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THE SEMIRING VARIETY GENERATED BY
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AND DISTRIBUTIVE LATTICES
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Siniša Crvenković, and Melanija Mitrović

Abstract. We study the semiring variety V generated by any finite num-
ber of finite fields F1, . . . , Fk and two-element distributive lattice B2, i.e.,
V = HSP{B2, F1, . . . , Fk}. It is proved that V is hereditarily finitely based,
and that, up to isomorphism, B2 and all subfields of F1, . . . , Fk are the only
subdirectly irreducible semirings in V.

1. Introduction and preliminaries

Semirings are the natural generalization of rings and distributive lattices. Be-
sides the two well-known examples of semirings: the set of nonnegative integers N

with the usual addition and multiplication as the most trivial one, and the first
nontrivial example given by Dedekind [2] in connection with algebra of ideals of
commutative ring, history of semirings date back, at least, to Vandiver [22]. The
intensive study of semirings was initiated during the late 1960’s when their signif-
icant applications were found. Thus, nowadays, semirings have both a developed
algebraic theory as well as important practical applications. More about applica-
tions of semiring theory within analysis, fuzzy set theory, the theory of discrete-
event dynamical systems, automata and formal language theory can be found in
the trilogy [4]–[6] and in [15]. Recently, new examples of applications of semiring
constructions have been investigated in [11]–[14].

All semirings (S, +, ·) occurring in the literature satisfy at least the following
axioms: (S, +), the additive reduct, and (S, ·), the multiplicative reduct of a semiring
S are semigroups, and the multiplication distributes over addition from both sides,
i.e.,
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(SR1) x + (y + z) ≈ (x + y) + z;
(SR2) x(yz) ≈ (xy)z;
(SR3) x(y + z) ≈ xy + xz, (x + y)z ≈ xz + yz.

It is, as well, often assumed that (S, +) is commutative, i.e.,

(SR4) x + y ≈ y + x.

Note that the variety considered in the present paper satisfy this identity too.
Let S be a semiring. We can distinguish, in general, the following three sub-

sets of idempotents (if there are any) of S: E(S)• the set of all multiplicative
idempotents of (S, ·); E(S)+ the set of all additive idempotents of (S, +), and
E(S) = E(S)• ∩ E(S)+. A semiring S is idempotent if S = E(S), i.e., if it satisfies

x + x ≈ x ≈ x2.

An idempotent semiring S is called a bisemilattice if both the additive and multi-
plicative reducts (S, +) and (S, ·) of S are semilattices. A distributive lattice is a
bisemilattice which satisfies the absorption law

x + xy ≈ x.

The variety of all distributive lattices is denoted by D. The smallest nontrivial
distributive lattice, the two-element boolean algebra B2, given by

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

is the only subdirectly irreducible (moreover, B2 is congruence simple too) member
of D and we have D = HSP{B2}.

Kelarev in [9] described the ring variety generated by a finite number of fi-
nite fields with pairwise distinct characteristics and proved that such varieties are
finitely based. Some of their properties, including the one that such a ring variety
is arithmetical, are given in [18, 25]. Specially, in [10], it is proved that the ring
variety generated by a finite ring is finitely based. Thus, in [23] the ring variety of
square root rings is considered, and it is proved that it is generated by the finite
field F2k . In [1] it is proved that the ring variety generated by a finite number of
finite fields with pairwise distinct characteristics is finitely based and used in term
rewriting. Shao and Ren in [20] proved that the semiring variety generated by dis-
tributive lattices and any finite number of prime fields are finitely based. In [21],
it is proved that the semiring variety generated by a finite number of finite fields
with pairwise distinct characteristics and distributive lattices are finitely based.

As we know, the “simplest” semiring variety generated by finite fields and
distributive lattices is the the variety of Boolean semirings generated by B2 and
the smallest nontrivial finite field Z2, the field of integers modulo 2 or 2-element
Boolean ring, given by

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1 .
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In [8] it is proved that this variety is finitely based, and it is equivalent to the
category of partially Stone spaces. This motivates us to give a little progress in
that direction.

The main subject here is the semiring variety V = HSP{B2, F1, . . . , Fk} gener-
ated by B2 and any finite number of finite fields F1, . . . , Fk. In our consideration,
we do not need that finite fields F1, . . . , Fk have pairwise distinct characteristics.
We prove that V = HSP{B2, F1, . . . , Fk} is hereditarily finitely based and charac-
terize all subdirectly irreducible semirings in V. We refer to [4]–[6] as sources of
references on semirings. For notions and terminology not given here, we refer to
[16] as the background on finite fields, [17] on universal algebras, and [7, 19] for
semigroup theory.

2. On the semiring variety V = HSP {B2, F1, . . . , Fk}

Let p1, . . . , pk be primes and q1 = p1
n1 , . . . , qk = pk

nk for some positive integers
n1, . . . , nk. Assume that d is the least common multiple of p1, . . . , pk and that m is
a positive integer such that m−1 is the product of q1 −1, . . . , qk −1. Let W denote
the variety of semirings defined by identities (SR1–4) and the following ones

(W1) (d + 1) · x ≈ x;
(W2) xm ≈ x;
(W3) d · x2 ≈ d · x;
(W4) x + d · xy ≈ x;
(W5) xy ≈ yx.

Let S be a semiring in W. We denote by E(S)+ the set of all idempotents of
the additive reduct (S, +) of S. By Theorems 1.1, 1.2, 2.1 and Lemma 2.1 in [21],
we have

Theorem 2.1. Let S be a semiring in W. Then the following statements

are true:

(i) E(S)+ = {d · a|a ∈ S}, and (E(S)+, +, ·) is a distributive lattice;

(ii) (S, +) is an E-unitary Clifford semigroup;

(iii) If R is a subdirectly irreducible semiring in W, then R is two-element

distributive lattice or R is a finite field.

In this section we assume that F1, . . . , Fk is any given finite number of finite
fields with characteristics p1, . . . , pk and sizes q1, . . . , qk. In what follows the semir-
ing variety V = HSP{B2, F1, . . . , Fk} will be considered.

It suffices to consider the following cases:

• V1 = HSP{B2, F1, . . . , Fk}, in which there exist at least two finite fields in
{F1, . . . , Fk} such that their characteristics are distinct.

• V2 = HSP{B2, F1, . . . , Fk}, in which F1, . . . , Fk have the same characteristics.

We firstly consider the variety V1. Clearly, V1 satisfies (W1–5) so it is a
subvariety of W. We also have that B2 and finite fields F1, . . . , Fk satisfy the
following identities

(W6)
d

pi

· xqi ≈
d

pi

· x (1 6 i 6 k),



48 SHAO, REN, CRVENKOVIĆ, AND MITROVIĆ

which implies that V1 = HSP{B2, F1, . . . , Fk} satisfies (W1–6). In fact, we have

Theorem 2.2. Let V1 = HSP{B2, F1, . . . , Fk}. Then

(i) V1 is finitely based;

(ii) if S is a subdirectly irreducible semiring in V1, then S is isomorphic to

B2, or there exists a field F in {F1, . . . , Fk} such that S is isomorphic to

a subfield of F .

Proof. (i) Let V∗ be the variety of semirings defined by (SR1-4) and (W1-6).
It is easy to see that V∗ is a subvariety of W and that V1 is a subvariety of V∗.
In what follows we will prove that V1 = V∗.

Suppose that S is a subdirectly irreducible semiring in V∗. It follows from
Theorem 2.1 that S, up to isomorphism, is B2 or a finite field. If S is a finite field,
then S satisfies the identity (W1). Thus, the characteristic of S is equal to some
pi (1 6 i 6 k) since d is the least common multiple of p1, . . . , pk. Next, S satisfies
d

pi

· xqi =
d

pi

· x, which implies that S satisfies xqi = x, so the size of S divides qi.

Thus, up to isomorphism, S is a subfield of Fi. Since every subfield of Fi is in
the variety V1 = HSP{B2, F1, . . . , Fk}, we have that S belongs to V1. This shows
that every subdirectly irreducible semiring of V∗ is in V1 and so V∗ ⊆ V1 and so
V∗ = V1. This shows that V1 is finitely based.

(ii) If S is a subdirectly irreducible semiring in V1, then it follows directly from
the proof of (i) that S is isomorphic to B2, or there exists a field F in {F1, . . . , Fk}
such that S is isomorphic to a subfield of F . �

In general, V1 can be a proper subvariety of W. This can be shown by the
following example.

Example 2.1. Let us consider the variety HSP{B2, F3, F22 , F23 , F72 } and the
semiring variety W(2, 3, 7, 2017) defined by the additional identities

(1) x + 42 · x ≈ x; (3) 42 · x2 ≈ 42 · x; (5) xy ≈ yx.
(2) x2017 ≈ x; (4) x + 42 · xy ≈ x;

It is easy to see that HSP{B2, F3, F22 , F23 , F72} satisfies identities (1)–(5). It
is a routine matter to verify that F32 is in W(2, 3, 7, 2017). By Theorem 2.2 we
have that F32 does not belong to HSP{B2, F3, F22 , F23 , F72 }. This implies that
HSP{B2, F3, F22 , F23 , F72 } is a proper subvariety of W(2, 3, 7, 2017). This means
that, for V1, the identity (W6) is indispensable.

In the following we will discuss the variety V2 = HSP{B2, F1, . . . , Fk} gener-
ated by B2 and a finite number of finite fields with the same characteristic. Without
loss of generality, we assume that there exists a prime p such that the characteris-
tics of F1, . . . , Fk are equal to p. Thus, there exist positive integers n1, . . . , nk such
that |Fi| = pni (1 6 i 6 k).

Let n be a positive integer such that n−1 is the product of pn1 −1, . . . , pnk −1.
It is easy to verify that V2 satisfy

(FSR1) (p + 1) · x ≈ x;
(FSR2) xn ≈ x;
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(FSR3) p · x2 ≈ p · x;
(FSR4) x + p · xy ≈ x;

(FSR5) x + (xpn1

+ (p − 1) · x) . . . (xpnk
+ (p − 1) · x) ≈ x;

(W5) xy ≈ yx.

Thus we have

Theorem 2.3. Let V2 = HSP{B2, F1, . . . , Fk} be the variety generated by B2

and a finite number of finite fields with the same characteristic p. Then

(i) V2 is finitely based;

(ii) if S is a subdirectly irreducible semiring in V2, then S is isomorphic to

B2, or there exists a field F in {F1, . . . , Fk} such that S is isomorphic to

a subfield of F .

Proof. (i) We denote by V′ the variety of semirings defined by (SR1–4),
(FSR1–5) and (W5). It is easy to see that V2 is a subvariety of V′. In what
follows, we will prove that V2 = V′.

Suppose that S is a subdirectly irreducible semiring in V′. It follows from
Theorem 2.1 that S, up to isomorphism, is B2 or a finite field. If S is a finite field,
then S satisfies the identity (FSR1). This implies that the characteristic of S is
equal to p. Since (S, +, ·) is a finite field, we denote by 0 and 1 the zero element and
the identity of S, respectively. Thus we have that (S r {0}, ·) is a cyclic group of a
finite order. Without loss of generality, we suppose that (Sr{0}, ·) can be generated
by the element a and the order of (Sr{0}, ·) is equal to q, i.e., |Sr{0}| = q. From
(FSR5) we have that a + (ap1

n1

+ (p − 1) · a) . . . (apk
nk + (p − 1) · a) = a. It follows

that (apn1

+(p−1)·a) . . . (apnk +(p−1)·a) = 0 since (S, +) is a group. Furthermore,

there exists 1 6 j 6 k such that ap
nj

+(p−1) ·a = 0 and so ap
nj

+(p−1) ·a+a = a.

Since the characteristic of S is equal to p, a = ap
nj

+(p−1)·a+a = ap
nj

+p·a = ap
nj

and so ap
nj −1 = 1. This shows the size q of (S r {0}, ·) divides pnj − 1 and so the

size of S divides pnj . Thus, S is isomorphisic to the subfield of Fj . Since every
subfield of Fi is in the variety V2 = HSP{B2, F1, . . . , Fk}, we have that S belongs
to V2. This shows that every subdirectly irreducible semiring of V′ is in V2 and
so V′ = V2. This means that V2 is finitely based.

(ii) If S is a subdirectly irreducible semiring in V2, then it follows directly from
the proof of (i) that S is isomorphic to B2, or there exists a field F in {F1, . . . , Fk}
such that S is isomorphic to a subfield of F . �

In general, V2 can be a proper subvariety of W. For example, let us consider
the variety HSP{B2, F33 , F35 , F37 } and the semiring variety W(3, 13754313) defined
by the additional identities

(1) 4 · x ≈ x; (3) 3 · x2 ≈ 3 · x; (5) xy ≈ yx.
(2) x13754313 ≈ x; (4) x + 3 · xy ≈ x;

It is easy to see that HSP{B2, F33 , F35 , F37 } satisfies identities (1)–(5). It
is routine to verify that F32 is in W(3, 13754313). By Theorem 2.3 it follows
that F32 does not belong to the variety HSP{B2, F33 , F35 , F37 }. This implies that
HSP{B2, F33 , F35 , F37 } is a proper subvariety of W(3, 13754313). This means that,
for V2, the identity (FSR5) is indispensable.
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By Theorems 2.2 and 2.3, we can establish the following result:

Theorem 2.4. Let V be the variety generated by B2 and a finite number of

finite fields {F1, . . . , Fk}. Then

(i) V is finitely based;

(ii) if S is a subdirectly irreducible semiring in V, then S is isomorphic to

B2, or there exists a field F in {F1, . . . , Fk} such that S is isomorphic to

a subfield of F .

Theorem 2.4 extends and enriches the main results of [8]–[10], [20] and [21].
A variety is said to be hereditarily finitely based if every variety contained

in it is finitely based. In the rest of this section, we will show that the variety
V considered in Theorem 2.4 is hereditarily finitely based. By Theorem 2.4 (ii)
we immediately have that, up to isomorphism, there are finitely many subdirectly
irreducible members in V. Let T denote the set of all subdirectly irreducible
members in V. Since every subvariety of V is generated by a subset of T , it follows
that the lattice of all subvarieties of V is finite. Let A ⊆ T . To show that HSP(A)
is finitely based, we need only to consider the following cases:

• A = ∅. It is clear that HSP(A) is the trivial variety.
• A = {B2}. HSP(A) = D is finitely based.
• A consists of B2 and a finite number of finite fields. Then, by Theorem 2.4(i)

it follows that HSP(A) is finitely based.
• A consists of a finite number of finite fields. Without loss of generality, we

assume that A = {Fs1
, . . . , Fst

}, in which every finite field Fsj
is a subfield of

some Fi. Let b the least common multiple of characteristics of Fs1
, . . . , Fst

.
It is easy to see that every finite field in {Fs1

, . . . , Fst
} satisfies the identity

b · x ≈ b · y, but B2 does not satisfy b · x ≈ b · y. Thus, HSP(A) is a subvariety
of HSP(A ∪ {B2}) determined by additional identity b · x ≈ b · y. Suppose
that K is a subdirectly irreducible semiring in the subvariety HSP(A ∪ {B2})
determined by additional identity b · x ≈ b · y. It follows by Theorem 2.4 (ii)
that K is a subfield of some finite field in A and so K belongs to HSP(A).
This shows that HSP(A) is the subvariety of HSP(A ∪ {B2}) determined by
additional identity b · x ≈ b · y. Hence, HSP(A) is finitely based.

From above it follows that every subvariety of V is finitely based. We now have

Theorem 2.5. The semiring variety generated by a two-element distributive

lattice and any finite number of finite fields is hereditarily finitely based.
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