952)k2+ (527356224 +176126400k2)k

−1296000k2
2 − 235915776k2− 81236736)j11

+(−2986200k3 + 254684088k2 + (−670334928− 122142600k2)k

+405000k2
2 + 397399680k2 + 220477248)j10

+(−648000k3− 75315960k2 + (43591500k2 + 495200712)k

−323744976− 403607880k2)j
9
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Figure 1. The graph defined relationship between:
j, k, k1 (left-up), j, k, j2 (right-up),
j, k, k2 (left-down), j1, k, j2 (right-down)

+(11140200k2 + (−6277500k2 − 223108920)k + 254698200k2 + 289396520)j8

+(−166143160− 98275500k2− 648000k2 + 61149000k)j7

+(−9493800k + 21380625k2 + 62041680)j6

+(−14657800 + 648000k− 2025000k2)j5+ 1998200j4− 120000j3 = 0.

Now consider the function F =
x2 + y2

x− y
.

1. Dependence between j and j1: j = 3
2 (1− j1).

2. Dependence between j, k and j2:

2048j14k2 + (−21504k2 − 12288k)j13 + (96768k2 + 165888k + 18432)j12
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+ (−248832− 241920k2 + (−9216j2 − 967680)k)j11

+ (362880k2 + (80640j2 + 3193344)k + 27648j2 + 1534464)j10

+ (−326592k2 + (−293760j2− 6531840)k− 324864j2 − 5660928)j9

+ (163296k2 + (570240j2 + 8491392)k + 10368j2
2 + 1607040j2 + 13716864)j8

+ (−34992k2 + (−622080j2 − 6858432)k− 72576j2
2 − 4354560j2− 22534848)j7

+ ((361584j2 + 3149280)k + 202824j2
2 + 6998400j2 + 24984288)j6

+ ((−87480j2 − 629856)k− 282852j2
2 − 6683472j2− 17950896)j5

+ (196830j2
2 + 3516696j2 + 7558272)j4+ (−54675j2

2 − 787320j2 − 1417176)j3 = 0.

Figure 2. The graph defined relationship between:
j, k, j2 (left), j1, k, j2 (right)

3. Dependence between j1, k and j2

81j14
1 k2 + (−567k2 + 324k)j13

1 + (1701k2 − 1296k + 324)j12
1

+(−972− 2835k2 + (108j2 + 1620)k)j11
1

+(2835k2 − 558kj2 + 216j2 + 1296)j10
1

+(−1701k2 + (1170j2 − 1620)k − 468j2 − 1296)j9
1

+(567k2 + (−1260j2 + 1296)k + 36j2
2 + 72j2 + 972)j8

1

+(−81k2 + (720j2 − 324)k − 120j2
2 + 432j2 − 324)j7

1
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+(−198kj2 + 145j2
2 − 288j2)j6

1

+(18kj2 − 75j2
2 + 36j2)j5

1 + 15j2
2j4

1 − j3
1j2

2 = 0
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