
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 98(112) (2015), 219–226 DOI: 10.2298/PIM141129011O

HARDY TYPE INEQUALITIES

ON TIME SCALES

James A. Oguntuase

Abstract. We obtain some new generalizations of Hardy type inequalities
involving several functions on time scales. Furthermore, some new multi-
dimensional Hardy–Knopp type inequalities on time scales are derived and
discussed.

1. Introduction

Hardy [4] in a note published in 1920 announced (without proof) that if p > 1
and f is a nonnegative p-integrable function on (0,∞), then f is integrable over
the interval (0, x) for each positive x and that

(1.1)
∫

∞

0

(

1
x

∫ x

0
f(t)dt

)p

dx 6

( p

p− 1

)p
∫

∞

0
fp(x)dx.

Inequality (1.1), which is usually called the classical Hardy inequality, was proved
in 1925 by Hardy in [5] (see also [6, 7]). Nowadays a well-known simple fact is
that (1.1) can equivalently via the substitution f(x) = h(x1−

1

p )x−
1

p , be rewritten
in the form

(1.2)
∫

∞

0

(

1
x

∫ x

0
h(t)dt

)p
dx

x
6

∫

∞

0
hp(x)

dx

x
,

and in this form it even holds with equality when p = 1. Observe that inequality
(1.2) can easily be proved by using Jensen inequality and the Fubini theorem.

In a recent paper, Řehák [12] pioneered the time scale version of Hardy in-
equality by obtaining the following result:

∫

∞

a

( F σ(x)
σ(x) − a

)p

∆x 6

( p

p− 1

)p
∫

∞

a

fp(x)∆x,

where p > 1, F (x) :=
∫ x

0 f(t)∆t and f is a nonnegative function.
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In a recent paper, Özkan and Yildirim [10] gave a time scale Hardy inequality
involving several functions as follows:

Theorem 1.1. Let a > 0 and f1, f2, . . . , fn, n ∈ Z+, be nonnegative integrable

functions. Define Fk(x) = 1
σ(x)−a

∫ x

a fk(t)∆t, k = 1, 2, . . . , n. Then

(1.3)
∫

∞

a

( n
∏

k=1

F σ
k (x)

)p/n

∆x 6

( p

p− 1

)p
∫

∞

a

(

1
n

n
∑

k=1

fk(x)

)p

∆x.

Furthermore, in the same paper [10] they also obtained the time scale Hardy–
Knopp type inequality as follows:

Theorem 1.2. If u ∈ Crd([a, b),R) is a nonnegative function such that the

delta integral
∫ b

t
u(x)

(x−a)(σ(x)−a)∆x exists as a finite number and the function v is

defined by

v(t) = (t− a)
∫ b

t

u(x)
(x− a)(σ(x) − a)

∆x, t ∈ [a, b).

If φ : (c, d) → R is continuous and convex, where c, d ∈ R, then the inequality

∫ b

a

u(x)φ

(

1
σ(x) − a

∫ σ(x)

a

f(t)∆t

)

∆x
x− a

6

∫ b

a

v(x)φ(f(x))
∆x
x − a

,

which holds for all delta integrable functions f ∈ Crd([a, b),R) such that f(x) ∈ (c, d).

In 2009, Özkan and Yildirim [11] further obtained a generalization of Hardy–
Knopp type inequality for several functions and also derived the Hardy–Knopp type
inequality with a general kernel.

The aim of this paper is to obtain some new generalizations of Hardy type
inequalities involving several functions and also some new multidimensional Hardy–
Knopp type inequalities on time scales.

First we recall some basic concepts used in this paper and also refer interested
reader to the books [2, 3] for a detailed theory of time scales. A time scale is an
arbitrary nonempty closed subset of the real numbers R.

Definition 1.1. Let T be a time scale. For t ∈ T, we define the forward jump
operator σ : T → T by σ(t) = inf{s ∈ T : s > t} for all t ∈ T, while the backward
jump operator ρ : T → T is defined by ρ(t) = sup{s ∈ T : s < t} for all t ∈ T .

The point t is said to be right-scattered if σ(t) > t, respectively left-scatted
if ρ(t) < t. Points that are right-scattered and left-scattered at the same time
are called isolated. The point t is called right-dense if t < supT and σ(t) = t,
respectively left-dense if t > inf T and ρ(t) = t. Finally, the graininess function
µ : T → [0,∞) is defined by µ(t) = σ(t) − t for all t ∈ T .

A mapping f : T → R is said to be rd-continuous if

(i) f is continuous at each right-dense point or maximal point of T;
(ii) at each left-dense point t ∈ T, lims→t− g(s) = g(t−) exists.

The set of all rd-continuous functions from T → R is usually denoted by Crd(T,R).
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2. Hardy integral inequality for several functions on time scales

In this section, we obtain generalization of Theorem 1.1. Before we give our
results in this section, we make the following remark.

Remark 2.1. Observe that inequality (1.3) follows directly by using the time
scale Hardy inequality (see [12])

(2.1)
∫

∞

a

(

1
σ(x) − a

∫ σ(x)

a

f(t)∆t

)p

∆x 6

( p

p− 1

)p
∫

∞

a

fp(x)∆x

and the Arithmetic-Geometric Mean inequality
( n

∏

k=1

F σ
k (x)

)1/n

6
1
n

n
∑

k=1

F σ
k (x) =

1
n

∫ σ(x)

a

( n
∑

k=1

fk(t)

)

∆t.

Remark 2.2. If a = 0, T = R and σ(t) = t, t ∈ T (i.e., t is right dense), we
obtain the classical Hardy inequality (1.1).

Our first result reads:

Theorem 2.1. Let a > 0, p 6= 1 and n ∈ Z+. Let {αk}∞

k=1 be a positive

sequence such that
∑

∞

k=1 αk = 1 and {fk}∞

k=1 be a sequence of nonnegative delta

integrable functions and let

Fk(x) =
∫ σ(x)

a

fk(t)∆t, k = 1, 2, . . . .

Then the inequality

(2.2)
∫

∞

a

( ∞
∏

k=1

[ 1
(σ(x) − a)

F σ
k (x)

]αk

)p

∆x 6

( p

|p− 1|

)p
∫

∞

a

( ∞
∑

k=1

αkfk(x)

)p

∆x

holds if and only if p > 1. If, in addition,
µ(t)

t → 0 as t → ∞, then the constant is

sharp.

Remark 2.3. By letting p > 1 and

αk =

{

1/k k = 1, 2, . . . , n
0 k > n+ 1,

we obtain Theorem 4.1 of Özkan and Yildirim [10] (i.e., inequality (1.3)).

Proof. First, assume that p > 1. Then by using a more general arithmetic–
geometric mean inequality (see [9])

∞
∏

k=1

gαk

k (x) 6
∞

∑

k=1

αkgk(x),

we easily obtain that

(2.3)

( ∞
∏

k=1

[F σ
k ]αk(x)

)p

6

( ∞
∑

k=1

αkF
σ
k (x)

)p

=

(
∫ σ(x)

0

( ∞
∑

k=1

αkfk(t)

)

∆t

)p

.
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By using the time scale Hardy inequality (2.1) with the functions
∑

∞

k=1 αkfk(t)
and inequality (2.3), then inequality (2.2) is proved. The constant in the inequality
is sharp since by applying it with fk(t) = f(t), k = 1, 2, . . . , and the fact that
µ(t)

t → 0 as t → ∞ yields inequality (2.1). It is known that the constant in this

inequality is sharp if µ(t)
t → 0 as t → ∞ (see [12]).

Now, let 0 < p < 1. Then (2.3) still holds. But then (2.2) cannot hold in
general since by applying it with fk(x) = f(x), k = 1, 2, . . . , it reduces to the
inequality

∫

∞

a

(

1
σ(x) − a

∫ σ(x)

a

f(t)∆t

)p

∆x 6

( p

1 − p

)p
∫

∞

a

fp(x)∆x

but it is well known that this is not true. In fact, it just holds in the reversed
direction. The proof is complete. �

Remark 2.4. For p < 0 it is known that (2.1) still holds but now (2.3) holds
in the reversed direction so our proof above does not work so we leave it as an open
question whether (2.2) holds in this case or not.

Next, we give the following multidimensional weighted version of Theorem 2.1.
In what follows we use bold letters to denote the n-tuples of real numbers, e.g.,
x = (x1, . . . , xn) or t = (t1, . . . , tn), ∆t = (∆t1 . . .∆t1). In particular, we set
x = (x1, . . . , xn) ∈ R

n and t = (t1, . . . , tn) ∈ R
n.

Theorem 2.2. Let p > 0, p 6= 1, m 6= 1 and n ∈ Z+. Let {αk}∞

k=1 be a positive

sequence such that
∑

∞

k=1 αk = 1 and {fk}∞

k=1 be a sequence of delta integrable

functions on [a,b], 0 6 b 6 ∞, and let

Fk(x) =
∫ σ(x1)

a1

. . .

∫ σ(xn)

an

fk(t)∆t1 . . .∆tn, k = 1, 2, . . . .

Then the inequality
∫ b1

a1

. . .

∫ bn

an

n
∏

i=1

(σ(xi) − ai)
−m

( ∞
∏

k=1

[F σ
k (x)]αk

)p

∆x1 . . .∆xn

6

( p

|m− 1|

)np
∫ b1

a1

. . .

∫ bn

an

n
∏

i=1

[

1 −
(xi − ai

bi − ai

)

]

m−1

p
( ∞

∑

k=1

αkfk(x)

)p

×
n

∏

i=1

(σ(xi) − ai)p−m∆x1 . . .∆xn

holds if and only if p > 1 and the constant
(

p
m−1

)np
is sharp.

Proof. We just use Theorem 3.1 in [8] instead of the time scale Hardy’s
inequality (2.1) and the proof is similar to the proof of Theorem 2.1. We omit the
details. �

Remark 2.5. For the case n = 1, if we set m = p > 1, then the result in
Theorem 2.2 coincides with that in Theorem 2.1.
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Remark 2.6. In Theorem 2.2, if we let ai = 0, i = 1, 2, . . . , n and let the point
t be right-dense (i.e., σ(t) = t), then we obtain Theorem 2.2 in [9].

If under the same assumptions of Theorem 2.2, if we set bi = ∞, i = 1, 2, . . . , n,
then we obtain the following result.

Corollary 2.1. Let p > 0, p 6= 1, m 6= 1 and n ∈ Z+. Let {αk}∞

k=1 be

a positive sequence such that
∑

∞

k=1 αk = 1 and {fk}∞

k=1 be a sequence of delta

integrable functions on [a,b], 0 6 b 6 ∞, and let

Fk(x) =
∫ σ(x1)

a1

. . .

∫ σ(xn)

an

fk(t)∆t1 . . .∆tn, k = 1, 2, . . . .

Then the inequality

(2.4)
∫

∞

a1

. . .

∫

∞

an

n
∏

i=1

(

σ(xi) − ai

)

−m
( ∞

∏

k=1

[F σ
k (x)]αk

)p

∆x1 . . .∆xn

6

( p

|m− 1|

)np
∫

∞

a1

. . .

∫

∞

an

( ∞
∑

k=1

αkfk(x)

)p n
∏

i=1

(σ(xi) − ai)
p−m∆x1 . . .∆xn.

holds if and only if p > 1 and the constant
(

p
m−1

)np
is sharp.

Proof. The proof follows directly from the proof of Theorem 2.2 and so the
details are omitted. �

Remark 2.7. By setting ai = 0, i = 1, . . . , n, then inequality (2.4) yields
∫

∞

0
. . .

∫

∞

0

n
∏

i=1

(σ(xi))
−m

( ∞
∏

k=1

[F σ
k (x)]αk

)p

∆x1 . . .∆xn

6

( p

|m− 1|

)np
∫

∞

0
. . .

∫

∞

0

( ∞
∑

k=1

αkfk(x)

)p n
∏

i=1

(σ(xi))p−m∆x1 . . .∆xn.

3. Multidimensional Hardy–Knopp type inequality on time scale

Throughout this section, we assume that (Ω,M, µ∆) and (Λ,L, λ∆) are two
time scale measures. Let U ⊂ R

m be a closed convex set, φ ∈ C(U,R) is convex
such that f(Λ) ⊂ U . In particular, we take

Ω = Λ = [a1, b1)T × [a1, b1)T × · · · × [a1, b1)T, 0 6 ai < bi 6 ∞

for all i = 1, 2, . . . , n, where T is a time scale.
Before we we state our main results in this section, we recall Jensen’s inequality

and Fubini’s theorem on time scales which will be used in the proofs of our main
results:

Lemma 3.1 (Jensen’s Inequality). [2, Theorem 6.17] Let a, b ∈ T and c, d ∈ R.

If g : [a, b] → (c, d) is rd-continuous and φ : (c, d) → R is continuous and convex,

then

(3.1) φ

(

1
b− a

∫ b

a

g(t)∆(t)

)

6
1

b− a

∫ b

a

φ(g(t))∆(t).
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Lemma 3.2 (Fubini Theorem). [1, Theorem 1.1] If f : Ω×Λ → R is a µ∆ × λ∆-

integrable functions and if we define the function ϕ =
∫

Ω f(x, y)∆x for a.e. y ∈ Λ
and ψ(x) =

∫

Λ f(x, y)∆y for a.e. y ∈ Ω, then ϕ is λ∆-integrable on Λ, ψ is

µ∆-integrable on Ω and

(3.2)
∫

Ω
∆x

∫

Λ
f(x, y)∆y =

∫

Λ
∆y

∫

Ω
f(x, y)∆x.

Our first result in this section reads:

Theorem 3.1. Let u : Ω → R+ be a nonnegative function such that the delta

integral
∫ b1

t1

. . .

∫ bn

tn

u(x)
∏n

i=1(xi − ai)(σ(xi) − ai)
∆x1 . . .∆xn,

exists as a finite number and the function v be given by

(3.3) v(t)=
n

∏

i=1

(ti −ai)
∫ b1

t1

. . .

∫ bn

tn

u(x)
∏n

i=1(xi − ai)(σ(xi) − ai)
∆x1 . . .∆xn, ti ∈ [ai, bi).

If U ⊂ R
m is a closed convex set such that the function φ : U → R is convex

and continuous, then the inequality

(3.4)
∫ b1

a1

. . .

∫ bn

an

u(x)φ

(

1
∏n

i=1

(

σ(xi) − ai

)

∫ σ(x1)

a1

. . .

∫ σ(xn)

an

f(t)∆t1 . . .∆tn

)

×
∆x1 . . .∆xn

∏n
i=1(xi − ai)

6

∫ b1

a1

. . .

∫ bn

an

v(x)φ(f(x))
∆x1 . . .∆xn

(x1 − a1) . . . (xn − an)
.

holds for all delta integrable functions f : Λ → R
m such that f(Λ) ⊂ U .

Remark 3.1. If φ is concave, then (3.4) holds in the reverse direction.

Proof. By application of Jensen’s inequality (3.1) and Fubini theorem (3.2)
on time scales, we find that
∫ b1

a1

. . .

∫ bn

an

u(x)φ

(

1
∏n

i=1(σ(xi) − ai)

∫ σ(x1)

a1

. . .

∫ σ(xn)

an

f(t)∆t1 . . .∆tn

)

∆x1 . . .∆xn
∏n

i=1(xi − ai)

6

∫ b1

a1

. . .

∫ bn

an

(
∫ σ(x1)

a1

. . .

∫ σ(xn)

an

φ(f(t))∆t1 . . .∆tn

)

u(x)∆x1 . . .∆xn
∏n

i=1(xi − ai)(σ(xi) − ai)

=
∫ b1

a1

. . .

∫ bn

an

φ(f(t))
∫ b1

t1

. . .

∫ bn

tn

(

u(x)∆x1 . . .∆xn
∏n

i=1(σ(xi) − ai)(xi − ai)

)

∆t1 . . .∆tn

=
∫ b1

a1

. . .

∫ bn

an

φ(f(t))
∫ σ(x1)

a1

. . .

∫ σ(xn)

an

(

u(x)∆x1 . . .∆xn
∏n

i=1(σ(xi) − ai)(xi − ai)

)

∆t1 . . .∆tn

=
∫ b1

a1

. . .

∫ bn

an

φ(f(t))v(t)
∆t1 . . .∆tn

(t1 − a1) . . . (tn − an)
.

The proof is complete. �
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Example 3.1. If we set the weight function u(x) = 1 in Theorem 3.1, then the
weight function (3.3) yields

v(t) =

{

∏n
i=1

(

1 − ti−ai

bi−ai

)

if bi < ∞

1 if bi = ∞.

Hence, inequality (3.4) in this setting for the case bi < ∞ reads
∫ b1

a1

. . .

∫ bn

an

φ

(

1
∏n

i=1(σ(xi) − ai)

∫ σ(x1)

a1

. . .

∫ σ(xn)

an

f(t)∆t1 . . .∆tn

)

(3.5)

×
∆x1 . . .∆xn

∏n
i=1(xi − ai)

6

∫ b1

a1

. . .

∫ bn

an

n
∏

i=1

(

1 −
ti − ai

bi − ai

)

φ(f(x)) ×
∆x1 . . .∆xn

(x1 − a1) . . . (xn − an)
,

while the case bi = ∞ yields
∫ b1

a1

. . .

∫ bn

an

φ

(

1
∏n

i=1(σ(xi) − ai)

∫ σ(x1)

a1

. . .

∫ σ(xn)

an

f(t)∆t1 . . .∆tn

)

×
∆x1 . . .∆xn

∏n
i=1(xi − ai)

6

∫ b1

a1

. . .

∫ bn

an

n
∏

i=1

φ(f(x))
∆x1 . . .∆xn

(x1 − a1) . . . (xn − an)
.

Remark 3.2. If we set n = 1, then Example 3.1 coincides with Corollary 2.1
in [10]. Also, in the special case n = 2, inequality (3.5) reduces to Theorem 3.2 in
[10].
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