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CONTACT BLOW UP

AND CYLINDRICAL CONTACT HOMOLOGY

OF TORIC CONTACT MANIFOLDS

OF REEB TYPE

Aleksandra Marinković

Abstract. Let (V, ξ) be a toric contact manifold of Reeb type that is a pre-
quantization of a toric symplectic manifold (M, ω). A contact blow up of (V, ξ)
is the prequantization of a symplectic blow up of (M, ω). Thus, a contact blow
up of (V, ξ) is a new toric contact manifold of Reeb type. In some special cases
we are able to compute the cylindrical contact homology for the contact blow-
up using only the cylindrical contact homology of the contact manifold we
started with.

1. Introduction

A toric contact manifold of Reeb type is a compact toric contact manifold with
an invariant contact form whose Reeb vector field corresponds to an element of the
Lie algebra of the torus. This large family of toric contact manifolds was introduced
by Boyer and Galicki in [6]. They showed that toric contact manifolds of Reeb
type are analogue of toric symplectic manifolds. More precisely, in a similar way
as Delzant [8] showed that any compact toric symplectic manifold is a symplectic

reduction of (Cd, i
2

∑d

j=1 dzj ∧ dz̄j), for some d ∈ N, Boyer and Galicki showed
that any toric contact manifold of Reeb type is a contact reduction of the standard

contact sphere (S2d−1, i
4

∑d

j=1(zjdz̄j − z̄jdzj)), for some d ∈ N [6, Theorem 5.1].
Moreover, while compact toric symplectic manifolds are classified by their moment
polytopes, toric contact manifolds of Reeb type are classified by their moment
cones [13].

A prequantization of an integral toric symplectic manifold is a toric contact
manifold of the Reeb type. We do a symplectic blow up of appropriate size of the
underlying toric symplectic manifold to obtain another integral toric symplectic
manifold. Taking a prequantization of the latter we construct a new toric contact
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manifold of the Reeb type. This procedure is called a contact blow up of toric
contact manifolds of the Reeb type. In term of cones, a contact blow up is given by
choping an edge of the corresponding moment cone, see Section 2. We remark that
a blow up of contact manifolds was introduced by Gromov in [11] and elaborated
by Casals, Pancholi and Presas in [7].

In Section 3 we recall a cylindrical contact homology of toric contact manifolds
of Reeb type that was computed by Abreu and Macarini in [1]. As they show the
Conley–Zehnder index of the Reeb orbits that generate the chain groups is even
number. Thus the boundary map in the chain is trivial and contact homology
groups are isomorphic to the chain groups. We then consider particular examples
in dimension 5 and we prove the following theorem:

Theorem 1.1. Let V be a simply connected manifold that is a prequantization

of a monotone toric symplectic 4-manifold. Let V ′ be a contact blow up of V that is

also a prequantization of a monotone toric symplectic 4-manifold. If γ1 and γ2 are

the orbits corresponding to the edges of the cone of V ′ obtained by chopping the edge

of the cone of V that corresponds to orbit γ then the Conley–Zehnder index of γi, i =
1, 2 is the same as the Conley–Zehnder index of γ, counted with multiplicities. Thus,

the cylindrical contact homology of V ′ is completely determined by the cylindrical

contact homology of V in the following way HCk(V ′, ξ′) = HCk(V, ξ) + Q when

there is a multiply of γ with Conley–Zehnder index equal to k and HCk(V ′, ξ′) =
HCk(V, ξ) otherwise.

2. Contact blow up of toric contact manifolds of Reeb type

In this section we recall the construction of symplectic and contact blow up
of toric symplectic and toric contact manifolds, respectively. Then we show some
properties of the cone corresponding to the contact blow up, that will be used to
prove Theorem 1.1.

2.1. Toric symplectic manifolds. A toric symplectic manifold is a symplec-
tic manifold (M2n, ω) equipped with an effective Hamiltonian action of the torus
T n = Rn/2πZn. To any toric symplectic manifold one can associate a T n-invariant
map, called a moment map, µ = (µ1, . . . , µn) : M → Rn such that

µk(p) = ω(Xk(p), ·) where Xk(p) =
d

dt

∣

∣

∣

t=0
(exp tek) ∗ p,

k = 1, . . . , n; ek = (0, . . . , 1, . . . , 0) ∈ Rn.
•

(

Cn, i
2

∑n

j=1 dzj∧dz̄j

)

with the standard T n-action (t1, . . . , tn)∗(z1, . . . , zn) 7→

(t1z1, . . . , tnzn) is a toric symplectic manifold with a moment map µ(z1, . . . , zn) =
1
2 (|z1|2, . . . , |zn|2) + const. The top left picture in Figure 1 represents the moment

map image for toric C2.
If a toric symplectic manifold M is compact, then the image of µ is a compact

convex polytope (Delzant polytope) ∆ =
⋂d

i=1{x ∈ Rn | 〈x, vi〉 > λi}, where
vi ∈ Zn, i = 1, . . . , d are primitive inward-pointing normal vectors to the facets
of the polytope and λi ∈ R, i = 1, . . . , d. That is, ∆ is the convex hull of the
images of the fixed points of the action (Atiyah [2], Guillemin, Sternberg [12]).
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Figure 1. The moment map images: up left (C2, i
2

∑2
j=1 zj ∧dz̄j),

up right (CP2, ωF S), bottom left C2♯CP
2
, bottom right CP

2♯CP
2

Moreover, Delzant in [8] proved that compact toric symplectic manifolds, up to
equivariant symplectomorphism are classified by their moment map polytopes, up
to translation in Rn.

• The complex projective space CP
n with the Fubini-Study symplectic form

ωF S and with the standard toric T n-action (t1, . . . , tn) ∗ [z1 : · · · : zn+1] 7→ [t1z1 :
· · · : tnzn : zn+1] is a compact toric symplectic manifold. The up right picture in
Figure 1 represents the polytope corresponding to CP

2.

2.2. Symplectic blow up. By cutting a Darboux neighbourhood of a point
in a symplectic manifold (M2n, ω) and replacing it by a neighbourhood of the
exceptional divisor (isomorphic to CP n−1) in Cn, one obtains a new symplectic
manifold. This process is called a symplectic blow up. For the explicit construction
of the symplectic form we refer to [17, Section 7.1].

Further, blowing up a toric symplectic manifold in a fixed point one obtains a
new toric symplectic manifold (see [17, Exercise 3.17]). Before we explain this in
term of polytopes, here is the basic example.

• The symplectic blow up of (Cn, i
2

∑n

j=1 dzj ∧ dz̄j) of size r2/2, at the origin,

is obtained by removing the open ball B2n(r) of radius r about the origin and col-
lapsing its boundary along the Hopf fibration S2n−1 → CP

n−1. Since the moment
map image of the open ball B2n(r) is the corner given as the intersection of Rn

+
and an open half-space {x ∈ Rn | 〈x, (−1, . . . , −1)〉 > −r2/2}, it follows that the
symplectic blow up of toric Cn corresponds to the chopping the corner of Rn

+ (see
the left down picture in Figure 1).

Let (M2n, ω) be a compact toric symplectic manifold with the moment poly-
tope ∆. Since a Hamiltonian function on a compact manifold has critical points
it follows that (M, ω) has fixed points and they are exactly the pre-images under
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the moment map of the vertices of ∆. By the equivariant Darboux–Weinstein
theorem, every fixed point in M has a neighborhood U which is equivariantly
symplectomorphic to a neighbourhood of the origin in Cn. Thus, if VP is the vertex
of ∆ whose pre-image under the moment map is a fixed point P then symplectic
blow up of M at the point P corresponds to the chopping the corner of ∆ that
contains the vertex VP . In this way, from ∆ is obtained a new polytope ∆′ by
adding a new facet with the inward normal v1 + · · · + vn, where vi, i = 1, . . . , n
are primitive inward normal vectors to the facets of ∆ that meet at the vertex VP .
That is,

∆′ = ∆ ∩ {x ∈ Rn| 〈x, v1 + · · · + vn〉 > λ},

where λ depends on the size of a blow up. When v1 + · · · + vn is a primitive
vector, then the polytope ∆′ is also a Delzant polytope and it corresponds to a
toric symplectic manifold M ′ that is a symplectic blow up of M .

• A symplectic blow up of (CP2, ωF S) at one point, CP2♯CP
2
, is given by the

down right polytope in Figure 1.
We remark that it is also possible to do a blow up of a toric symplectic orbifold

and obtain a new toric symplectic orbifold (see [10]). Due to Lerman and Tolman,
compact toric symplectic orbifolds are classified by their moment polytopes (not
Delzant polytopes) together with labels attached to each facet (see [16]). The blow
up of a smooth point or an isolated singular point, in a symplectic orbifold is the
same as a blow up of a point in a symplectic manifold. Moreover, if the orbifold is
toric, a chopping of a corner goes in the same way as described above.

2.3. Toric contact manifolds. A toric contact manifold is a contact mani-
fold (V 2n+1, ξ) equipped with an effective action of the torus T n+1 that preserves
the contact structure. To any toric contact manifold one can associate a T n+1-
invariant map, called a moment map, µα = (µ1, . . . , µn+1) : V → Rn+1, with re-
spect to an invariant contact form α, such that

µk(p) = αp(Xk(p)) where Xk(p) =
d

dt

∣

∣

∣

t=0
(exp tek) ∗ p,

k = 1, . . . , n + 1; ek = (0, . . . , 1, . . . , 0) ∈ Rn+1. Since a moment map depends on
the choice of an invariant contact form, we introduce a moment cone. First, the
toric action on V lifts to the toric action on SV , the symplectization of V . Thus,
SV is a toric symplectic manifold and it has a corresponding moment map. A

moment cone of a toric contact manifold (V, ξ) is the union of the origin and a
moment map image of the symplectization SV . A moment cone can equivalently
be difened as a cone over µα(V ).

A moment cone of a toric contact manifold of the Reeb type is always strictly
convex cone, which means that it does not contain any linear subspace of a positive
dimension. According to Lerman, toric contact manifolds of the Reeb type are
classified by their moment cones [13, Theorem 2.18]). Thus, a contact blow up can
be described in term of these cones.
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2.4. Prequantization of a toric symplectic manifold. Let (M2n, ω) be

an integral compact toric symplectic manifold and ∆ =
⋂d

i=1{x ∈ Rn|〈x, vi〉 > λi}
corresponding Delzant polytope. The prequantization V of M (or, the Boothby–
Wang manifold of M) is the total space of the S1-bundle over M with the first
Chern class equal to [ω] ∈ H2(M,Z). The connection 1-form of this bundle is a
contact form on V whose Reeb vector field generates this S1-action. Moreover,
the toric T n-action on M lifts to the contact torus T n-action on V that commutes
with that S1-action. This gives a toric T n+1-action on V making it a toric contact
manifold of Reeb type. The moment cone of V is the cone over ∆ at the level
xn+1 = 1, that is C(∆) = {z(x, 1) ∈ Rn × R| x ∈ ∆, z > 0}.

Lemma 2.1. The cone C(∆) can be presented as

C(∆) =

d
⋂

i=1

{x ∈ Rn+1 | 〈x, (vi, −λi)〉 > 0}.

Proof. To the facet fj = {x ∈ ∆ | 〈x, vj〉 = λj} of the polytope ∆ corresponds
the facet Fj ⊂ Rn+1 of the cone C(∆) such that fj × {1} ⊂ Fj and (0, . . . , 0) ∈ Fj .
Let us check that Fj is contained in the hyperplane 〈(x1, . . . , xn+1), (vj , −λj)〉 = 0.
Obviously the origin (0, . . . , 0) belongs to this hyperplaneplane. Further, for any
point (x, 1) ∈ fj × {1} it follows that 〈(x, 1), (vj , −λj)〉Rn+1 = 〈x, vj〉Rn − λj = 0.
Thus, Fj is contained in the hyperplane with the normal (vj , −λj). Let us check
that this is an inward-pointing normal to the cone C(∆). For every point p =
z(x, 1) ∈ C(∆), it holds 〈(zx, z), (vj , −λj)〉Rn+1 = z〈x, vj〉Rn − zλj > 0. Thus,
(vj , −λj), j = 1, . . . , d are inward normals. �

Any co-oriented contact manifold (V, ξ) has well defined Chern classes (see for
instance [1, Remark 2.4]) and they are canonically isomorphic to the Chern classes
of the tangent bundle of the symplectization SV . We now show how c1(V, ξ), the
first chern class of V , depends on the combinatorial type of the polytope ∆, when
V is of the Reeb type with the cone over ∆.

Lemma 2.2. If ∆ is monotone, that is λj = λ, j = 1, . . . , d, then c1(V, ξ) = 0.

Proof. Let β : Rd → Rn+1 be the map β(ej) = (vj , −λ), j = 1, . . . , d where
ej = (0, . . . , 1, . . . , 0) ∈ Rd. Since β is a surjective map, its kernel is a (d − n − 1)-
dimensional subspace of Rd (it may not be connected). Denote by kj ∈ Rd,

j = 1, . . . , d−n−1 the generators of Ker β. It follows that 0 = β(kj) =
∑d

i=1 kjiṽi,

where ṽi = (vi, −λi) and kj = (kj1, . . . , kjd) =
∑d

i=1 eikji. Let πn+1 denote the pro-

jection to the last coordinate. Thus 0 = πn+1(
∑d

i=1 kjiṽi) =
∑d

i=1 kjiπn+1(ṽi) =

−
∑d

i=1 λikji. In particular, if ∆ is monotone, i.e., λi = λ, then
∑d

i=1 kji = 0, for
all j = 1, . . . , d − n − 1.

According to Abreu and Macarini [1, Remark 2.17], if
∑d

i=1 kji = 0 for all
j = 1, . . . , d − n − 1, then the first Chern class of the tangent bundle of the sym-
plectization SV vanishes, i.e., c1(T SV ) = 0. Since c1(V, ξ) = c1(T SV ) [1, Remark
2.4], it follows c1(V, ξ) = 0. �
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The following lemma will be also needed to prove Theorem 1.1.

Lemma 2.3. If ∆ is monotone and V simply connected, then λ = −1, that is,

∆ is reflexive.

Proof. According to [15, Theorem 1.1] by Lerman, the fundamental group of
V is equal to the finite group Zn+1\L, where L is the sublattice generated by the
inward normals to the facets of the cone C. If π1(V ) = 0 then the normals (vj , −λ),
j = 1, . . . , d generate the whole space Zn+1. It follows that the vector (0, . . . , 0, 1)
is a Z-linear combination of vectors (vj , −λ), j = 1, . . . , d. In particular, 1 is a
Z-linear combination of λ’s, that is, 1 is an integer multiple of λ. This is possible
only if λ ∈ {±1}. Since λ < 0 it follows that λ = −1. �

Remark 2.1. We remark that every toric contact manifold of the Reeb type
is a prequantization of some compact toric symplectic orbifold ([5, Theorem 2.7];
see also [14, Lemma 3.7]). Here is how we can read the labeled polytope corre-
sponding to that toric symplectic orbifold from the moment cone. Let (V, ξ) be a

toric contact manifold of the Reeb type and C =
⋂d

i=1{x ∈ Rn+1 | 〈x, ui〉 > 0} the

corresponding moment cone. For any vector R =
∑d

i=1 aiui with a1, . . . , ad ∈ R>0

there exists a T n+1-invariant contact form α such that Rα(p) = d
dt

|t=0(exp tR) ∗ p,
p ∈ V , is the Reeb vector field corresponding to α (see [1, Proposition 2.19]). Here
∗ denotes the action of T n+1 on V . Take R in the lattice of the Lie algebra of T n+1,

i.e., R =
∑d

i=1 aiui ∈ Zn+1, a1, . . . , ad ∈ R>0. Then, the corresponding Reeb flow
generates S1-action on V and we can lift this action to the S1-action on the sym-
plectization SV . A symplectic reduction of SV with respect to that S1-action is a
symplectic orbifold M and V is a prequantization of M . The polytope correspond-
ing to M is the intersection of the cone C with a hyperplane perpendicular to R. A
different choice of that hyperplane corresponds to a rescaling the symplectic form
on M . The facets of the polytope of M are intersections of the facets of C with that
hyperplane. The label of a facet corresponding to the facet of C with inward normal
uj is the index of the lattice generated by uj and R inside span

R
(uj , R) ∩Zd ∼= Z2,

where Zd is the lattice of Rd = t
d. If the collection {uj, R} can be completed to

a Z basis of Zd, the label on the corresponding facet is 1. If, in addition, for any
edge of the cone, the inward normals to the facets meeting at that edge together
with the vector R form a Z-basis of Zn+1, then V is a prequantization of a toric
symplectic manifold.

2.5. Contact blow up of a prequantization space. Let M be an integral
toric symplectic manifold with moment polytope ∆ and V a prequantization of M .
Let M ′ be a symplectic blow up of M of appropriate size such that a symplectic
form on M ′ is also integral. Then we can take a prequantization of M ′. We obtain
a new toric contact manifold of Reeb type V ′ with the moment cone C(∆′) that is
a cone over ∆′, a moment polytope for M ′. Equivalently, C(∆′) is obtained from
C(∆), the cone of V , by chopping one edge, that is, by adding a new facet. More
precisely, if ∆′ = ∆∩{x ∈ Rn | 〈x, v1 + · · ·+vn〉 > λ} then, according to Lemma 2.1

C(∆′) = C(∆) ∩ {x ∈ Rn+1 | 〈x, (v1 + · · · + vn, −λ)〉 > 0}.
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Lemma 2.4. If V is simply connected then V ′ is also simply connected.

Proof. According to Lerman [15, Theorem 1], V is simply connected if and
only if primitive vectors normal to all facets of C(V ) span the whole Zn+1. If we
add one vector to them, then this new collection will also span the whole Zn+1. �

Remark 2.2. This procedure of contact blow up can be extended to any toric
contact manifold of the Reeb type, since they are all prequantizations of compact
toric symplectic orbifolds (see Remark 2.1). More precisely, when a toric contact
manifold of the Reeb type is a prequantization only of a toric symplectic orbifold
(and not of a manifold), we do the symplectic blow up of that orbifold as explained
in [10] and obtain another toric symplectic orbifold. The prequantization of the
new orbifold is a new toric contact manifold of the Reeb type and that is a contact
blow up of a toric contact manifold of the Reeb type we started with.

3. Cylindrical contact homology

of a toric contact manifold of Reeb type

A cylindrical contact homology of a contact manifold (V 2n+!, ξ) is an invariant
of contact structure introduced by Eliashberg, Givental and Hofer in [9]. Here is
the basic idea, explained in [4].

Consider a non-degenerate contact form on V . That is, all periodic orbits of
the corresponding Reeb vector field are non-degenerate [4, Definition 3]. A periodic
orbit of the Reeb vector field is called bad if it is an even multiple of a periodic
orbit whose parities of the Conley–Zehnder index of odd and even iterates disagree.
An orbit that is not bad is called good. The degree of a good periodic orbit is the
Conley–Zehnder index (see [4, Definition 4]) of the orbit plus n − 2. A cylindrical
contact homology HC∗(V, ξ) is a homology of the chain complex C∗(V, α), that is
given by the graded group with coefficients in Q and generated by good periodic
orbits graded by their degrees. The boundary operator is given by counting rigid
holomorphic cylinders in the symplectization SV that connect orbits whose degrees
differ by 1.

Toric contact manifolds of Reeb type are completely determined by their mo-
ment cones [13]. Thus, their cylindrical contact homology should be computed
using only the information incoded in the cones. This computation is done by
Abreu and Macarini in [1] when c1(V, ξ) = 0. We now sketch the algorithm.

Let (V, ξ) be a toric contact manifold of Reeb type and

C(∆) =
d

⋂

i=1

{x ∈ Rn+1 | 〈x, ṽi〉 > 0}

be the corresponding cone. Consider a contact form α for ξ whose Reeb vector field
Rα generates a 1-parametar subgroup that is dense in T n+1. To any edge of the
cone C corresponds one simple closed orbit of the Reeb vector field Rα. Since C
is a good cone (see [13, Definition 2.17]), each edge is the intersection of exactly n
facets F1, . . . , Fn, whose set of normals ṽ1, . . . , ṽn can be completed to an integral
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base of Zn+1. Hence, for any edge, we can choose an integral vector η ∈ Zn+1 such
that ṽ1, . . . , ṽn, η is an integral bases of Zn+1.

Define β : Rd → Rn+1 by β(ej) = ṽj , j = 1, . . . , d where ej = (0, . . . , 1, . . . , 0) ∈
Rd. Since β is surjective and integral, that is β(Zd) ⊂ Zn+1, there is the smallest
natural number N0 and an integral vector η̃ such that β(η̃) = N0η.

Note that if π1(V ) = 0 then N0 = 1. Indeed, if V is simply connected then the
vectors {ṽ1, . . . , ṽd} span Zn+1 ([15, Theorem 1.1.]). Thus η can be written as an
integral linear combination of ṽi, i = 1, . . . , d, for instance η =

∑

ciṽi, ci ∈ Z. Then
η̃ =

∑

ciei and N0 = 1.
There is a vector R ∈ Rn+1, given as a positive linear combination of vectors

ṽi, such that Rα(p) = d
dt

|t=0(exp tR) ∗ p, p ∈ V (see [1, Proposition 2.19]). The

vector R can be uniquely written as R =
∑n

i=1 biṽi + b0N0η̃, for some constants
bi, i = 0, 1, . . . , n.

If γ denotes the simple closed Reeb orbit corresponding to the edge of C and
γN the N -th multiple of γ, for any N ∈ N then the Conley–Zehnder index of γN

can be computed as

µCZ(γN) = 2

( n
∑

i=1

⌊

N
bi

b0

⌋

+ N
d

∑

j=1

η̃j

)

+ n,

where η̃ =
∑d

j=1 η̃jej and ⌊x⌋ denotes the largest integer not greater than x.

Since the degree of γ is µCZ(γN ) + n − 2 it follows that the degree is al-
ways an even number. Thus, C2k+1(V, α) = 0, k ∈ Z and the boundary operator
∂k : Ck(V, α) → Ck−1(V, α), k ∈ Z is a zero map (since a domain or a codomain of
the boundary map is a zero set). It follows that HCk(V, ξ) = Ck(V, α), k ∈ Z.

4. Proof of Theorem 1.1

Let V be a simply connected manifold that is a prequantization of a monotone
toric symplectic 4-manifold given by a Delzant polytope ∆. Let V ′ be a contact blow
up of V described in Section 2.5, that is, V ′ is a prequantization of a monotone toric
symplectic manifold given by ∆′. Then, both V and V ′ are toric contact manifolds
of Reeb type. Since V is simply connected then V ′ is also simply connected (see
Lemma 2.4) and according to Lemma 2.2, the corresponding first chern classes
are zero, c1(V, ξ) = c1(V ′, ξ′) = 0. Thus, we can apply the results of Abreu and
Macarini described in Section 3.

According to Lemma 2.3, both ∆ and ∆′ are reflexive polytopes. As explained
in Section 2.2, ∆′ is obtained from ∆ by chopping a vertex V1, that is, by adding
a new facet. ∆′ contains 2 new vertices V11 and V12 instead of V1. If v1, v2 ∈ Z2

are primitive inward normals to the facets of ∆ meeting at V1, then v1 + v2 is a
normal to the facet of ∆′ that is not a facet of ∆. Let E1 be the edge of the cone
C(∆) of V that corresponds to the vertex V1. According to Lemma 2.1, the vectors
(vj , 1), j = 1, 2 are primitive inward normals to the facets of C(∆) meeting at E1.
By chopping the edge E1 of C(∆), that is, by taking the cone over ∆′, we obtain
a new cone C(∆′), that contains 2 new edges E11 and E12 instead of E1 and one
new facet F11 with the inward normal vector (v1 + v2, 1).
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Note that the vectors (vj , 1), j = 1, 2 and (v1 + v2, 1) form a Z-basis of Z3.
Indeed,

det((v1 + v2, 1), (v1, 1), (v2, 1)) = det((0, 0, −1), (v1, 1), (v2, 1)) = − det(v1, v2).

Since ∆ is a Delzant polytope, it is in particular smooth, meaning primitive inward
normals to the facets meeting in one vertex form a Z-basis. Thus det(v1, v2) ∈
{1, −1}.

We now consider vectors (v1, 1), (v2, 1) and η = −(v1 + v2, 1). Since they form
a Z-basis of Z3, for any vector R ∈ R3 there are b0, b1, b2 ∈ R such that

R = b1ṽ1 + b2ṽ2 + b0η,

where ṽj = (vj , 1), j = 1, 2. Assume that R is a positive linear combination of
inward normals to the facets of C(∆) and consider the Reeb vector field given by
the vector R. Let γ1 be the simple closed Reeb orbit corresponding to the edge E1

and denote by γN
1 the N -th multiple of γ1, for any N ∈ N. The inward normals of

the facets F1 and F2, meeting at E1 are ṽ1 and ṽ2. We complete the Z-basis of Z3

with the vector η. The Conley–Zehnder index of γN
1 can be computed as

µCZ(γN
1 ) = 2

(

⌊

N
b1

b0

⌋

+
⌊

N
b2

b0

⌋

+ N

d
∑

i=1

η̃i

)

+ 2 = 2
(⌊

N
b1

b0

⌋

+
⌊

N
b2

b0

⌋

− N
)

+ 2.

Here we used
∑d

i=1 η̃i = −1 what can be seen as follows. Since C(∆) =
⋂d

i=1{x ∈

R3 | 〈x, ṽi〉 > 0} where ṽj = (vj , 1), j = 1, . . . , d then β(η̃) =
∑d

i=1 η̃iβ(ei) =
∑d

i=1 η̃iṽi. On the other hand, β(η̃) = η, since V is simply connected (thus N0 = 1).

It follows that η =
∑d

i=1 η̃iṽi and also π3(η) = π3(
∑d

i=1 η̃iṽi) where π3 : (R3 =
R2 ×R) → R is the projection. From π3(η) = −1 and π3(ṽi) = 1, for all i = 1, . . . , d

we conclude
∑d

i=1 η̃i = −1.
Let γ11 and γ12 be the simple closed Reeb orbits corresponding to the edges E11

and E12 respectively and denote by γN
1j the N -th multiple of γ1j , for any N ∈ N.

The inward normals of the facets F1 and F11, meeting at E11 are ṽ1 and −η. We
complete the Z-basis of Z3 with the vector ṽ2. Since R = b1ṽ1 + (−b0)(−η) + b2ṽ2,
the Conley–Zehnder index of γN

11 can be computed as

µCZ(γN
11) = 2

(

⌊

N
b1

b2

⌋

+
⌊

−N
b0

b2

⌋

+N

3
∑

i=1

(e2)i

)

+2 = 2
(⌊

N
b1

b2

⌋

+
⌊

−N
b0

b2

⌋

+N
)

+2.

The inward normals of the facets F2 and F11, meeting at E12 are ṽ2 and −η. We
complete the Z-basis of Z3 with the vector ṽ1. Since R = b2ṽ2 + (−b0)(−η) + b1ṽ1,
the Conley–Zehnder index of γN

12 can be computed as

µCZ(γN
12) = 2

(

⌊

N
b2

b1

⌋

+
⌊

−N
b0

b1

⌋

+N

3
∑

i=1

(e1)i

)

+2 = 2
(⌊

N
b2

b1

⌋

+
⌊

−N
b0

b1

⌋

+N
)

+2.

We now consider a vector R = b0η +b1ṽ1 +b2ṽ2 such that 0 < b1 < b0 < b2 < 1 and
that R is a positive linear combination of inward normals to the facets of C(∆).
This vector corresponds to the Reeb vector field of some contact form α. Then
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⌊

N
b1

b0

⌋

=
⌊

N
b1

b2

⌋

= N − 1,
⌊

N
b2

b0

⌋

=
⌊

N
b2

b1

⌋

= N

⌊

−N
b0

b1

⌋

= −N − 1,
⌊

−N
b0

b2

⌋

= −N.

It follows that µCZ(γN
1 ) = µCZ(γN

11) = µCZ(γN
12) = 2N . Since HCk(V, ξ) =

Ck(V, α) and Ck(V, α) is generated by periodic orbits of degree k follows the proof
of Theorem 1.1.

5. Application of Theorem 1.1

The requirements in Theorem 1.1 are actually very strict. It turns out that
the only 4-dimensional toric symplectic manifolds satisfying these conditions are

(CP2, ωF S) with the polytope given up right in Figure 1 and its blow ups CP2♯mCP
2
,

m = 1, 2, 3, given by the polytopes in Figure 2. The prequantization of (CP2, ωF S)
is the sphere S5 with the standard contact structure

ξst = Ker

(

i

4

d
∑

j=1

(zjdz̄j − z̄jdzj)

)

.

The prequantization of CP2♯mCP
2

is the contact blow up of the sphere S5, blown
up in m orbits, m = 1, 2, 3 respectively.

Figure 2. The moment map images for CP2♯CP
2

on the left, for

CP2♯2CP
2

in the middle, for CP2♯3CP
2

on the right.

The chain groups for the contact homology of the sphere S5 are generated by
three orbits γj , j = 1, 2, 3, corresponding to the three edges of the moment cone.
According to the algorithm by Abreu and Macarini, we compute µCZ(γN

1 ) = 6N−2,
µCZ(γN

2 ) = 6N and µCZ(γN
3 ) = 6N + 2, N ∈ N. Thus, HCk(S5, ξst) = Q if

k ∈ 2N + 2 and HCk(S5, ξst) = 0 otherwise. From Theorem 1.1 we conclude that
the cylindrical contact homology of S5 blown at γj is Q2 in any even degree equal
to µCZ(γN

j ) for some N ∈ N, while in other degrees it is equal to the contact

homology of S5. Similarly, the contact homology of S5 blown in two orbits γj and
γl, j, l ∈ {1, 2, 3} is Q2 in any even degree equal to µCZ(γN

j ) or µCZ(γN
l ) for some

N ∈ N, while in other degrees it is equal to the contact homology of S5. Finally,
the cylindrical contact homology of S5 blown up in all three orbits is Q2 in any
even degree greater than 2 and zero otherwise.
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Remark 5.1. It would be interesting to extend the result of Theorem 1.1 to
more examples. The straightforward generalization to higher dimensions is not
possible since the vectors ṽ1, . . . , ṽn, η = −(v1 + · · · + vn, 1) form only an R-basis of
Rn+1 when n > 2. Indeed, since η = −ṽ1 − · · · − ṽn + (0, . . . , 0, n − 1), it follows

det(η, ṽ1, . . . , ṽn) = det((0, . . . , 0, n − 1), ṽ1, . . . , ṽn)

= (−1)n(n − 1) det(v1, . . . , vn) = (−1)n(n − 1) det(v1, . . . , vn).

The vectors v1, . . . , vn are normals of the facets of a Delzant polytope that meet in
one vertex. Thus, these normals form a Z-basis of Zn and det(v1, . . . , vn) ∈ {1, −1}.

Acknowledgments. I thank Professor Miguel Abreu and Milena Pabiniak for
useful discussions.
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