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Abstract. We revisit the Stummel class and its relation with Morrey spaces.
We reformulate a result of Ragusa and Zamboni [11] and then discuss its
generalization, as proposed by Eridani and Gunawan [4]. An improvement of
the results previously obtained by Eridani and Gunawan is obtained and some
extensions are presented.

1. Introduction

In 1971, Adams [1] studied traces of potential arising from translation invariant
operators and proved the following inequality
(1.1) ‖𝑢 · 𝑉 1/𝑝 : 𝐿𝑝‖ 6 𝐶 ‖𝑉 : 𝐿1,𝜆‖1/𝑝 ‖∇𝑢 : 𝐿𝛼‖
for 𝑢 ∈ 𝐶∞

0 (R𝑑), 𝑝 = 𝛼𝜆
𝑑−𝛼 , 𝜆 > 𝑑−𝛼, 1 < 𝛼 < 𝑑. Here 𝑉 is a nonnegative function in

the Morrey space 𝐿1,𝜆 = 𝐿1,𝜆(R𝑑), which we shall define below. Adams’ inequality
looks like (but not the same as) Olsen’s inequality [8]

‖𝑢 ·𝑊 : 𝐿𝑝,𝜆‖ 6 𝐶 ‖𝑊 : 𝐿(𝑑−𝜆)/𝛼,𝜆‖ ‖(−Δ)𝛼/2𝑢 : 𝐿𝑝,𝜆‖
for 1 < 𝑝 < 𝑑

𝛼 , 0 6 𝜆 < 𝑑 − 𝛼𝑝. It is well known that if 𝑓 := (−Δ)𝛼/2𝑢 ∈ 𝐿𝑝,𝜆,
then 𝑢 = (−Δ)−𝛼/2𝑓 ∈ 𝐿𝑞,𝜆, where 1

𝑞 = 1
𝑝 − 𝛼

𝑑−𝜆 [2]. Related works may also be
found in [3,12,15].
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For 1 6 𝑝 < ∞ and 0 6 𝜆 6 𝑑, the Morrey space 𝐿𝑝,𝜆 consists of locally
integrable functions 𝑓 for which

‖𝑓 : 𝐿𝑝,𝜆‖ := sup
𝑥∈R𝑑, 𝑟>0

(︂
1
𝑟𝜆

∫︁
|𝑥−𝑦|<𝑟

|𝑓(𝑦)|𝑝 𝑑𝑦
)︂1/𝑝

< ∞.

Note that 𝐿𝑝,0 = 𝐿𝑝, the usual Lebesgue space. For historical background of Morrey
spaces, see [6].

As we learn from the definition of 𝐿𝑝,𝜆, the parameter 𝑝 describes the local
integrability, while 𝜆 seems to measure the global integrability. Hence 𝐿1,𝜆 may
be used to describe the global integrability without taking into account the local
integrability. The aspect can be seen from the fact that 𝐿1,𝜆 supplements 𝐿𝑝,𝜆 in
the sharp maximal inequality [13, Theorem 1.1]. The space 𝐿1,𝜆 is a function space
which is difficult to grasp. For example, unlike 𝐿𝑝,𝜆 with 𝑝 > 1, it is not the case
that we can characterize 𝐿1,𝜆 in terms of the Littlewood–Paley decomposition. This
is because the singular integral operators like the Riesz transforms are not bounded
on 𝐿1,𝜆. Nevertheless, this space can be compared with other function spaces. This
is what we do in the present paper.

Our entry point is the work of Ragusa and Zamboni [11], which offers a similar
imbedding to (1.1) by assuming more hypotheses on the function 𝑉 . For 0 < 𝛼 < 𝑑,
they define the Stummel modulus of 𝑓 ∈ 𝐿1

loc = 𝐿1
loc(R𝑑), denoted by 𝜂𝛼𝑓 , by

𝜂𝛼𝑓(𝑟) := sup
𝑥∈R𝑑

∫︁
|𝑥−𝑦|<𝑟

|𝑓(𝑦)|
|𝑥− 𝑦|𝑑−𝛼 𝑑𝑦, 𝑟 > 0.

They then define the Stummel class 𝑆𝛼 by

𝑆𝛼 := {𝑓 ∈ 𝐿1
loc : lim

𝑟→0
𝜂𝛼𝑓(𝑟) = 0}.

Note that the definitions also make sense for 𝛼 = 𝑑. For 𝛼 = 2, 𝑆𝛼 is known as the
Stummel–Kato class. Ragusa and Zamboni obtain the following relation between
the Stummel class 𝑆𝛼 and the Morrey space 𝐿1,𝜆.

Theorem 1.1. If 𝑓 belongs to 𝐿1,𝜆, 𝑑− 𝛼 < 𝜆 < 𝑑, then 𝑓 belongs to 𝑆𝛼 with

𝜂𝛼𝑓(𝑟) 6 𝐶 𝑟𝜆−𝑑+𝛼‖𝑓 : 𝐿1,𝜆‖, 𝑟 > 0.

Conversely, if 𝑓 belongs to 𝑆𝛼 and 𝜂𝛼𝑓(𝑟) ∼ 𝑟𝛽, then 𝑓 belongs to 𝐿1,𝑑−𝛼+𝛽.

The second part of the theorem tells us that if 𝜂𝛼𝑓(𝑟) behaves like a power
of 𝑟, then the improvement of the integrability of 𝑢 in Adams’ inequality can be
seen either in terms of 𝑉 in 𝐿1,𝜆 or its local Riesz potential given by 𝜂𝛼𝑓(𝑟). From
another point of view, the above theorem provides a characterization of the Morrey
space 𝐿1,𝜆 in terms of the Stummel modulus.

In this paper, we discuss a generalized version of the Stummel class and its
relation with generalized Morrey spaces. Our aim is to reprove and improve the
results of Eridani and Gunawan [4] by using weaker assumptions. (At the same
time, an analogous result in the nonhomogeneous setting is obtained by Setya-
Budhi et al. [14].) Moreover, we introduce two (generalized) Stummel classes with
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variable growth condition and with nonradially symmetric condition, and establish
their relation with generalized Morrey spaces.

Throughout the paper, the letter 𝐶 denotes a positive constant, which may
vary from line to line.

2. Preliminaries

2.1. Definitions. For 𝜓 : (0,∞) → (0,∞) with
∫︀ 1

0 𝑡
𝑑−1𝜓(𝑡) 𝑑𝑡 < ∞, we define

the Stummel modulus of 𝑓 ∈ 𝐿1
loc by

𝜂𝜓𝑓(𝑟) := sup
𝑥∈R𝑑

∫︁
|𝑥−𝑦|<𝑟

|𝑓(𝑦)|𝜓(|𝑥− 𝑦|) 𝑑𝑦, 𝑟 > 0.

Accordingly, we define the Stummel class 𝑆𝜓 by

𝑆𝜓 := {𝑓 ∈ 𝐿1
loc : lim

𝑟→0
𝜂𝜓𝑓(𝑟) = 0}.

Just like 𝜂𝛼𝑓 , we see that 𝜂𝜓𝑓(𝑟) is a nondecreasing function of 𝑟. Moreover,
we note that if 𝜓(𝑡) = 𝑡𝛼−𝑑, 0 < 𝛼 6 𝑑, then 𝜂𝜓𝑓 = 𝜂𝛼𝑓 and 𝑆𝜓 = 𝑆𝛼. One may
also observe that for 0 < 𝛼 6 𝑑, we have 𝑆𝛼 ⊆ 𝑆𝜓 provided that 𝜓(𝑡) 6 𝐶𝑡𝛼−𝑑 for
some positive constant 𝐶. In general, the condition

∫︀ 1
0 𝑡

𝑑−1𝜓(𝑡) 𝑑𝑡 < ∞ guarantees
that 𝑆𝜓 contains all locally bounded functions on R𝑑.

Along with the generalized Stummel class, we also have the generalized Morrey
spaces (as in [5, 7]). For 1 6 𝑝 < ∞ and a suitable function 𝜑 : (0,∞) → (0,∞),
the generalized Morrey space ℳ𝑝,𝜑 := ℳ𝑝,𝜑(R𝑑) is defined to be the space of all
functions 𝑓 ∈ 𝐿𝑝loc for which

‖𝑓 : ℳ𝑝,𝜑‖ := sup
𝐵=𝐵(𝑥,𝑟)

1
𝜑(𝑟)

(︂
1

|𝐵|

∫︁
𝐵

|𝑓(𝑦)|𝑝𝑑𝑦
)︂1/𝑝

< ∞.

Here |𝐵| denotes the usual Lebesgue measure of 𝐵 = 𝐵(𝑥, 𝑟), which is a constant
times 𝑟𝑑. We notice that if 𝜑(𝑡) = 𝑡(𝜆−𝑑)/𝑝, 0 6 𝜆 6 𝑑, then ℳ𝑝,𝜑 = 𝐿𝑝,𝜆.

2.2. Assumptions. We say that a function 𝜙 : (0,∞) → (0,∞) satisfies the
doubling condition if there exists a constant 𝐶 > 0 such that

1 6 𝑟

𝑠
6 2 ⇒ 1

𝐶
6
𝜙(𝑟)
𝜙(𝑠) 6 𝐶.

For example, for any 𝑎 ∈ R, the function 𝜙(𝑡) = 𝑡𝑎 satisfies the doubling condition.
It is not hard to see that if 𝜙1 and 𝜙2 satisfy the doubling condition, so do their
product and quotient.

Observe that if 𝜙 satisfies the doubling condition, then we have∫︁ 2𝑅

𝑅

𝜙(𝑡)
𝑡

𝑑𝑡 ∼ 𝜙(𝑅),

that is, there exists a constant 𝐶 > 0 such that

1
𝐶
𝜙(𝑅) 6

∫︁ 2𝑅

𝑅

𝜙(𝑡)
𝑡

𝑑𝑡 6 𝐶 𝜙(𝑅), for every 𝑅 > 0.
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Now, the doubling condition can be decomposed into two conditions, namely
the left-doubling condition 1 6 𝑟

𝑠 6 2 ⇒ 1
𝐶 6

𝜙(𝑟)
𝜙(𝑠) and the right-doubling condition

1 6 𝑟
𝑠 6 2 ⇒ 𝜙(𝑟)

𝜙(𝑠) 6 𝐶.
If 𝜙 satisfies the right-doubling condition, then we have

1
𝐶
𝜙(2𝑅) 6

∫︁ 2𝑅

𝑅

𝜙(𝑡)
𝑡

𝑑𝑡 6 𝐶 𝜙(𝑅) for every 𝑅 > 0.

Meanwhile, if 𝜙 satisfies the left-doubling condition, then we have
1
𝐶
𝜙(𝑅) 6

∫︁ 2𝑅

𝑅

𝜙(𝑡)
𝑡

𝑑𝑡 6 𝐶 𝜙(2𝑅) for every 𝑅 > 0.

Note also that 𝜙 satisfies the right-doubling condition if and only if 1/𝜙 satisfies
the left-doubling condition.

Example 2.1. Consider the function 𝜙1(𝑡) = 𝑒−𝑡, 𝑡 ∈ (0,∞). This function
satisfies the right-doubling condition but fails to satisfy the left-doubling condition
(and hence it does not satisfy the doubling condition). Meanwhile, the function
𝜙2(𝑡) = 𝑒𝑡, 𝑡 ∈ (0,∞), satisfies the left-doubling condition but not the right-
doubling condition. Consequently, for any 𝑎 ∈ R, the function 𝜙3(𝑡) = 𝑡𝑎𝑒−𝑡

satisfies the right-doubling condition only, while the function 𝜙4(𝑡) = 𝑡𝑎𝑒𝑡 satisfies
the left-doubling condition only.

Example 2.2. Let 𝛾 < 𝛽 < 0. Define 𝑟1 := 1
2 and 𝑟𝑗+1 := 𝑟

𝛾/𝛽
𝑗 for 𝑗 = 1, 2, . . . .

Then 𝑟𝑗 → 0 as 𝑗 → ∞. Now define the function 𝜓 on (0,∞) by

𝜓(𝑟) :=
{︂
𝑟𝛾𝑗 , if 𝑟𝑗+1 < 𝑟 6 𝑟𝑗 ;
𝑟𝛾 , if 𝑟1 < 𝑟.

Then 𝑟𝛽 < 𝜓(𝑟) 6 𝑟𝛾 for 0 < 𝑟 < 1. Since 𝜓 is nonincreasing, 𝜓 satisfies the
right-doubling condition. But

𝜓(𝑟𝑗+)
𝜓(𝑟𝑗)

=
𝑟𝛾𝑗−1

𝑟𝛾𝑗
=
𝑟𝛽𝑗
𝑟𝛾𝑗

= 𝑟𝛽−𝛾
𝑗 → 0, as 𝑗 → ∞.

Hence 𝜓 does not satisfy the left-doubling condition. If in the definition above we
let 0 < 𝛽 < 𝛾, then the resulting function 𝜓 satisfies the left-doubling condition
but not the right-doubling condition. Moreover, the function 𝑟−𝑑𝜓(𝑟) has the same
property as 𝜓.

In general, nonincreasing functions satisfy the right-doubling condition, while
nondecreasing functions satisfy the left-doubling condition. The function 𝜑 in the
definition of the Morrey space ℳ𝑝,𝜑 is assumed to be nonincreasing, and hence
it satisfies the right-doubling condition. In addition, 𝑡𝑑/𝑝𝜑(𝑡) is assumed to be
nondecreasing, so that — after division by 𝑡𝑑/𝑝 — the function 𝜑 must satisfy the
left-doubling condition. Thus 𝜑 here satisfies the doubling condition.

In [4], the function 𝜓 in the definition of the Stummel class 𝑆𝜓 is also assumed
to satisfy the doubling condition. We find, however, that this is not necessary: we
can obtain the same result as in [4] by assuming that 𝜓 satisfies the right-doubling
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condition only or the left-doubling condition only. This, of course, enlarges the
coverage of the functions 𝜓 in the definition of the Stummel class 𝑆𝜓.

3. Main Results

Our first result below shows the inclusion of the generalized Morrey space ℳ1,𝜑

in the Stummel class 𝑆𝜓, under some conditions on 𝜓.

Theorem 3.1. Suppose that
∫︀ 1

0 𝑡
𝑑−1𝜓(𝑡)𝜑(𝑡) 𝑑𝑡 < ∞. Then ℳ1,𝜑 ⊆ 𝑆𝜓 pro-

vided that 𝜓 satisfies the right-doubling condition or the left-doubling condition.

Proof. The method used is the same as that employed in the proof of The-
orem 1 in [10]. Let 𝑓 ∈ ℳ1,𝜑. Suppose first that 𝜓 satisfies the right-doubling
condition. For 𝑥 ∈ R𝑑 and 𝑟 > 0, we have∫︁

|𝑥−𝑦|<𝑟
|𝑓(𝑦)|𝜓(|𝑥− 𝑦|) 𝑑𝑦 =

−1∑︁
𝑗=−∞

∫︁
2𝑗𝑟6|𝑥−𝑦|<2𝑗+1𝑟

|𝑓(𝑦)|𝜓(|𝑥− 𝑦|) 𝑑𝑦

6 𝐶
−1∑︁

𝑗=−∞
𝜓(2𝑗𝑟)

∫︁
|𝑥−𝑦|<2𝑗+1𝑟

|𝑓(𝑦)| 𝑑𝑦

6 𝐶
−1∑︁

𝑗=−∞
(2𝑗+1𝑟)𝑑𝜓(2𝑗𝑟)𝜑(2𝑗+1𝑟)‖𝑓 : ℳ1,𝜑‖.

Recall that 𝜑 is assumed to satisfy the doubling condition. Thus, we have∫︁
|𝑥−𝑦|<𝑟

|𝑓(𝑦)|𝜓(|𝑥− 𝑦|) 𝑑𝑦 6 𝐶 ‖𝑓 : ℳ1,𝜑‖
−1∑︁

𝑗=−∞
(2𝑗𝑟)𝑑𝜓(2𝑗𝑟)𝜑(2𝑗𝑟)

6 𝐶 ‖𝑓 : ℳ1,𝜑‖
−1∑︁

𝑗=−∞

∫︁ 2𝑗𝑟

2𝑗−1𝑟

𝑡𝑑−1𝜓(𝑡)𝜑(𝑡) 𝑑𝑡

= ‖𝑓 : ℳ1,𝜑‖
∫︁ 𝑟/2

0
𝑡𝑑−1𝜓(𝑡)𝜑(𝑡) 𝑑𝑡.

The last inequality implies that

𝜂𝜓𝑓(𝑟) 6 𝐶 ‖𝑓 : ℳ1,𝜑‖
∫︁ 𝑟/2

0
𝑡𝑑−1𝜓(𝑡)𝜑(𝑡) 𝑑𝑡.

Since
∫︀ 1

0 𝑡
𝑑−1𝜓(𝑡)𝜑(𝑡) 𝑑𝑡 < ∞, we have lim𝑟→0

∫︀ 𝑟/2
0 𝑡𝑑−1𝜓(𝑡)𝜑(𝑡) 𝑑𝑡 = 0. Hence we

find that lim𝑟→0 𝜂𝜓𝑓(𝑟) = 0, that is, 𝑓 ∈ 𝑆𝜓.
Suppose now that 𝜓 satisfies the left-doubling condition. Then, for 𝑥 ∈ R𝑑 and

𝑟 > 0, we have∫︁
|𝑥−𝑦|<𝑟

|𝑓(𝑦)|𝜓(|𝑥− 𝑦|) 𝑑𝑦 =
−1∑︁

𝑗=−∞

∫︁
2𝑗𝑟6|𝑥−𝑦|<2𝑗+1𝑟

|𝑓(𝑦)|𝜓(|𝑥− 𝑦|) 𝑑𝑦
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6 𝐶
−1∑︁

𝑗=−∞
𝜓(2𝑗+1𝑟)

∫︁
|𝑥−𝑦|<2𝑗+1𝑟

|𝑓(𝑦)| 𝑑𝑦

6 𝐶
−1∑︁

𝑗=−∞
(2𝑗+1𝑟)𝑑𝜓(2𝑗+1𝑟)𝜑(2𝑗+1𝑟)‖𝑓 : ℳ1,𝜑‖

6 𝐶 ‖𝑓 : ℳ1,𝜑‖
−1∑︁

𝑗=−∞

∫︁ 2𝑗+2𝑟

2𝑗+1𝑟

𝑡𝑑−1𝜓(𝑡)𝜑(𝑡) 𝑑𝑡

= 𝐶 ‖𝑓 : ℳ1,𝜑‖
∫︁ 2𝑟

0
𝑡𝑑−1𝜓(𝑡)𝜑(𝑡) 𝑑𝑡.

The last inequality implies that

𝜂𝜓𝑓(𝑟) 6 𝐶 ‖𝑓 : ℳ1,𝜑‖
∫︁ 2𝑟

0
𝑡𝑑−1𝜓(𝑡)𝜑(𝑡) 𝑑𝑡.

But lim
𝑟→0

∫︀ 2𝑟
0 𝑡𝑑−1𝜓(𝑡)𝜑(𝑡) 𝑑𝑡 = 0 gives lim

𝑟→0
𝜂𝜓𝑓(𝑟) = 0, so that 𝑓 ∈ 𝑆𝜓. �

Corollary 3.1. Suppose that for some 𝜖 > 0, the function 𝑡𝑑−𝜖𝜓(𝑡)𝜑(𝑡) is
almost increasing, that is, there exists a constant 𝐶 > 0 such that

𝑟 6 𝑠 ⇒ 𝑟𝑑−𝜖𝜓(𝑟)𝜑(𝑟) 6 𝐶𝑠𝑑−𝜖𝜓(𝑠)𝜑(𝑠).

If 𝑓 ∈ ℳ1,𝜑, then 𝑓 ∈ 𝑆𝜓 with
(i) 𝜂𝜓𝑓(𝑟) 6 𝐶 𝑟𝑑𝜓

(︀
𝑟
2
)︀
𝜑

(︀
𝑟
2
)︀

for every 𝑟 > 0, provided that 𝜓 satisfies the
right-doubling condition, or

(ii) 𝜂𝜓𝑓(𝑟) 6 𝐶 𝑟𝑑𝜓(2𝑟)𝜑(2𝑟) for every 𝑟 > 0, provided that 𝜓 satisfies the
left-doubling condition.

Remark. The constant 𝐶 above depends on 𝑑, 𝜖, 𝑓, 𝜓 and 𝜑, but not on 𝑟.

Proof. If 𝜓 satisfies the right-doubling condition, then we have already shown
that there exists a constant 𝐶 > 0 such that for every 𝑟 > 0,

𝜂𝜓𝑓(𝑟) 6 𝐶
∫︁ 𝑟/2

0
𝑡𝑑−1𝜓(𝑡)𝜑(𝑡) 𝑑𝑡.

Since 𝑡𝑑−𝜖𝜓(𝑡)𝜑(𝑡) is almost increasing, we have∫︁ 𝑟/2

0
𝑡𝑑−1𝜓(𝑡)𝜑(𝑡) 𝑑𝑡 =

∫︁ 𝑟/2

0
𝑡𝑑−𝜖𝜓(𝑡)𝜑(𝑡)𝑡𝜖−1𝑑𝑡

6 𝐶𝑟𝑑−𝜖𝜓
(︀
𝑟
2
)︀
𝜑

(︀
𝑟
2
)︀ ∫︁ 𝑟/2

0
𝑡𝜖−1𝑑𝑡 = 𝐶 𝑟𝑑𝜓

(︀
𝑟
2
)︀
𝜑

(︀
𝑟
2
)︀
.

Hence 𝜂𝜓𝑓(𝑟) 6 𝐶 𝑟𝑑𝜓
(︀
𝑟
2
)︀
𝜑

(︀
𝑟
2
)︀

for every 𝑟 > 0. In particular, 𝜂𝜓𝑓(𝑟) 6 𝐶 𝑟𝜖 for
0 < 𝑟 < 1, so that 𝑓 ∈ 𝑆𝜓. The second estimate for 𝜂𝜓𝑓 is obtained in a similar
way when 𝜓 satisfies the left-doubling condition. �
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In [11], the converse of the above theorem for 𝜓(𝑡) = 𝑡𝛼−𝑑, 0 < 𝛼 6 𝑑,
is obtained by first showing that the Stummel modulus 𝜂𝛼𝑓 satisfies the right-
doubling condition. As we show in our next theorem, it is not necessary to do so,
since we know that the Stummel modulus is nondecreasing.

Theorem 3.2. If 𝑓 ∈ 𝑆𝜓, then 𝑓 ∈ ℳ1,𝜑 provided that
(i) 𝜓 satisfies the right-doubling condition and

∫︀ 𝑟
0
𝜂𝜓𝑓(𝑡)
𝑡𝜓(𝑡) 𝑑𝑡 6 𝐶𝑟𝑑𝜑(𝑟) for

every 𝑟 > 0, or
(ii) 𝜓 satisfies the left-doubling condition and

∫︀ 𝑟
0
𝜂𝜓𝑓(4𝑡)
𝑡𝜓(𝑡) 𝑑𝑡 6 𝐶𝑟𝑑𝜑(𝑟) for

every 𝑟 > 0.

Proof. Suppose that 𝜓 satisfies the right-doubling condition. For a given ball
𝐵 := 𝐵(𝑥, 𝑟), where 𝑥 ∈ R𝑑 and 𝑟 > 0, we have∫︁

|𝑥−𝑦|<𝑟
|𝑓(𝑦)| 𝑑𝑦 =

−1∑︁
𝑗=−∞

∫︁
2𝑗𝑟6|𝑥−𝑦|<2𝑗+1𝑟

|𝑓(𝑦)| 𝑑𝑦

6 𝐶
−1∑︁

𝑗=−∞

1
𝜓(2𝑗+1𝑟)

∫︁
|𝑥−𝑦|<2𝑗+1𝑟

|𝑓(𝑦)|𝜓(|𝑥− 𝑦|) 𝑑𝑦

6 𝐶
−1∑︁

𝑗=−∞

𝜂𝜓𝑓(2𝑗+1𝑟)
𝜓(2𝑗+1𝑟) .

Now 1
𝜓(2𝑗+1𝑟) 6

𝐶
𝜓(𝑡) for 2𝑗+1𝑟 6 𝑡 6 2𝑗+2𝑟. Meanwhile, 𝜂𝜓𝑓 is nondecreasing,

so that 𝜂𝜓𝑓(2𝑗+1𝑟) 6 𝜂𝜓𝑓(𝑡) for 2𝑗+1𝑟 6 𝑡 6 2𝑗+2𝑟. Hence, from the previous
inequality, we obtain∫︁

|𝑥−𝑦|<𝑟
|𝑓(𝑦)| 𝑑𝑦 6 𝐶

−1∑︁
𝑗=−∞

∫︁ 2𝑗+2𝑟

2𝑗+1𝑟

𝜂𝜓𝑓(𝑡)
𝑡𝜓(𝑡) 𝑑𝑡

= 𝐶

∫︁ 2𝑟

0

𝜂𝜓𝑓(𝑡)
𝑡𝜓(𝑡) 𝑑𝑡 6 𝐶 (2𝑟)𝑑𝜑(2𝑟) 6 𝐶 𝑟𝑑𝜑(𝑟).

The last inequality may now be rewritten as 1
𝜑(𝑟) |𝐵|

∫︀
𝐵

|𝑓(𝑦)| 𝑑𝑦 6 𝐶. Taking the
supremum over all balls 𝐵 in R𝑑, we obtain 𝑓 ∈ ℳ1,𝜑.

We leave the proof of the second part — when 𝜓 satisfies the left-doubling
condition — to the readers. �

Corollary 3.2. Suppose that for some 𝜖 > 0, the function 𝑡𝜖𝜓(𝑡) is almost
decreasing, that is, there exists a constant 𝐶 > 0 such that

𝑟 6 𝑠 ⇒ 𝑟𝜖𝜓(𝑟) > 𝐶 𝑠𝜖𝜓(𝑠).
If 𝑓 ∈ 𝑆𝜓, then 𝑓 ∈ ℳ1,𝜑 provided that

(i) 𝜓 satisfies the right-doubling condition and 𝜂𝜓𝑓(𝑟) 6 𝐶𝑟𝑑𝜓(𝑟)𝜑(𝑟) for
every 𝑟 > 0, or

(ii) 𝜓 satisfies the left-doubling condition and 𝜂𝜓𝑓(4𝑟) 6 𝐶𝑟𝑑𝜓(𝑟)𝜑(𝑟) for
every 𝑟 > 0.
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Proof. If 𝜓 satisfies the right-doubling condition 𝜂𝜓𝑓(𝑟) 6 𝐶𝑟𝑑𝜓(𝑟)𝜑(𝑟) for
every 𝑟 > 0, then we have∫︁ 𝑟

0

𝜂𝜓𝑓(𝑡)
𝑡𝜓(𝑡) 𝑑𝑡 =

∫︁ 𝑟

0

𝜂𝜓𝑓(𝑡)
𝑡𝜖𝜓(𝑡) 𝑡

𝜖−1 𝑑𝑡

6 𝐶
𝜂𝜓𝑓(𝑟)
𝑟𝜖𝜓(𝑟)

∫︁ 𝑟

0
𝑡𝜖−1𝑑𝑡 = 𝐶

𝜂𝜓𝑓(𝑟)
𝜓(𝑟) 6 𝐶𝑟

𝑑𝜑(𝑟),

for every 𝑟 > 0. This is precisely the condition in the first part of Theorem 3.2.
Similarly, if 𝜓 satisfies the left-doubling condition and 𝜂𝜓𝑓(4𝑟) 6 𝐶 𝑟𝑑𝜓(𝑟)𝜑(𝑟) for
every 𝑟 > 0, then we obtain the condition in the second part of Theorem 3.2. �

Remark. For 𝛿 > 0, let 𝜓(𝑡) ∼ 𝑡−𝑑(log 𝑡−1)−1−𝛿 for small 𝑡 > 0. Then one
may observe that for some 𝜖 > 0, the function 𝑡𝜖𝜓(𝑡) is almost decreasing.

4. Further Results

We shall now present some variants of the previous results.

4.1. First Variant. For 1 6 𝑝 < ∞ and a suitable function 𝜑 : R𝑑×(0,∞) →
(0,∞), we define the generalized Morrey space ℳ𝑝,𝜑

* := ℳ𝑝,𝜑
* (R𝑑) to be the space

of all functions 𝑓 ∈ 𝐿𝑝loc for which

‖𝑓 : ℳ𝑝,𝜑
* ‖ := sup

𝐵=𝐵(𝑥,𝑟)

1
𝜑(𝑥, 𝑟)

(︂
1

|𝐵|

∫︁
𝐵

|𝑓(𝑦)|𝑝𝑑𝑦
)︂1/𝑝

< ∞.

Next, for 𝜓 : R𝑑 × (0,∞) → (0,∞), we define the generalized Stummel modulus by

𝜂*
𝜓𝑓(𝑟) := sup

𝑥∈R𝑑

∫︁
|𝑥−𝑦|<𝑟

|𝑓(𝑦)|𝜓(𝑥, |𝑥− 𝑦|) 𝑑𝑦, 𝑟 > 0,

and the generalized Stummel class 𝑆*
𝜓 by 𝑆*

𝜓 := {𝑓 ∈ 𝐿1
loc : lim𝑟→0 𝜂

*
𝜓𝑓(𝑟) = 0}.

Then we have the following results, which can be proved in the same way as The-
orems 3.1 and 3.2.

Theorem 4.1. Suppose that lim𝑟→0 sup𝑥∈R𝑑
∫︀ 𝑟

0 𝑡
𝑑−1𝜓(𝑥, 𝑡)𝜑(𝑥, 𝑡) 𝑑𝑡 < ∞. Then

we have ℳ1,𝜑
* ⊆ 𝑆*

𝜓 provided that 𝜓 satisfies the right-doubling condition, that is,
there exists a constant 𝐶 > 0 such that

𝑥 ∈ R𝑑 and 1 6 𝑟

𝑠
6 2 ⇒ 𝜓(𝑥, 𝑟)

𝜓(𝑥, 𝑠) 6 𝐶

or the left-doubling condition, that is, there exists a constant 𝐶 > 0 such that

𝑥 ∈ R𝑑 and 1 6 𝑟

𝑠
6 2 ⇒ 1

𝐶
6
𝜓(𝑥, 𝑟)
𝜓(𝑥, 𝑠) .

Example 4.1. Let 𝛼 : R𝑑 → (0,∞) with 0 < inf𝑥∈R𝑑 𝛼(𝑥) 6 sup𝑥∈R𝑑 𝛼(𝑥) 6 𝑑,
and put 𝜓(𝑥, 𝑡) = 𝑡𝛼(𝑥)−𝑑, 𝑥 ∈ R𝑑, 𝑡 > 0. Then one may check that 𝜓 satisfies the
right- and left-doubling conditions.

Theorem 4.2. If 𝑓 ∈ 𝑆*
𝜓, then 𝑓 ∈ ℳ1,𝜑

* provided that
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(i) 𝜓 satisfies the right-doubling condition and
∫︀ 𝑟

0
𝜂*
𝜓𝑓(𝑡)
𝑡𝜓(𝑥,𝑡)𝑑𝑡 6 𝐶𝑟𝑑𝜑(𝑥, 𝑟) for

every 𝑥 ∈ R𝑑 and 𝑟 > 0, or
(ii) 𝜓 satisfies the left-doubling condition and

∫︀ 𝑟
0
𝜂*
𝜓𝑓(4𝑡)
𝑡𝜓(𝑥,𝑡) 𝑑𝑡 6 𝐶𝑟𝑑𝜑(𝑥, 𝑟) for

every 𝑥 ∈ R𝑑 and 𝑟 > 0.

Remark. We leave it to the readers to formulate the consequences of the above
theorems that are analogous to Corollaries 3.1 and 3.2.

4.2. Second Variant. We go back to the generalized Morrey spaces ℳ𝑝,𝜑

we considered earlier, but for a nonnegative locally integrable function Ψ we now
define the generalized Stummel modulus by

𝜂Ψ𝑓(𝑟) := sup
𝑥∈R𝑑

∫︁
|𝑥−𝑦|<𝑟

|𝑓(𝑦)|Ψ(𝑥− 𝑦) 𝑑𝑦, 𝑟 > 0,

and the generalized Stummel class 𝑆Ψ by 𝑆Ψ := {𝑓 ∈ 𝐿1
loc : lim𝑟→0 𝜂Ψ𝑓(𝑟) = 0}.

Notice that Ψ may not be a radial function. As in [9], the function Ψ is assumed to
satisfy the following property: there are constants 𝐶, 𝛿>0 and 06𝜖<1 such that

(4.1) sup
𝑅6|𝑥|<2𝑅

Ψ(𝑥) 6 𝐶

𝑅𝑑

∫︁
𝛿(1−𝜖)𝑅6|𝑦|<2𝛿(1+𝜖)𝑅

Ψ(𝑦) 𝑑𝑦

for every 𝑅 > 0. Then, we have the following inclusion of the Morrey space ℳ1,𝜑

in the Stummel class 𝑆Ψ.

Theorem 4.3. Suppose that Ψ satisfies (4.1). If lim
𝑟→0

∫︀
|𝑥|<𝑟 Ψ(𝑥)𝜑(|𝑥|) 𝑑𝑥 = 0,

then ℳ1,𝜑 ⊆ 𝑆Ψ.

Proof. Let 𝑓 ∈ ℳ1,𝜑, 𝑥 ∈ R𝑑 and 𝑟 > 0. For convenience, put 𝑐1 := 𝛿(1 − 𝜖)
and 𝑐2 := 𝛿(1 + 𝜖). Then, we have∫︁

|𝑥−𝑦|<𝑟
|𝑓(𝑦)|Ψ(𝑥− 𝑦) 𝑑𝑦

=
−1∑︁

𝑗=−∞

∫︁
2𝑗𝑟6|𝑥−𝑦|<2𝑗+1𝑟

|𝑓(𝑦)|Ψ(𝑥− 𝑦) 𝑑𝑦

6
−1∑︁

𝑗=−∞
sup

2𝑗𝑟6|𝑥−𝑦|<2𝑗+1𝑟

Ψ(𝑥− 𝑦)
∫︁

2𝑗𝑟6|𝑥−𝑦|<2𝑗+1𝑟

|𝑓(𝑦)| 𝑑𝑦

6 𝐶
−1∑︁

𝑗=−∞

∫︁
𝑐12𝑗𝑟6|𝑧|<𝑐22𝑗+1𝑟

Ψ(𝑧) 𝑑𝑧 · 1
(2𝑗+1𝑟)𝑑

∫︁
|𝑥−𝑦|<2𝑗+1𝑟

|𝑓(𝑦)| 𝑑𝑦

6 𝐶 ‖𝑓 : ℳ1,𝜑‖
−1∑︁

𝑗=−∞
𝜑(2𝑗+1𝑟)

∫︁
𝑐12𝑗𝑟6|𝑧|<𝑐22𝑗+1𝑟

Ψ(𝑧) 𝑑𝑧.

Using the assumption that 𝜑 satisfies the doubling condition (when 𝑐2 > 1) and that
𝜑 is nonincreasing, we have 𝜑(2𝑗+1𝑟) 6 𝐶𝜑(𝑐22𝑗+1𝑟) 6 𝐶𝜑(|𝑧|) for |𝑧| < 𝑐22𝑗+1𝑟.
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Hence

𝜑(2𝑗+1𝑟)
∫︁
𝑐12𝑗𝑟6|𝑧|<𝑐22𝑗+1𝑟

Ψ(𝑧) 𝑑𝑧 6 𝐶
∫︁
𝑐12𝑗𝑟6|𝑧|<𝑐22𝑗+1𝑟

Ψ(𝑧)𝜑(|𝑧|) 𝑑𝑧.

Next, we have
∞∑︀

𝑗=−∞
𝜒[𝑐1,2𝑐2)(2𝑗𝑟) ∼ 1+log2

1+𝜖
1−𝜖 (the overlapping property), so that

−1∑︁
𝑗=−∞

∫︁
𝑐12𝑗𝑟6|𝑧|<𝑐22𝑗+1𝑟

Ψ(𝑧)𝜑(|𝑧|) 𝑑𝑧 6 𝐶
∫︁

|𝑧|<𝑐2𝑟

Ψ(𝑧)𝜑(|𝑧|) 𝑑𝑧.

Thus we obtain∫︁
|𝑥−𝑦|<𝑟

|𝑓(𝑦)|Ψ(𝑥− 𝑦) 𝑑𝑦 6 𝐶 ‖𝑓 : ℳ1,𝜑‖
∫︁

|𝑧|<𝑐2𝑟

Ψ(𝑧)𝜑(|𝑧|) 𝑑𝑧.

Since the integral on the right hand side tends to 0 as 𝑟 → 0, we conclude that
𝑓 ∈ 𝑆Ψ. �

To prove the converse, we assume that Ψ satisfies the following property: there
are constants 𝐶, 𝛿 > 0 and 0 6 𝜖 < 1 such that

(4.2) sup
𝑅6|𝑥|<2𝑅

1
Ψ(𝑥) 6

𝐶

𝑅𝑑

∫︁
𝛿(1−𝜖)𝑅6|𝑦|<2𝛿(1+𝜖)𝑅

1
Ψ(𝑦) 𝑑𝑦

for every 𝑅 > 0.

Theorem 4.4. Suppose that Ψ satisfies (4.2). If 𝑓 ∈ 𝑆Ψ, then 𝑓 ∈ ℳ1,𝜑

provided that ∫︁
|𝑥|<𝑟

𝜂Ψ𝑓(𝜅|𝑥|)
|𝑥|𝑑Ψ(𝑥) 𝑑𝑥 6 𝐶 𝑟𝑑𝜑(𝑟)

for every 𝑟 > 0, where 𝜅 := 2
𝛿(1−𝜖) .

Proof. Let 𝑓 ∈ 𝑆Ψ, 𝑥 ∈ R𝑑 and 𝑟 > 0. The same as before, we let 𝑐1 :=
𝛿(1 − 𝜖), 𝑐2 := 𝛿(1 + 𝜖), and put 𝜅 := 2

𝑐1
. It follows that∫︁

|𝑥−𝑦|<𝑟
|𝑓(𝑦)| 𝑑𝑦 =

−1∑︁
𝑗=−∞

∫︁
2𝑗𝑟6|𝑥−𝑦|<2𝑗+1𝑟

|𝑓(𝑦)| 𝑑𝑦

6
−1∑︁

𝑗=−∞
sup

2𝑗𝑟6|𝑥−𝑦|<2𝑗+1𝑟

1
Ψ(𝑥− 𝑦)

∫︁
|𝑥−𝑦|<2𝑗+1𝑟

|𝑓(𝑦)|Ψ(𝑥− 𝑦) 𝑑𝑦

6 𝐶
−1∑︁

𝑗=−∞

∫︁
𝑐12𝑗𝑟6|𝑧|<𝑐22𝑗+1𝑟

1
|𝑧|𝑑Ψ(𝑧) 𝑑𝑧 · 𝜂Ψ𝑓(2𝑗+1𝑟)

6 𝐶
∫︁

|𝑧|<𝑐2𝑟

𝜂Ψ𝑓(𝜅|𝑧|)
|𝑧|𝑑Ψ(𝑧) 𝑑𝑧 6 𝐶 𝑟𝑑𝜑(𝑟),

where we have used the fact that 𝜂Ψ𝑓 is nondecreasing, the overlapping property,
and the doubling property of 𝜑. This proves the theorem. �
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5. Concluding Remarks

We have improved the results of Eridani and Gunawan [4] by using weaker
assumptions. We have also found that the doubling property of the Stummel mod-
ulus is unnecessary, and used its increasing property instead. Moreover, we have
added some variants and proved similar results.

We end the paper with the following proposition, which tells us that given a
function in the Stummel class 𝑆𝜓, we can actually have extra information about
its integrability.

Proposition 5.1. If 𝑓 ∈ 𝑆𝜓 and
∫︀ 1

0 [𝜂𝜓𝑓(𝑡)]1−𝜃𝑡−1𝑑𝑡 < ∞, for 0 < 𝜃 < 1, then
for every 𝑥 ∈ R𝑑 and 𝑟 > 0∫︁

|𝑥−𝑦|<𝑟
|𝑓(𝑦)| 𝜓(|𝑥− 𝑦|)

[𝜂𝜓𝑓(2|𝑥− 𝑦|)]𝜃 𝑑𝑦 6
∫︁ 2𝑟

0
[𝜂𝜓𝑓(𝑡)]1−𝜃𝑡−1𝑑𝑡,

and hence
lim
𝑟→0

∫︁
|𝑥−𝑦|<𝑟

|𝑓(𝑦)| 𝜓(|𝑥− 𝑦|)
[𝜂𝜓𝑓(2|𝑥− 𝑦|)]𝜃 𝑑𝑦 = 0.

Proof. Indeed, since 𝜂𝜓𝑓 is an increasing function of 𝑟, so are [𝜂𝜓𝑓 ]𝜃 and
[𝜂𝜓𝑓 ]1−𝜃 for 0 < 𝜃 < 1. It thus follows that for every 𝑥 ∈ R𝑑 and 𝑟 > 0∫︁

|𝑥−𝑦|<𝑟
|𝑓(𝑦)| 𝜓(|𝑥− 𝑦|)

[𝜂𝜓𝑓(2|𝑥− 𝑦|)]𝜃 𝑑𝑦

=
−1∑︁

𝑗=−∞

∫︁
2𝑗𝑟6|𝑥−𝑦|<2𝑗+1𝑟

|𝑓(𝑦)| 𝜓(|𝑥− 𝑦|)
[𝜂𝜓𝑓(2|𝑥− 𝑦|)]𝜃 𝑑𝑦

6
−1∑︁

𝑗=−∞

1
[𝜂𝜓𝑓(2𝑗+1𝑟)]𝜃

∫︁
2𝑗𝑟6|𝑥−𝑦|<2𝑗+1𝑟

|𝑓(𝑦)|𝜓(|𝑥− 𝑦|) 𝑑𝑦

6
−1∑︁

𝑗=−∞
[𝜂𝜓𝑓(2𝑗+1𝑟)]1−𝜃 6

−1∑︁
𝑗=−∞

∫︁ 2𝑗+2𝑟

2𝑗+1𝑟

[𝜂𝜓𝑓(𝑡)]1−𝜃𝑡−1𝑑𝑡

=
∫︁ 2𝑟

0
[𝜂𝜓𝑓(𝑡)]1−𝜃𝑡−1𝑑𝑡.

But
∫︀ 1

0 [𝜂𝜓𝑓(𝑡)]1−𝜃𝑡−1𝑑𝑡 < ∞, and so we have lim
𝑟→0

∫︀ 2𝑟
0 [𝜂𝜓𝑓(𝑡)]1−𝜃𝑡−1𝑑𝑡 = 0. This

proves the proposition. �

Remark. Proposition 5.1 is also valid for the generalized Stummel classes 𝑆*
𝜓

and 𝑆Ψ defined in Section 4.
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