
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 92(106) (2012), 79–95 DOI: 10.2298/PIM1206079L

ON SEMANTICS OF A TERM CALCULUS
FOR CLASSICAL LOGIC

Silvia Likavec and Pierre Lescanne

Communicated by Žarko Mijajlović

Abstract. The calculus of Curien and Herbelin was introduced to provide
the Curry–Howard correspondence for classical logic. The terms of this calcu-
lus represent derivations in the sequent calculus proof system and reduction
reflects the process of cut-elimination. We investigate some properties of two
well-behaved subcalculi of untyped calculus of Curien and Herbelin, closed
under the call-by-name and the call-by-value reduction, respectively. Contin-
uation semantics is given using the category of negated domains and Moggi’s
Kleisli category over predomains for the continuation monad. Soundness the-
orems are given for both versions thus relating operational and denotational
semantics. A thorough overview of the work on continuation semantics is
given.

1. Introduction

It is well known that simply typed lambda calculus corresponds to intuitionistic
logic through Curry–Howard correspondence [15]. Extending lambda calculus with
control operators brings this correspondence to the realm of classical logic, as first
showed by Griffin in [13]. Next cornerstone in the study of theories of control in
programming languages was Parigot’s 𝜆𝜇 calculus [27].

𝜆𝜇̃︀𝜇 calculus of Curien and Herbelin [6] is a system with a more fine-grained
analysis of calculations within languages with control operators. Since it was in-
troduced in [6], 𝜆𝜇̃︀𝜇 calculus has had a strong influence on further understanding
between calculi with control operators and classical logic (see [2,3,39,40]).

This work contributes to the better understanding of 𝜆𝜇̃︀𝜇 calculus in two ways.
We prove confluence and build denotational semantics for the untyped version of
the calculus. Untyped 𝜆𝜇̃︀𝜇 calculus is Turing-complete, hence a naive set-theoretic
approach would not be enough. Since the calculus is not confluent, it is necessary to

2010 Mathematics Subject Classification: Primary 03B40, 03B70, 18C50; Secondary 68N18.
Key words and phrases: logic, lambda calculus, call-by-value, call-by-name, confluence, continu-
ation semantics, control, monad, category theory.
Partially supported by the Ministry of Education and Science of Serbia, project ON174026.

79



80 LIKAVEC AND LESCANNE

consider separately the call-by-name and call-by-value disciplines. The semantics is
defined using category of negated domains [35] and Kleisli category [18]. Soundness
theorems are given for both, call-by-value and call-by-name subcalculi, thus relating
operational and denotational semantics.

The paper is organized as follows. In Section 2 we recall the syntax and the
reduction rules of 𝜆𝜇̃︀𝜇 calculus, and its two well-behaved subcalculi 𝜆𝜇̃︀𝜇𝑇 and
𝜆𝜇̃︀𝜇𝑄. In Section 3 we prove the confluence for 𝜆𝜇̃︀𝜇𝑇 (the proof of confluence
for 𝜆𝜇̃︀𝜇𝑄 being analogous). Section 4 presents an overview of the work done on
continuation semantics, gives an account of negated domains and presents the basic
notions of Kleisli triple and Kleisli category. We give the semantic interpretations
of 𝜆𝜇̃︀𝜇𝑄 and 𝜆𝜇̃︀𝜇𝑇 calculi in Subections 5.1 and 5.2. We conclude in Section 6.

2. Overview of 𝜆𝜇̃︀𝜇 calculus

2.1. Intuition and syntax. The 𝜆𝜇̃︀𝜇 calculus was introduced by Curien and
Herbelin in [6], giving a Curry–Howard correspondence for classical logic. The
terms of 𝜆𝜇̃︀𝜇 represent derivations in the implicational fragment (hence without
conjunction or disjunction) of the sequent calculus proof system LK and reduction
reflects the process of cut-elimination.1 The untyped version of the calculus can be
seen as the foundation of a functional programming language with explicit notion
of control and was further studied by Ghilezan and Lescanne in [12].

The syntax of 𝜆𝜇̃︀𝜇 is given by the following, where 𝑣 ranges over the set Caller
of callers, 𝑒 ranges over the set Callee of callees and 𝑐 ranges over the set Capsule
of capsules:

𝑣 ::= 𝑥 | 𝜆𝑥.𝑣 | 𝜇𝛼.𝑐 𝑒 ::= 𝛼 | 𝑣 ∙ 𝑒 | ̃︀𝜇𝑥.𝑐 𝑐 ::= ⟨𝑣 ‖ 𝑒⟩
There are two kinds of variables in the calculus: the set Var𝑣, consisting of

caller variables (denoted by Latin variables 𝑥, 𝑦, . . . ) and the set Var𝑒, consisting
of callee variables (denoted by Greek variables 𝛼, 𝛽, . . . ). The caller variables can
be bound by 𝜆 abstraction or by 𝜇 abstraction, whereas the callee variables can be
bound by ̃︀𝜇 abstraction. The sets of free caller and callee variables, Fv𝑣 and Fv𝑒,
are defined as usual, respecting Barendregt’s convention [4] that no variable can be
both, bound and free, in the expression.

In [6], the basic constructs are called commands, terms, and contexts. In our
opinion, meta-concepts like “terms" and “contexts" are going to be used naturally
as in any other language, so it would be inappropriate to use them as concepts
inside the language. In order to avoid confusion, in this work we use the following
basic syntactic entities: the set Caller of callers, the set Callee of callees and the set
Capsule of capsules, chosen by Ghilezan and Lescanne in [12].

Capsules are the place where callers and callees interact. A caller can either get
the data from the callee, or it can ask the callee to replace one of its internal callee
variables. A callee can ask a caller to replace one of its internal caller variables.
The components can be nested and more processes can be active at the same time.

1Although, some cuts build normal forms in 𝜆𝜇̃︀𝜇, as opposed to Lengrand’s 𝜆𝜉 calculus [20],
which is exactly LK (with implicit structural rules).



ON SEMANTICS OF A TERM CALCULUS FOR CLASSICAL LOGIC 81

2.2. Reduction rules. There are only three rules that characterize the re-
duction in 𝜆𝜇̃︀𝜇:

(→′) ⟨𝜆𝑥.𝑣1 ‖ 𝑣2 ∙ 𝑒⟩→⟨𝑣2 ‖ ̃︀𝜇𝑥.⟨𝑣1 ‖ 𝑒⟩⟩
(𝜇) ⟨𝜇𝛼.𝑐 ‖ 𝑒⟩→ 𝑐[𝛼← 𝑒]
(̃︀𝜇) ⟨𝑣 ‖ ̃︀𝜇𝑥.𝑐⟩→ 𝑐[𝑥← 𝑣]

The above substitutions are defined as to avoid variable capture [4].
The calculus has a critical pair ⟨𝜇𝛼.𝑐1 ‖ ̃︀𝜇𝑥.𝑐2⟩ where both (𝜇) and (̃︀𝜇) rule

can be applied non-deterministically, producing two different results. For example,

⟨𝜇𝛼.⟨𝑦 ‖ 𝛽⟩ ‖ ̃︀𝜇𝑥.⟨𝑧 ‖ 𝛾⟩⟩ →𝜇 ⟨𝑦 ‖ 𝛽⟩ and ⟨𝜇𝛼.⟨𝑦 ‖ 𝛽⟩ ‖ ̃︀𝜇𝑥.⟨𝑧 ‖ 𝛾⟩⟩ →̃︀𝜇 ⟨𝑧 ‖ 𝛾⟩,

where 𝛼 and 𝛽 denote syntactically different callee variables.
Hence, the calculus is not confluent. But if the priority is given either to (𝜇)

or to (̃︀𝜇) rule, we obtain two confluent subcalculi 𝜆𝜇̃︀𝜇𝑇 and 𝜆𝜇̃︀𝜇𝑄 (we retain the
original notation from [6]). We give the details in the next subsection.

2.3. Two confluent subcalculi. There are two possible reduction strategies
in the calculus that depend on the orientation of the critical pair. If the priority is
given to (𝜇) redexes, call-by-value reduction is obtained (𝜆𝜇̃︀𝜇𝑄 calculus), whereas
giving the priority to (̃︀𝜇) redexes, simulates call-by-name reduction (𝜆𝜇̃︀𝜇𝑇 calculus).

We first give the syntactic constructs of 𝜆𝜇̃︀𝜇𝑇 and 𝜆𝜇̃︀𝜇𝑄, respectively:

𝜆𝜇̃︀𝜇𝑇 𝜆𝜇̃︀𝜇𝑄

𝑐 ::= ⟨𝑣 ‖ 𝑒⟩ 𝑐 ::= ⟨𝑣 ‖ 𝑒⟩
𝑣 ::= 𝑥 | 𝜆𝑥.𝑣| 𝜇𝛼.𝑐 𝑉 ::= 𝑥 | 𝜆𝑥.𝑣
𝐸 ::= 𝛼 | 𝑣 ∙ 𝐸 𝑣 ::= 𝜇𝛼.𝑐 | 𝑉
𝑒 ::= ̃︀𝜇𝑥.𝑐 | 𝐸 𝑒 ::= 𝛼 | ̃︀𝜇𝑥.𝑐 | 𝑉 ∙ 𝑒

In 𝜆𝜇̃︀𝜇𝑇 the new syntactic subcategory 𝐸 of callees, called applicative contexts, is
introduced in order to model call-by-name reduction. In 𝜆𝜇̃︀𝜇𝑄, notice the presence
of the new syntactic construct 𝑉 that models the values.

The reduction rules for 𝜆𝜇̃︀𝜇𝑇 and 𝜆𝜇̃︀𝜇𝑄 are the following:

𝜆𝜇̃︀𝜇𝑇

(→) ⟨𝜆𝑥.𝑣1 ‖ 𝑣2 ∙ 𝐸⟩→⟨𝑣1[𝑥← 𝑣2] ‖ 𝐸⟩
(𝜇) ⟨𝜇𝛼.𝑐 ‖ 𝐸⟩→ 𝑐[𝛼←𝐸]
(̃︀𝜇) ⟨𝑣 ‖ ̃︀𝜇𝑥.𝑐⟩→ 𝑐[𝑥← 𝑣]

𝜆𝜇̃︀𝜇𝑄

(→′) ⟨𝜆𝑥.𝑣1 ‖ 𝑉2 ∙ 𝑒⟩→⟨𝑉2 ‖ ̃︀𝜇𝑥.⟨𝑣1 ‖ 𝑒⟩⟩
(𝜇) ⟨𝜇𝛼.𝑐 ‖ 𝑒⟩→ 𝑐[𝛼← 𝑒]
(̃︀𝜇) ⟨𝑉 ‖ ̃︀𝜇𝑥.𝑐⟩→ 𝑐[𝑥←𝑉 ]

Notice that our choice of rules does not violate the symmetry of Curien–
Herbelin rules. In [6] only the rule (→′) is considered for both subcalculi. In
this paper we use (→) reduction rather than (→′) reduction in the case of 𝜆𝜇̃︀𝜇𝑇 ,
since the application of the (→′) rule will always be immediately followed by the



82 LIKAVEC AND LESCANNE

application of the (̃︀𝜇) rule and that is exactly the rule (→). We think that our
choice makes explicit the priorities of the rules in each subcalculus.

3. Confluence

Since in the next sections we work with two confluent subcalculi of 𝜆𝜇̃︀𝜇 calculus,
and confluence was never spelled out so far, we think it is in place to prove the
confluence for each of them. We adopt the technique of parallel reduction given
by Takahashi in [38]. This approach consists of simultaneously reducing all the
redexes existing in a term.

We give the proof only for 𝜆𝜇̃︀𝜇𝑇 , since the proof for 𝜆𝜇̃︀𝜇𝑄 is obtained by a
straightforward modification of the proof for 𝜆𝜇̃︀𝜇𝑇 . The complete proofs can be
found in [21]. We denote the reduction defined by the three reduction rules for
𝜆𝜇̃︀𝜇𝑇 by →𝑛 and its reflexive, transitive and closure by congruence by →→𝑛.

First, we define the notion of parallel reduction ⇒𝑛 for 𝜆𝜇̃︀𝜇𝑇 . We prove that
→→𝑛 is reflexive and transitive closure of ⇒𝑛 (Lemma 3.3), so in order to prove
the confluence of →→𝑛, it is enough to prove the diamond property for ⇒𝑛 (Theo-
rem 3.2). The diamond property for⇒𝑛, follows from the stronger “Star property”
for ⇒𝑛 that we prove (Theorem 3.1).

3.1. Parallel reduction for 𝜆𝜇̃︀𝜇𝑇 calculus. Definition 3.1 (Parallel re-
duction for 𝜆𝜇̃︀𝜇𝑇 calculus). The parallel reduction, denoted by ⇒𝑛 is defined
inductively, as follows:

𝑥⇒𝑛 𝑥 (𝑔1𝑛)
𝑣⇒𝑛 𝑣′

𝜆𝑥.𝑣⇒𝑛 𝜆𝑥.𝑣′ (𝑔2𝑛) 𝑐⇒𝑛 𝑐′

𝜇𝛼.𝑐⇒𝑛 𝜇𝛼.𝑐′ (𝑔3𝑛)

𝛼⇒𝑛 𝛼 (𝑔4𝑛)
𝑣⇒𝑛 𝑣′, 𝐸⇒𝑛 𝐸′

𝑣 ∙ 𝐸⇒𝑛 𝑣′ ∙ 𝐸′ (𝑔5𝑛) 𝑐⇒𝑛 𝑐′̃︀𝜇𝑥.𝑐⇒𝑛 ̃︀𝜇𝑥.𝑐′ (𝑔6𝑛)

𝑣⇒𝑛 𝑣′, 𝑒⇒𝑛 𝑒′

⟨𝑣 ‖ 𝑒⟩⇒𝑛⟨𝑣′ ‖ 𝑒′⟩
(𝑔7𝑛)

𝑣1⇒𝑛 𝑣′
1, 𝑣2⇒𝑛 𝑣′

2, 𝐸⇒𝑛 𝐸′

⟨𝜆𝑥.𝑣1 ‖ 𝑣2 ∙ 𝐸⟩⇒𝑛⟨𝑣′
1[𝑥← 𝑣′

2] ‖ 𝐸′⟩
(𝑔8𝑛)

𝑐⇒𝑛 𝑐′, 𝐸⇒𝑛 𝐸′

⟨𝜇𝛼.𝑐 ‖ 𝐸⟩⇒𝑛 𝑐′[𝛼←𝐸′]
(𝑔9𝑛) 𝑣⇒𝑛 𝑣′, 𝑐⇒𝑛 𝑐′

⟨𝑣 ‖ ̃︀𝜇𝑥.𝑐⟩⇒𝑛 𝑐′[𝑥← 𝑣′]
(𝑔10𝑛)

Lemma 3.1. For every term 𝐺, 𝐺⇒𝑛 𝐺.
Proof. Induction on the structure of 𝐺. The base cases are the rules (𝑔1𝑛)

and (𝑔4𝑛) from Definition 3.1. For any other term of the calculus, we apply the
induction hypothesis to the immediate subterms of 𝐺 (rules (𝑔2𝑛), (𝑔3𝑛), (𝑔5𝑛)–
(𝑔7𝑛)). �

Lemma 3.2 (Substitution lemma).
1. 𝐺[𝑥← 𝑣1][𝑦← 𝑣2] = 𝐺[𝑦← 𝑣2][𝑥← 𝑣1[𝑦← 𝑣2]], for 𝑥 ̸= 𝑦, 𝑥 ̸∈ Fv𝑣(𝑣2).
2. 𝐺[𝑥← 𝑣][𝛼← 𝑒] = 𝐺[𝛼← 𝑒][𝑥← 𝑣[𝛼← 𝑒]], for 𝑥 ̸∈ Fv𝑣(𝑒).
3. 𝐺[𝛼← 𝑒][𝑥← 𝑣] = 𝐺[𝑥← 𝑣][𝛼← 𝑒[𝑥← 𝑣]], for 𝛼 ̸∈ Fv𝑒(𝑣).
4. 𝐺[𝛼← 𝑒1][𝛽← 𝑒2] = 𝐺[𝛽← 𝑒2][𝛼← 𝑒1[𝛽← 𝑒2]], for 𝛼 ̸= 𝛽, 𝛼 ̸∈ Fv𝑒(𝑒2).



ON SEMANTICS OF A TERM CALCULUS FOR CLASSICAL LOGIC 83

Proof. Induction on the structure of 𝐺. It is enough to prove the first two
statements for the caller variables, and the last two statements for the callee vari-
ables only, since all the other cases are either trivial or follow directly from the
induction hypothesis. �

Next, we give the definition of contexts, which are terms with the “hole" and
are used in the proof of Lemma 3.3.

Definition 3.2 (Contexts).
𝐶 ::= [ ] | 𝜆𝑥.𝐶 | 𝜇𝛼.𝐶 | 𝑣 ∙ 𝐶 | 𝐶 ∙ 𝐸 | ̃︀𝜇𝑥.𝐶 | ⟨𝑣 ‖ 𝐶⟩ | ⟨𝐶 ‖ 𝑒⟩

With 𝐶[𝐺] we denote “filling the hole” of the context 𝐶 with the term 𝐺 (with
possible variable capture).

Lemma 3.3. 1. If 𝐺→𝑛 𝐺′ then 𝐺⇒𝑛 𝐺′; 2. If 𝐺⇒𝑛 𝐺′ then 𝐺→→𝑛 𝐺′;
3. If 𝐺⇒𝑛 𝐺′ and 𝐻⇒𝑛 𝐻 ′, then

𝐺[𝑥←𝐻]⇒𝑛 𝐺′[𝑥←𝐻 ′] and 𝐺[𝛼←𝐻]⇒𝑛 𝐺′[𝛼←𝐻 ′].

Proof. 1. Induction on the context of the redex. If 𝐺→𝑛 𝐺′ then 𝐺 = 𝒞[𝐻],
𝐺′ = 𝒞[𝐻 ′] and 𝐻→𝑛 𝐻 ′. We just show two illustrative cases:

* 𝐶 = [ ]. We proceed by induction on the definition of 𝐻→𝑛 𝐻 ′. We have the
following cases:

- 𝐻 = ⟨𝜇𝛼.𝑐 ‖ 𝐸⟩ and 𝐻 ′ = 𝑐[𝛼←𝐸]. Then 𝐻⇒𝑛 𝐻 ′ by (𝑔9𝑛), because
𝑐⇒𝑛 𝑐 and 𝐸⇒𝑛 𝐸 by Lemma 3.1.

- Cases 𝐻 = ⟨𝜆𝑥.𝑣1 ‖ 𝑣2 ∙ 𝐸⟩ and 𝐻 = ⟨𝑣 ‖ ̃︀𝜇𝑥.𝑐⟩ are treated similarly.
* 𝐶 = ̃︀𝜇𝑥.𝐶 ′. Then 𝐺 = ̃︀𝜇𝑥.𝐶 ′[𝐻] and 𝐺′ = ̃︀𝜇𝑥.𝐶 ′[𝐻 ′]. By the induction

hypothesis, 𝐶 ′[𝐻]⇒𝑛 𝐶 ′[𝐻 ′], so by (𝑔3𝑛) of the Definition 3.1 we get 𝐺⇒𝑛 𝐺′.
2. Induction on the definition of 𝐺⇒𝑛 𝐺′. Since the proofs follow the same

pattern in all the cases, we show just the case when
𝐺 = ⟨𝜆𝑥.𝑣1 ‖ 𝑣2 ∙ 𝐸⟩⇒𝑛⟨𝑣′

1[𝑥← 𝑣′
2] ‖ 𝐸′⟩ = 𝐺′.

This follows directly from 𝑣1⇒𝑛 𝑣′
1, 𝑣2⇒𝑛 𝑣′

2 and 𝐸⇒𝑛 𝐸′. By the induction hy-
pothesis, 𝑣𝑖→→𝑛 𝑣′

𝑖, 𝑖 = 1, 2 and 𝐸→→𝑛 𝐸′ so it follows that
𝐺 = ⟨𝜆𝑥.𝑣1 ‖ 𝑣2 ∙ 𝐸⟩→𝑛⟨𝑣1[𝑥← 𝑣2] ‖ 𝐸⟩→→𝑛⟨𝑣′

1[𝑥← 𝑣′
2] ‖ 𝐸′⟩ = 𝐺′.

3. Induction on the definition of 𝐺⇒𝑛 𝐺′. We only illustrate the proof of
𝐺[𝑥←𝐻]⇒𝑛 𝐺′[𝑥←𝐻 ′], since the proof of 𝐺[𝛼←𝐻]⇒𝑛 𝐺′[𝛼←𝐻 ′] follows the
same pattern (using cases 3 and 4 of the Substitution lemma 3.2).

Let 𝐺 = ⟨𝜆𝑦.𝑣1 ‖ 𝑣2∙𝐸⟩⇒𝑛⟨𝑣′
1[𝑦← 𝑣′

2] ‖ 𝐸′⟩ = 𝐺′. This is a direct consequence
of 𝑣1⇒𝑛 𝑣′

1, 𝑣2⇒𝑛 𝑣′
2, and 𝐸⇒𝑛 𝐸′. By the induction hypothesis it follows that

𝑣1[𝑥←𝐻]⇒𝑛 𝑣′
1[𝑥←𝐻 ′], 𝑣2[𝑥←𝐻] ⇒𝑛 𝑣′

2[𝑥←𝐻 ′], and 𝐸[𝑥←𝐻]⇒𝑛 𝐸′[𝑥←𝐻 ′].
Then, using Lemma 3.2(1) and (𝑔8𝑛) we derive

𝐺[𝑥←𝐻] = ⟨𝜆𝑦.𝑣1 ‖ 𝑣2 ∙ 𝐸⟩[𝑥←𝐻]
= ⟨𝜆𝑦.𝑣1[𝑥←𝐻] ‖ 𝑣2[𝑥←𝐻] ∙ 𝐸[𝑥←𝐻]⟩
⇒𝑛⟨𝑣′

1[𝑥←𝐻 ′][𝑦← 𝑣′
2[𝑥←𝐻 ′]] ‖ 𝐸′[𝑥←𝐻 ′]⟩

= ⟨𝑣′
1[𝑦← 𝑣′

2][𝑥←𝐻 ′] ‖ 𝐸′[𝑥←𝐻 ′]⟩ = 𝐺′[𝑥←𝐻 ′]. �



84 LIKAVEC AND LESCANNE

From 1 and 2 we conclude that→→𝑛 is the reflexive and transitive closure of⇒𝑛.

3.2. Confluence of 𝜆𝜇̃︀𝜇𝑇 calculus. Next, we define the term 𝐺* which is
obtained from 𝐺 by simultaneously reducing all the existing redexes of the term 𝐺.

Definition 3.3. Let 𝐺 be an arbitrary term of 𝜆𝜇̃︀𝜇𝑇 . The term 𝐺* is defined
inductively as follows:

(*1𝑛) 𝑥* ≡ 𝑥 (*2𝑛) (𝜆𝑥.𝑣)* ≡ 𝜆𝑥.𝑣* (*3𝑛) (𝜇𝛼.𝑐)* ≡ 𝜇𝛼.𝑐*

(*4𝑛) 𝛼* ≡ 𝛼 (*5𝑛) (𝑣 ∙ 𝐸)* ≡ 𝑣* ∙ 𝐸* (*6𝑛) (̃︀𝜇𝑥.𝑐)* ≡ ̃︀𝜇𝑥.𝑐*

(*7𝑛) (⟨𝑣 ‖ 𝑒⟩)* ≡ ⟨𝑣* ‖ 𝑒*⟩ if ⟨𝑣 ‖ 𝑒⟩ ≠ ⟨𝜆𝑥.𝑣1 ‖ 𝑣2 ∙ 𝐸⟩,
⟨𝑣 ‖ 𝑒⟩ ≠ ⟨𝜇𝛼.𝑐 ‖ 𝐸⟩ and ⟨𝑣 ‖ 𝑒⟩ ≠ ⟨𝑣 ‖ ̃︀𝜇𝑥.𝑐⟩

(*8𝑛) (⟨𝜆𝑥.𝑣1 ‖ 𝑣2 ∙ 𝐸⟩)* ≡ ⟨𝑣*
1 [𝑥← 𝑣*

2 ] ‖ 𝐸*⟩
(*9𝑛) (⟨𝜇𝛼.𝑐 ‖ 𝐸⟩)* ≡ 𝑐*[𝛼←𝐸*]
(*10𝑛) (⟨𝑣 ‖ ̃︀𝜇𝑥.𝑐⟩)* ≡ 𝑐*[𝑥← 𝑣*]

Theorem 3.1 (Star property for ⇒𝑛). If 𝐺⇒𝑛 𝐺′ then 𝐺′⇒𝑛 𝐺*.

Proof. Induction on the structure of 𝐺. We show only one illustrative case
when 𝐺 = ⟨𝜆𝑥.𝑣1 ‖ 𝑣2 ∙ 𝐸⟩.

If ⟨𝜆𝑥.𝑣1 ‖ 𝑣2 ∙ 𝐸⟩⇒𝑛 𝐺′ then we distinguish two subcases:
1. 𝐺′ = ⟨𝜆𝑥.𝑣′

1 ‖ 𝑣′
2∙𝐸′⟩ for some 𝑣′

1, 𝑣′
2, and 𝐸′ such that 𝑣𝑖⇒𝑛 𝑣′

𝑖, 𝑖 = 1, 2 and
𝐸⇒𝑛 𝐸′. By the induction hypothesis, 𝑣′

𝑖⇒𝑛 𝑣*
𝑖 , 𝑖 = 1, 2 and 𝐸′⇒𝑛 𝐸*. Then,

𝐺′ = ⟨𝜆𝑥.𝑣′
1 ‖ 𝑣′

2 ∙ 𝐸′⟩⇒𝑛⟨𝑣*
1 [𝑥← 𝑣*

2 ] ‖ 𝐸*⟩ = 𝐺* by (𝑔8𝑛).
2. 𝐺′ = ⟨𝑣′

1[𝑥← 𝑣′
2] ‖ 𝐸′⟩ for some 𝑣′

1, 𝑣′
2, and 𝐸′ such that 𝑣𝑖⇒𝑛 𝑣′

𝑖, 𝑖 = 1, 2
and 𝐸⇒𝑛 𝐸′. By the induction hypothesis, 𝑣′

𝑖⇒𝑛 𝑣*
𝑖 , 𝑖 = 1, 2 and 𝐸′⇒𝑛 𝐸*. Then,

𝐺′ = ⟨𝑣′
1[𝑥← 𝑣′

2] ‖ 𝐸′⟩⇒𝑛⟨𝑣*
1 [𝑥← 𝑣*

2 ] ‖ 𝐸*⟩ by Lemma 3.3(3) and (𝑔7𝑛). �

Now it is easy to deduce the diamond property for ⇒𝑛.

Theorem 3.2 (Diamond property for ⇒𝑛).
If 𝐺1 𝑛⇐𝐺⇒𝑛 𝐺2 then 𝐺1⇒𝑛 𝐺′

𝑛⇐𝐺2 for some 𝐺′.

Finally, from Theorem 3.2, it follows that 𝜆𝜇̃︀𝜇𝑇 is confluent.

Theorem 3.3 (Confluence of 𝜆𝜇̃︀𝜇𝑇 ).
If 𝐺1 𝑛←←𝐺→→𝑛 𝐺2 then 𝐺1→→𝑛 𝐺′

𝑛←←𝐺2 for some 𝐺′.

4. Continuation semantics

4.1. Introduction. When interpreting the calculi that embody a notion of
control, it is convenient to start from continuation semantics that enables to ex-
plicitly refer to continuations, the semantic constructs that represent evaluation
contexts.

The method of continuations was first introduced in [37] in order to formalize
a flow control in programming languages. Continuations can be seen as analogues
of the evaluation contexts, used to evaluate terms. Hence, the term is evaluated in
the context representing the rest of the computation. A subterm is evaluated in a
new context where the rest of the term is evaluated, and then handed to the old
context. The value obtained by evaluation of the term is passed to the context.



ON SEMANTICS OF A TERM CALCULUS FOR CLASSICAL LOGIC 85

Continuation-passing-style (cps) translations were introduced by Fischer and
Reynolds in [9] and [31] for the call-by-value lambda calculus, whereas a call-by-
name variant was introduced by Plotkin in [28]. Moggi gave a semantic version of a
call-by-value cps translation in his study of notions of computation in [25]. Lafont
[19] introduced a cps translation of the call-by-name 𝜆𝒞 calculus [7,8] to a fragment
of lambda calculus that corresponds to the ¬,∧-fragment of the intuitionistic logic.
Hence, continuation semantics can be seen as a generalization of the double negation
rule from logic, in a sense that cps translation is a transformation on terms which,
when observed on types, corresponds to a double negation translation.

In Selinger in [34], categorical semantics for both, call-by-name and call-by-
value versions of Parigot’s 𝜆𝜇 calculus [27] with disjunction types was given. In
this work the notion of control category is formally introduced. It is shown that the
call-by-name 𝜆𝜇 calculus forms an internal language for control categories, whereas
the call-by-value 𝜆𝜇 calculus forms an internal language for co-control categories.
The opposite of the call-by-name model is shown to be equivalent to the cbv model
in the presence of product and disjunction types. Hofmann and Streicher presented
categorical continuation models for the call-by-name 𝜆𝜇 calculus in [17] and showed
the completeness.

In their original work on the 𝜆𝜇̃︀𝜇 calculus [6], Curien and Herbelin defined a
call-by-name and a call-by-value cps-translations of the complete typed 𝜆𝜇̃︀𝜇 calculus
into simply typed lambda calculus. The important point to notice is that they also
interpret the types of the form 𝐴− 𝐵, which are dual to the arrow types 𝐴 → 𝐵.
The translations validate call-by-name and call-by-value discipline, respectively.

Lengrand gave categorical semantics of the typed 𝜆𝜇̃︀𝜇 calculus and the 𝜆𝜉
calculus (implicational fragment of the classical sequent calculus LK) in [20].

Ong [26] defined a class of categorical models for the call-by-name 𝜆𝜇 calculus
based on fibrations. This model was later extended for two forms of disjunction by
Pym and Ritter in [30].

4.2. Category of continuations. Categories of continuations were intro-
duced by Hofmann and Streicher in [16]. They can be seen as special instances
of control categories, which were introduced and formally described by Selinger
in [34]. In simple words, control categories are cartesian closed categories enriched
with premonoidal structure of [29].

Let 𝒞 be a category with distributive finite products and sums. We also assume
that there is a fixed object 𝑅 ∈ 𝒞 such that exponentials of the form 𝑅𝐴 exist
for all objects 𝐴. If 𝒞 also satisfies the mono requirement (i.e., the morphism
𝜕𝐴 : 𝐴→ 𝑅𝑅𝐴 is monic2 for all 𝐴 ∈ 𝒞) then such a category 𝒞 is called a response
category and 𝑅 is called an object of responses.

For a given response category 𝒞, the full subcategory of 𝒞 that consists of
the objects of the form 𝑅𝐴 is called a category of continuations and is denoted
by 𝑅𝒞 . This category is cartesian closed [22] and has a canonical premonoidal
structure [34]. This can be summarized as follows:

2A morphism 𝑓 : 𝐴 → 𝐵 in a category 𝒞 is called monic if for any object 𝐶 and any two morphisms
𝑔1, 𝑔2 : 𝐶 → 𝐴, if 𝑓 ∘ 𝑔1 = 𝑓 ∘ 𝑔2, then 𝑔1 = 𝑔2.



86 LIKAVEC AND LESCANNE

∙ 1 ∼= 𝑅0 (terminal object in 𝑅𝒞 is 1)
∙ 𝑅𝐴 ×𝑅𝐵 ∼= 𝑅𝐴+𝐵 (𝑅𝒞 has cartesian products)
∙ (𝑅𝐵)(𝑅𝐴) ∼= 𝑅𝑅𝐴×𝐵 (𝑅𝒞 has exponentials)
∙ ⊥ := 𝑅1 ∼= 𝑅 (bottom exists in 𝑅𝒞)
∙ 𝑅𝐴O𝑅𝐵 := 𝑅𝐴×𝐵 (O is a binoidal functor in 𝑅𝒞 , see [34] for details).
In fact, it is proved in [34] that every control category is equivalent to a category

of continuations (see also [11]).

4.3. Category of negated domains. As a further specialization of cate-
gories of continuations, we describe the category of negated domains 𝒩𝑅 which
was introduced by Lafont in [19], where he investigated the translation of classical
propositional logic to the ¬,∧-fragment of the intuitionistic propositional logic.

Before giving the formal definition, let us first of all, fix some basic terminology
that will be used.
∙ A predomain is a partial order where all directed subsets have a supremum.

It does not necessarily have a least element.
∙ A domain is a predomain with a least element called bottom, denoted by ⊥.
∙ A Scott continuous function is a monotone function that preserves suprema

of directed sets.
∙ A strict continuous function is a function that preserves bottom elements.

The category of predomains and Scott continuous functions is denoted by 𝒫. The
category of domains and Scott continuous (resp. strict Scott continuous) functions
is denoted by 𝒟 (resp. 𝒟⊥).

Let 𝑅 be some fixed domain with the bottom ⊥R for a category 𝒟. We call
𝑅 a domain of responses. For each predomain 𝐴 ∈ 𝒫 we can form the exponential
𝑅𝐴 ∈ 𝒟. Then we define the category 𝒩𝑅 equivalent to a full subcategory of
𝒟, where the morphisms operate on exponentials of the form 𝑅𝐴. Hence, the
category 𝒩𝑅 is an instance of the category of continuations where the category
𝒫 of predomains is a basic category, since it has finite products and sums, and
exponentials of the form 𝑅𝐴 exist. Let us give the formal definition.

Definition 4.1. The category of negated domains 𝒩𝑅 over the category 𝒫 of
predomains is defined as follows:
∙ the objects of 𝒩𝑅 are objects of 𝒫 (predomains),
∙ 𝒩𝑅(𝐴, 𝐵) = 𝒫(𝑅𝐴, 𝑅𝐵),
∙ composition of morphisms in 𝒩𝑅 is inherited from 𝒫.

As already mentioned, (𝑅𝐵)(𝑅𝐴) ∼= 𝑅𝑅𝐴×𝐵 , so we will denote the function
space operator in 𝒩𝑅 as (see [36]): 𝐴⇒ 𝐵 := 𝑅𝐴 ×𝐵.

Since by the assumption, 𝑅 has a bottom element, all the exponentials have
bottom elements. The bottom element for 𝑅𝐴 is given by ⊥𝑅𝐴 = 𝜆𝑥 : 𝐴.⊥R for
any predomain 𝐴 ∈ 𝒫. Hence, 𝒩𝑅 is equivalent to a full subcategory of 𝒟. The
least fixpoint for 𝑓 ∈ 𝒩𝑅(𝐴, 𝐴) is given by

⨆︀
𝑛∈N 𝑓𝑛(⊥𝑅𝐴). The following theorem

(proved in [35]) states that the category 𝒩𝑅 has enough structure to interpret
functional calculi, especially the calculi with control operators.



ON SEMANTICS OF A TERM CALCULUS FOR CLASSICAL LOGIC 87

Theorem 4.1. The category 𝒩𝑅 is cartesian closed and has the least fixpoint
operator, for any domain 𝑅.

4.4. From ordinary models to continuation models. For the extensional
lambda calculus, a model is given by an object 𝐶 in a cartesian closed category,
such that 𝐶 is isomorphic to its function space, i.e., 𝐶 ∼= 𝐶𝐶 [32,33]. We call such
an object a reflexive object. (For solutions of recursive domain equations, we refer
the reader to [1,10,14].)

In order to obtain a model of lambda calculus and its extensions in 𝒩𝑅, we
have the same requirement in the category 𝒩𝑅 of negated domains, which means
that we are looking for an object 𝐾 such that 𝐾 ∼= 𝐾 ⇒ 𝐾. This requires solving
the domain equation 𝐾 ∼= 𝑅𝐾 × 𝐾 in 𝒫. For 𝐾 which is the initial solution of
this domain equation, we have that 𝑅𝐾 ∼= 𝑅𝑅𝐾×𝐾 ∼= (𝑅𝐾)(𝑅𝐾), so we conclude
that 𝐶 = 𝑅𝐾 is a solution of domain equation 𝐶 ∼= 𝐶𝐶 in 𝒫 and is called a
continuation model of the untyped lambda calculus. In [35] it is proved that 𝐶 =
𝑅𝐾 is isomorphic to Scott’s 𝐶∞ model of extensional lambda calculus [32, 33] by
taking 𝐶 = 𝑅.

We can interpret the untyped lambda calculus in𝒩𝑅. The meaning of a lambda
term is a morphism 𝑅𝐾 mapping continuations (the elements of 𝐾) to responses
(the elements of 𝑅). The continuation for the function 𝑓 : 𝑅𝐴 → 𝑅𝐵 is a pair ⟨𝑠, 𝑘⟩,
where the argument for the function 𝑓 is 𝑠 ∈ 𝑅𝐴 and 𝑘 ∈ 𝐵 is the continuation for
𝑓(𝑠).

This interpretation can be extended to Felleisen’s call-by-name 𝜆𝒞 calculus [7]
and to the untyped version of Parigot’s 𝜆𝜇 calculus [27], given in Streicher and
Reus [35]. In the same work it is also proved that the semantic equations defining
the interpretations in the continuation model of the untyped lambda calculus are
in 1-1 correspondence with the transition rules of Krivine’s abstract machine.

4.5. Kleisli category. Kleisli categories introduced by Kleisli in [18] (see
also [5, 23]) provide the categorical semantics of computations based on monads.
Since every monad corresponds to Kleisli triple, the semantics can be given using
Kleisli triples that are easier to justify computationally.

When interpreting a programming language in the call-by-value setting in a
category 𝒞, we need to distinguish the objects 𝐴 that represent the values of type 𝐴
from the objects 𝑇𝐴 that represent the computations of type 𝐴. The computations
of type 𝐴 are obtained by applying a functor 𝑇 to 𝐴, which is called the notion of
computation [25]. There are certain conditions that 𝑇 has to satisfy and it turns
out that 𝑇 needs to give rise to a Kleisli triple, whereas programs form the Kleisli
category for such a triple.

The following definitions are taken from Moggi’s paper on notions of compu-
tations [25], which are in turn taken from [24].

Definition 4.2. A Kleisli triple over a category 𝒞 is a triple (𝑇, 𝜂, _*), such
that 𝑇 : Obj(𝒞) → Obj(𝒞), 𝜂𝐴 : 𝐴 → 𝑇𝐴 for 𝐴 ∈ Obj(𝒞), 𝑓* : 𝑇𝐴 → 𝑇𝐵 for



88 LIKAVEC AND LESCANNE

𝑓 : 𝐴→ 𝑇𝐵 and the following equations hold:

𝜂*
𝐴 = 𝑖𝑑𝑇 𝐴; 𝑓* ∘ 𝜂𝐴 = 𝑓 for 𝑓 : 𝐴→ 𝑇𝐵;

𝑔* ∘ 𝑓* = (𝑔* ∘ 𝑓)* for 𝑓 : 𝐴→ 𝑇𝐵 and 𝑔 : 𝐵 → 𝑇𝐾.

Next we give the definition of the Kleisli category.

Definition 4.3. The Kleisli category 𝒞𝑇 over a category 𝒞 for a given Kleisli
triple (𝑇, 𝜂, _*) is defined as follows:
∙ the objects of 𝒞𝑇 are the objects of 𝒞;
∙ 𝒞𝑇 (𝐴, 𝐵) = 𝒞(𝐴, 𝑇𝐵);
∙ id𝒞𝑇

= 𝜂𝐴 : 𝐴→ 𝑇𝐴;
∙ 𝑔 ∘𝒞𝑇

𝑓 = 𝑔* ∘ 𝑓 : 𝐴→ 𝑇𝐷 for 𝑓 ∈ 𝒞𝑇 (𝐴, 𝐵) and 𝑔 ∈ 𝒞𝑇 (𝐵, 𝐷).

4.6. Kleisli triple of continuations. Depending on the specific computation
that we want to model, different computational monads or Kleisli triples can be
chosen. In this analysis we will consider Kleisli triple of continuations given by

∙ 𝑇𝐴 = 𝑅𝑅𝐴 , where 𝑅 is the fixed object of responses, together with
∙ a family of morphisms 𝜂𝐴(𝑎) = 𝜆𝑘 : 𝑅𝐴.𝑘(𝑎) and
∙ an operation on morphisms

𝑓*(𝑠) = 𝜆𝑘 : 𝑅𝐵 .𝑠(𝜆𝑎 : 𝐴.𝑓(𝑎)(𝑘)) for 𝑓 : 𝐴→ 𝑇𝐵 and 𝑠 ∈ 𝑇𝐴.
We will denote by 𝒦𝑅 the Kleisli category over the category 𝒫 of predomains

for a given Kleisli triple of continuations (𝑇, 𝜂, _*).
Then, the intuitive meaning of 𝜂𝐴 is the inclusion of values into computations,

whereas 𝑓* can be seen as an extension of a function 𝑓 mapping values to compu-
tations into a function mapping computations into computations.

As noticed in [36], the Kleisli category 𝒦𝑅 for a continuation Kleisli triple
and the dual of the category of negated domains 𝒩 𝑜𝑝

𝑅 are isomorphic and the
isomorphism is given by 𝐻 : 𝒦𝑅 → 𝒩 𝑜𝑝

𝑅 and 𝐾 : 𝒩 𝑜𝑝
𝑅 → 𝒦𝑅, where

𝐻(𝑓) = 𝜆𝑘 : 𝑅𝐵 .𝜆𝑣 : 𝐴.𝑓(𝑣)(𝑘) ∈ (𝑅𝐴)(𝑅𝐵) for 𝑓 ∈ (𝑇𝐵)𝐴,

𝐾(𝑔) = 𝜆𝑣 : 𝐴.𝜆𝑘 : 𝑅𝐵 .𝑔(𝑘)(𝑣) ∈ (𝑇𝐵)(𝐴) for 𝑔 ∈ (𝑅𝐴)𝑅𝐵

.

5. Semantics

As we have seen, the categories 𝒩𝑅 and 𝒞𝑇 are very convenient for defining
the semantics of the various calculi with control operators, since they allow to
explicitly deal with continuations. Therefore, we think they are a good starting
point for giving the semantics of 𝜆𝜇̃︀𝜇 calculus, although the results of this section
apply to any categorical model in which it is possible to solve the domain equations.

As mentioned previously, 𝜆𝜇̃︀𝜇 is not confluent due to the presence of the critical
pair ⟨𝜇𝛼.𝑐 ‖ ̃︀𝜇𝑥.𝑐⟩. Hence, we consider separately two well-behaved subsyntaxes
closed either under call-by-value (𝜆𝜇̃︀𝜇𝑄) or under call-by-name reduction (𝜆𝜇̃︀𝜇𝑇 ).



ON SEMANTICS OF A TERM CALCULUS FOR CLASSICAL LOGIC 89

5.1. Semantics of 𝜆𝜇̃︀𝜇𝑄 calculus. In this subection we will consider 𝜆𝜇̃︀𝜇𝑄,
which is a variant of untyped 𝜆𝜇̃︀𝜇 calculus closed under the call-by-value reduction.

We give the definition of the interpretation functions for all four syntactic
categories of the calculus. Having an interpretation function also for the values
prevents the values and the computations to be confused. Lambda abstractions
are values, but can also have arguments that are values, producing computations
as the result, so it is necessary to have 𝑊 ∼= 𝐶𝑊 .

Definition 5.1. Let us consider the initial solution of the system of domain
equations 𝑊 ∼= 𝐶𝑊 , 𝐾 ∼= 𝑅𝑊 , 𝐶 ∼= 𝑅𝐾 . Let Env be the set of the environments
that map the caller variables to the elements of 𝑊 and the callee variables to the
elements of 𝐾, i.e., for 𝜌 ∈ Env: ∀𝑥 ∈ Var𝑣, 𝜌(𝑥) ∈ 𝑊 and ∀𝛼 ∈ Var𝑒, 𝜌(𝛼) ∈ 𝐾.
The interpretation functions

[[−]]V : Value→Env→𝑊 = 𝐶𝑊 [[−]]D : Caller→Env→𝐶 = 𝑅𝐾

[[−]]C : Callee→Env→𝐾 = 𝑅𝑊 [[−]]R : Capsule→Env→𝑅

are defined as follows:
Value: Caller:
[[𝑥]]V𝜌 = 𝜌(𝑥) [[𝑥]]D𝜌 = 𝜆𝑘.𝑘[[𝑥]]V𝜌

[[𝜆𝑥.𝑣]]V𝜌 = 𝜆𝑤.[[𝑣]]D𝜌[𝑥 := 𝑤] [[𝜆𝑥.𝑣]]D𝜌 = 𝜆𝑘.𝑘[[𝜆𝑥.𝑣]]V𝜌

[[𝜇𝛼.𝑐]]D𝜌 = 𝜆𝑘.[[𝑐]]R𝜌[𝛼 := 𝑘]
Callee:
[[𝛼]]C𝜌 = 𝜌(𝛼) Capsule:

[[𝑉 ∙ 𝑒]]C𝜌 = 𝜆𝑤.(𝑤([[𝑉 ]]V𝜌))([[𝑒]]C𝜌) [[⟨𝑣 ‖ 𝑒⟩]]R𝜌 = [[𝑣]]D𝜌([[𝑒]]C𝜌)
[[̃︀𝜇𝑥.𝑐]]C𝜌 = 𝜆𝑤.[[𝑐]]R𝜌[𝑥 := 𝑤]

We will omit the subscripts in various interpretations, (since they can be de-
duced from the term being interpreted), a part from [[−]]V where we leave the
subscript to avoid the ambiguity.

One important difference when interpreting the call-by-value calculus (with
respect to the interpretation of the call-by-name variant) is that variables are in-
terpreted as values, i.e., 𝜌(𝑥) ∈ 𝑊 , whereas in the call-by-name case variables are
interpreted as computations, i.e., 𝜌(𝑥) ∈ 𝐶.

The different syntactic constructs of 𝜆𝜇̃︀𝜇𝑄 can be seen as elements of the
following semantical objects:

∙ values are the elements of 𝑊 ,
∙ callers as computations are the elements of 𝐶 = 𝑅𝑅𝑊 ,
∙ callees as continuations are the elements of 𝐾 = 𝑅𝑊 ,
∙ capsules as responses are the elements of 𝑅.

In the case of callees, 𝑉 ∙ 𝑒 and ̃︀𝜇𝑥.𝑐 can be seen as call-by-value evaluation
contexts. For 𝑉 ∙ 𝑒, the computation (seen as a value) is applied to 𝑉 and then
evaluated in the evaluation context 𝑒. For ̃︀𝜇𝑥.𝑐, the caller is just fed into the capsule
𝑐. In the case of capsules, the meaning of the term 𝑣 (element of 𝐶) is applied to
the continuation bound to 𝑒 (element of 𝐾) and produces an element of 𝑅.



90 LIKAVEC AND LESCANNE

Also, notice that the interpretation of values in 𝐶 is obtained by applying
𝜂𝐴(𝑎) = 𝜆𝑘 : 𝑅𝐴.𝑘(𝑎) from the Kleisli triple, to the interpretation of values in 𝑊 .
Hence, we include values into denotations. On the other hand, 𝜇𝛼.𝑐 is not a value,
so its interpretation is given only in 𝐶. Its meaning is the functional abstraction
over the continuation variable 𝛼.

Next we give some lemmas that are used to prove that the semantics is preserved
under the reduction rules.

Lemma 5.1 (Substitution lemma). Let 𝐺 be the term of 𝜆𝜇̃︀𝜇𝑄 (caller, callee,
or capsule). Then

1. [[𝐺[𝑥←𝑉 ]]]𝜌 = [[𝐺]]𝜌[𝑥 := [[𝑉 ]]V𝜌], for all four interpretation functions.
2. [[𝐺[𝛼← 𝑒]]]𝜌 = [[𝐺]]𝜌[𝛼 := [[𝑒]]𝜌].

Proof. 1. Induction on the structure of 𝑉 , followed by induction on the
structure of 𝐺.
1.1. [[𝐺[𝑥← 𝑦]]]𝜌 = [[𝐺]]𝜌[𝑥 := 𝜌(𝑦)] We prove the statement only for [[−]]D.

* 𝐺 = 𝑧 trivial
* 𝐺 = 𝑥 [[𝑥[𝑥← 𝑦]]]𝜌 = [[𝑦]]𝜌 = 𝜆𝑘.𝑘𝜌(𝑦) = 𝜆𝑘.𝑘𝜌[𝑥 := 𝜌(𝑦)](𝑥)

= [[𝑥]]𝜌[𝑥 := 𝜌(𝑦)]
* 𝐺 = 𝜆𝑧.𝑟 [[𝜆𝑧.𝑟[𝑥← 𝑦]]]𝜌 = 𝜆𝑘.𝑘(𝜆𝑤.[[𝑟[𝑥← 𝑦]]]𝜌[𝑧 := 𝑤])

= 𝜆𝑘.𝑘(𝜆𝑤.[[𝑟]]𝜌[𝑥 := 𝜌(𝑦), 𝑧 := 𝑤]) = [[𝜆𝑧.𝑟]]𝜌[𝑥 := 𝜌(𝑦)]
* 𝐺 = 𝜇𝛼.𝑐 [[𝜇𝛼.𝑐[𝑥← 𝑦]]]𝜌 = 𝜆𝑘.[[𝑐[𝑥← 𝑦]]]𝜌[𝛼 := 𝑘]

= 𝜆𝑘.[[𝑐]]𝜌[𝑥 := 𝜌(𝑦), 𝛼 := 𝑘] = [[𝜇𝛼.𝑐]]𝜌[𝑥 := 𝜌(𝑦)]
* The cases 𝐺 = 𝛽, 𝐺 = 𝑉 ∙ 𝑒, 𝐺 = ̃︀𝜇𝑦.𝑐, and 𝐺 = ⟨𝑣 ‖ 𝑒⟩ are either trivial or

follow from the induction hypothesis.
1.2. [[𝐺[𝑥←𝜆𝑦.𝑣]]]𝜌 = [[𝐺]]𝜌[𝑥 := [[𝜆𝑦.𝑣]]V𝜌] Again, we prove the statement for [[−]]D.

* 𝐺 = 𝑧 trivial
* 𝐺 = 𝑥 [[𝑥[𝑥←𝜆𝑦.𝑣]]]𝜌 = [[𝜆𝑦.𝑣]]𝜌 = 𝜆𝑘.𝑘([[𝜆𝑦.𝑣]]V𝜌)

= 𝜆𝑘.𝑘(𝜌[𝑥 := [[𝜆𝑦.𝑣]]V𝜌](𝑥)) = [[𝑥]]𝜌[𝑥 := [[𝜆𝑦.𝑣]]V𝜌]
* 𝐺 = 𝜆𝑧.𝑟 [[𝜆𝑧.𝑟[𝑥←𝜆𝑦.𝑣]]]𝜌 = 𝜆𝑘.𝑘([[𝜆𝑧.𝑟[𝑥←𝜆𝑦.𝑣]]]V𝜌)

= 𝜆𝑘.𝑘(𝜆𝑤.[[𝑟[𝑥←𝜆𝑦.𝑣]]]𝜌[𝑧 := 𝑤])
= 𝜆𝑘.𝑘(𝜆𝑤.[[𝑟]]𝜌[𝑥 := [[𝜆𝑦.𝑣]]V𝜌, 𝑧 := 𝑤]) = [[𝜆𝑧.𝑟]]𝜌[𝑥 := [[𝜆𝑦.𝑣]]V𝜌]

* 𝐺 = 𝜇𝛼.𝑐 [[𝜇𝛼.𝑐[𝑥←𝜆𝑦.𝑣]]]𝜌 = 𝜆𝑘.[[𝑐[𝑥←𝜆𝑦.𝑣]]]𝜌[𝛼 := 𝑘]
= 𝜆𝑘.[[𝑐]]𝜌[𝑥 := [[𝜆𝑦.𝑣]]V𝜌][𝛼 := 𝑘] = [[𝜇𝛼.𝑐]]𝜌[𝑥 := [[𝜆𝑦.𝑣]]V𝜌]

* The cases 𝐺 = 𝛽, 𝐺 = 𝑉 ∙ 𝑒, 𝐺 = ̃︀𝜇𝑦.𝑐, and 𝐺 = ⟨𝑣 ‖ 𝑒⟩ again follow trivially.

2. Induction on the structure of 𝐺, followed by induction on the structure of 𝑒.
It is enough to prove the lemma for 𝐺 = 𝛼 because all the other cases follow either
trivially (𝐺 = 𝛾, 𝐺 = 𝑥) or by the induction hypothesis.

* 𝑒 = 𝛽 [[𝛼[𝛼←𝛽]]]𝜌 = [[𝛽]]𝜌 = [[𝛼]]𝜌[𝛼 := 𝐴𝑖𝛽𝜌]
* 𝑒 = ̃︀𝜇𝑥.𝑐 [[𝛼[𝛼← ̃︀𝜇𝑥.𝑐]]]𝜌 = [[̃︀𝜇𝑥.𝑐]]𝜌 = [[𝛼]]𝜌[𝛼 := [[̃︀𝜇𝑥.𝑐]]𝜌]
* 𝑒 = 𝑉 ∙ 𝑒 [[𝛼[𝛼←𝑉 ∙ 𝑒]]]𝜌 = [[𝑉 ∙ 𝑒]]𝜌 = [[𝛼]]𝜌[𝛼 := [[𝑉 ∙ 𝑒]]𝜌]. �

Theorem 5.1 (Preservation of the semantics under reduction).
If 𝐺1→𝐺2, then [[𝐺1]] = [[𝐺2]].



ON SEMANTICS OF A TERM CALCULUS FOR CLASSICAL LOGIC 91

Proof. 1. ⟨𝜇𝛼.𝑐 ‖ 𝑒⟩→ 𝑐[𝛼← 𝑒]
[[⟨𝜇𝛼.𝑐 ‖ 𝑒⟩]]𝜌 = [[𝜇𝛼.𝑐]]𝜌([[𝑒]]𝜌) = (𝜆𝑘.[[𝑐]]𝜌[𝛼 := 𝑘])([[𝑒]]𝜌)
= [[𝑐]]𝜌[𝛼 := [[𝑒]]𝜌] = [[𝑐[𝛼← 𝑒]]]𝜌

2. ⟨𝑉 ‖ ̃︀𝜇𝑥.𝑐⟩→ 𝑐[𝑥←𝑉 ] Induction on the structure of 𝑉 .
* 𝑉 = 𝑦 [[⟨𝑦 ‖ ̃︀𝜇𝑥.𝑐⟩]]𝜌 = [[𝑦]]𝜌([[̃︀𝜇𝑥.𝑐]]𝜌) = (𝜆𝑘.𝑘𝜌(𝑦))(𝜆𝑤.[[𝑐]]𝜌[𝑥 := 𝑤])

= (𝜆𝑤.[[𝑐]]𝜌[𝑥 := 𝑤])𝜌(𝑦) = [[𝑐]]𝜌[𝑥 := 𝜌(𝑦)] = [[𝑐[𝑥← 𝑦]]]𝜌
* 𝑉 = 𝜆𝑦.𝑣 [[⟨𝜆𝑦.𝑣 ‖ ̃︀𝜇𝑥.𝑐⟩]]𝜌 = [[𝜆𝑦.𝑣]]𝜌([[̃︀𝜇𝑥.𝑐]]𝜌)

= (𝜆𝑘.𝑘(𝜆𝑤.[[𝑣]]𝜌[𝑦 := 𝑤]))(𝜆𝑤1.[[𝑐]]𝜌[𝑥 := 𝑤1])
= (𝜆𝑤1.[[𝑐]]𝜌[𝑥 := 𝑤1])(𝜆𝑤.[[𝑣]]𝜌[𝑦 := 𝑤])
= [[𝑐]]𝜌[𝑥 := 𝜆𝑤.[[𝑣]]𝜌[𝑦 := 𝑤]] = [[𝑐[𝑥←𝜆𝑦.𝑣]]]𝜌

Hence [[⟨𝑉 ‖ ̃︀𝜇𝑥.𝑐⟩]]𝜌 = [[𝑐[𝑥←𝑉 ]]]𝜌.
3. ⟨𝜆𝑥.𝑣 ‖ 𝑉 ∙ 𝑒⟩→⟨𝑉 ‖ ̃︀𝜇𝑥.⟨𝑣 ‖ 𝑒⟩⟩

[[⟨𝜆𝑥.𝑣 ‖ 𝑉 ∙ 𝑒⟩]]𝜌 = [[𝜆𝑥.𝑣]]𝜌([[𝑉 ∙ 𝑒]]𝜌)
= (𝜆𝑘.𝑘(𝜆𝑤.[[𝑣]]𝜌[𝑥 := 𝑤]))(𝜆𝑤1.(𝑤1([[𝑉 ]]V𝜌))([[𝑒]]𝜌))
= (𝜆𝑤1.(𝑤1([[𝑉 ]]V𝜌))([[𝑒]]𝜌))(𝜆𝑤.[[𝑣]]𝜌[𝑥 := 𝑤])
= (𝜆𝑤.[[𝑣]]𝜌[𝑥 := 𝑤])([[𝑉 ]]V𝜌)([[𝑒]]𝜌)
= [[𝑣]]𝜌[𝑥 := [[𝑉 ]]V𝜌]([[𝑒]]𝜌) = [[𝑣[𝑥←𝑉 ]]]𝜌([[𝑒]]𝜌)

[[⟨𝑉 ‖ ̃︀𝜇𝑥.⟨𝑣 ‖ 𝑒⟩⟩]]𝜌 = [[𝑉 ]]𝜌([[̃︀𝜇𝑥.⟨𝑣 ‖ 𝑒⟩]]𝜌)
= [[⟨𝑣 ‖ 𝑒⟩[𝑥←𝑉 ]]]𝜌 as in 2.
= [[𝑣[𝑥←𝑉 ]]]𝜌([[𝑒]]𝜌) since 𝑥 /∈ 𝑒. �

For the complete proofs see [21].

5.2. Semantics of 𝜆𝜇̃︀𝜇𝑇 calculus. In Subection 5.1, we considered two dif-
ferent types of computations, namely the values as the elements of 𝑊 and the
computations as the elements of 𝐶. With the help of 𝜂𝐴(𝑎) = 𝜆𝑘 : 𝑅𝐴.𝑘(𝑎) from
the Kleisli triple, we had a way of including the values into the computations. So
we will apply the same technique at the level of continuations. In the set of callees
we will distinguish basic continuations that we call co-values (called applicative
contexts in [6]), from the rest of continuations.

Next, we give the interpretation functions for all the four syntactic constructs of
𝜆𝜇̃︀𝜇𝑇 . Giving the interpretation function also for co-values, makes a clear difference
between co-values and the rest of callees.

Definition 5.2. Let 𝐾 be the initial solution of the domain equation 𝐾 ∼=
𝑅𝐾 ×𝐾 and let 𝐶 = 𝑅𝐾 and 𝐹 = 𝑅𝐶 . With Env we denote the set of the environ-
ments that map the caller variables to the elements of 𝐶 and the callee variables
to the elements of 𝐾, i.e., for 𝜌 ∈ Env:

∀𝑥 ∈ Var𝑣, 𝜌(𝑥) ∈ 𝐶 and ∀𝛼 ∈ Var𝑒, 𝜌(𝛼) ∈ 𝐾.



92 LIKAVEC AND LESCANNE

Then the interpretation functions are defined as follows:
[[−]]C : Co-value→Env→𝐾 [[−]]E : Callee→Env→𝐹 = 𝑅𝐶

[[−]]D : Caller→Env→𝐶 = 𝑅𝐾 [[−]]R : Capsule→Env→𝑅

Co-value : Callee :
[[𝛼]]C𝜌 = 𝜌(𝛼) [[𝛼]]E𝜌 = 𝜆𝑠.𝑠([[𝛼]]C𝜌)

[[𝑣 ∙ 𝐸]]C𝜌 = ⟨[[𝑣]]D𝜌, [[𝐸]]C𝜌⟩ [[𝑣 ∙ 𝐸]]E𝜌 = 𝜆𝑠.𝑠([[𝑣 ∙ 𝐸]]C𝜌)
[[̃︀𝜇𝑥.𝑐]]E𝜌 = 𝜆𝑠.[[𝑐]]R𝜌[𝑥 := 𝑠]

Caller :
[[𝑥]]D𝜌 = 𝜌(𝑥) Capsule :

[[𝜆𝑥.𝑣]]D𝜌 = 𝜆⟨𝑠, 𝑘⟩.[[𝑣]]D𝜌[𝑥 := 𝑠]𝑘 [[⟨𝑣 ‖ 𝑒⟩]]R𝜌 = [[𝑒]]E𝜌([[𝑣]]D𝜌)
[[𝜇𝛼.𝑐]]D𝜌 = 𝜆𝑘.[[𝑐]]R𝜌[𝛼 := 𝑘]

We will omit the subscripts in various interpretations, as they can be deduced
from the terms being interpreted, apart from [[−]]E where we leave the subscript to
avoid the ambiguity.

Now, we can see the different syntactic constructs of 𝜆𝜇̃︀𝜇𝑇 as the elements of
the following semantical objects:
∙ callers as computations are the elements of 𝐶 = 𝑅𝐾 ,
∙ co-values as basic continuations are the elements of 𝐾 ∼= 𝑅𝐾 ×𝐾,
∙ callees as continuations are the elements of 𝐹 = 𝑅𝐶 ,
∙ capsules as responses are the elements of 𝑅.
Since 𝐾 ∼= 𝑅𝐾×𝐾, continuations are of the form ⟨𝑠, 𝑘⟩, where 𝑠 ∈ 𝐶 and 𝑘 ∈ 𝐾.

Therefore we can see continuations as infinite lists of denotations which correspond
to the denotational versions of the call-by-name evaluation contexts. Callers are
interpreted as functions that map continuations to responses. This reflects the
fact that a caller can either get the data from a callee or ask it to replace one of
its internal callee variables. Hence, callers expect callees as arguments. Since a
callee can ask a caller to replace one of its internal caller variables, it has to have
a functional part that could be applied to a caller. Finally, in the case of capsules,
the interpretation of the callee is applied to the interpretation of the caller, thus
producing an element in 𝑅.

Also, notice that the interpretation of the co-values in 𝐹 is obtained by applying
𝜂𝐾(𝑘) = 𝜆𝑠 : 𝑅𝑅𝐾

.𝑠(𝑘) from the Kleisli triple, to the interpretation of the co-values
in 𝐾. Hence, we include the co-values into the continuations. On the other hand,̃︀𝜇𝑥.𝑐 is not a co-value, hence its interpretation is given only in 𝐹 .

As in the previous section, we first give some lemmas that are used later to
prove that the semantics is preserved under the reduction rules.

Lemma 5.2 (Substitution lemma). Let 𝐺 be the term of 𝜆𝜇̃︀𝜇𝑇 (caller, callee,
or capsule). Then

1. [[𝐺[𝑥← 𝑣]]]𝜌 = [[𝐺]]𝜌[𝑥 := [[𝑣]]𝜌];
2. [[𝐺[𝛼←𝐸]]](K)𝜌 = [[𝐺]](K)𝜌[𝑥 := [[𝐸]]C𝜌]



ON SEMANTICS OF A TERM CALCULUS FOR CLASSICAL LOGIC 93

where [[−]](K) means that in the case of co-values, the lemma holds for both inter-
pretations, namely [[−]]E and [[−]]C.

Theorem 5.2 (Preservation of the semantics under reduction).
If 𝐺1→𝐺2 then [[𝐺1]] = [[𝐺2]]

6. Conclusions

This work investigates some properties of 𝜆𝜇̃︀𝜇𝑇 and 𝜆𝜇̃︀𝜇𝑄, the two subcalculi
of untyped 𝜆𝜇̃︀𝜇 calculus of Curien and Herbelin [6], closed under the call-by-name
and the call-by-value reduction, respectively.

First of all, the proof of confluence for both versions of the 𝜆𝜇̃︀𝜇 calculus is
given, adopting the method of parallel reduction given in [38]. As a step towards
a better understanding of denotational semantics of 𝜆𝜇̃︀𝜇 calculus, its untyped call-
by-value (𝜆𝜇̃︀𝜇𝑄) and call-by-name (𝜆𝜇̃︀𝜇𝑇 ) versions are interpreted. Continuation
semantics of 𝜆𝜇̃︀𝜇𝑄 and 𝜆𝜇̃︀𝜇𝑇 is given using the category of negated domains of [35],
and Moggi’s Kleisli category over predomains for the continuation monad [25]. In
both cases the reduction preserves the denotations.

The first future step to take is to explore completeness and show that these
semantics are computationally adequate. We would also like to extend the present
work to the complete symmetric calculus of [6] and find the interpretation for all the
constructs of that calculus, including 𝑒∙𝑣 and 𝛽𝜆.𝑒. Still in the realm of categorical
semantics, we intend to interprete the typed 𝜆𝜇̃︀𝜇 calculus using fibrations, as done
for the 𝜆𝜇 calculus in [26] and [30].

Acknowledgements. The authors would like to thank the two anonymous
referees for their valuable remarks which helped us improve the final version of the
paper.

References
1. R. M. Amadio and P-L. Curien, Domains and Lambda-Calculi, Cambridge University Press,

Cambridge, 1998.
2. Z. M. Ariola and H. Herbelin, Minimal classical logic and control operators, in: Proc. Annual

International Colloquium on Automata, Languages and Programming ICALP ’03, Lect. Notes
Comput. Sci. 2719, Springer-Verlag, Berlin, 2003, 871–885.

3. Z. M. Ariola, H. Herbelin, and A. Sabry, A type-theoretic foundation of continuations and
prompts, in: Proc. 9th Internat. Conf. on Funct. Prog. ICFP ’04, 40–53, 2004.

4. H. P. Barendregt, The Lambda Calculus: its Syntax and Semantics, North-Holland, Amster-
dam, revised edition, 1984.

5. M. Barr and C. Wells, Category Theory for Computing Science, Les publications Centre de
recherches mathématiques, 1999.

6. P.-L. Curien and H. Herbelin, The Duality of Computation, in: Proc. 5th Internat. Conf. on
Functional Programming, ICFP’00, 233–243, Montreal, Canada, 2000; ACM Press.

7. M. Felleisen, D. P. Friedman, E. Kohlbecker and B. F. Duba, A syntactic theory of sequential
control, Theor. Comput. Sci. 52(3):205–237, 1987.

8. M. Felleisen and R. Hieb, The revised report on the syntactic theories of sequential control
and state, Theor. Comput. Sci. 103(2):235–271, 1992.

9. M. Fischer, Lambda calculus schemata, in: Proc. ACM Conf. on Proving Assertions About
Programs ’72, 104–109 ACM Press, 1972.



94 LIKAVEC AND LESCANNE

10. P. Freyd, Remarks on algebraically compact categories, in: Notes of the London Mathematical
Society, 177, 1992.

11. C. Führmann, The structure of call-by-value, PhD thesis, University of Edinburgh, 2000.
12. S. Ghilezan and P. Lescanne, Classical proofs, typed processes and intersection types, in:

Proc. Workshop Types for Proofs and Programs TYPES ’03 (Selected Papers), Lect. Notes
Comput. Sci. 3085, 226–241, Springer-Verlag, Berlin, 2004.

13. T. Griffin, A formulae-as-types notion of control, in: Proc. 19th Annual ACM Symp. on
Principles Of Programming Languages, POPL ’90, 47–58, ACM Press, 1990.

14. C. A. Gunter and D. S. Scott, Semantic domains, In J. van Leeuwen (ed.), Handbook of The-
oretical Computer Science, volume B. Elsevier, Amsterdam, 1990.

15. W. Howard, The formulae-as-types notion of construction, in: J. P. Seldin and J. R. Hindley
(eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
479–490, Academic Press, 1980.

16. M. Hofmann and Th. Streicher, Continuation models are universal for lambda-mu-calculus,
in: Proc. 11th IEEE Annual Symposium on Logic in Computer Science LICS ’97, 387–397.
IEEE Computer Society Press, 1997.

17. M. Hofmann and Th. Streicher, Completeness of continuation models for 𝜆𝜇-calculus, Inf.
Comput. 179(2):332–355, 2002.

18. H. Kleisli, Every standard construction is induced by a pair of adjoint functors, in: Proc.
American Mathematical Society, volume 16, 544–546, 1965.

19. Y. Lafont, Negation versus implication, Draft, 1991.
20. S. Lengrand, Call-by-value, call-by-name, and strong normalization for the classical sequent

calculus, Electr. Notes Theor. Comput. Sci. 86, Elsevier, 2003.
21. S. Likavec, Types for object-oriented and functional programming languages, PhD thesis,

Università di Torino, Italy, ENS Lyon, France, 2005.
22. Y. Lafont, B. Reus, and Th. Streicher, Continuation semantics or expressing implication by

negation, Technical Report 93-21. University of Munich, 1993.
23. J. Lambek and P. J. Scott, Introduction to higher order categorical logic, Cambridge University

Press, Cambridge, 1986.
24. E. Manes, Algebraic theories, in: Graduate Texts in Mathematics. Springer Verlag, Berlin,

1976.
25. E. Moggi, Notions of computations and monads, Inf. Comput. 93(1), 1991.
26. C.-H. L. Ong, A semantic view of classical proofs: type-theoretic, categorical, denotational

characterizations, in: Proc. 11th IEEE Annual Symposium on Logic in Computer Science
LICS ’97, 230–241. IEEE Computer Society Press, 1997.

27. M. Parigot, 𝜆𝜇-calculus: An algorithmic interpretation of classical natural deduction, in:
Proc. Internat. Conf. on Logic Programming and Automated Reasoning, LPAR ’92, Lect.
Notes Comput. Sci. 624, 190–201, Springer-Verlag, Berlin, 1992.

28. G. D. Plotkin, Call-by-name, call-by-value and the 𝜆-calculus, Theor. Comput. Sci. 1:125–159,
1975.

29. J. Power and E. Robinson, Premonoidal categories and notions of computation, Mathematical
Structures in Computer Science, 7(87):453–468, 1997.

30. D. Pym and E. Ritter, On the semantics of classical disjunction, J. Pure Appl. Algebra
159:315–338, 2001.

31. J. C. Reynolds, Definitional interpreters for higher-order programming languages, in: Proc.
ACM Annual Conference, 717–740, ACM Press, 1972.

32. D. S. Scott, Continuous lattices, in: F. W. Lawvere (ed.), Toposes, Algebraic Geometry and
Logic, Lect. Notes Math. 274, 97–136, Springer-Verlag, Berlin, 1972.

33. D. S. Scott, Domains for denotational semantics, in: M. Nielsen and E. M. Schmidt (ed), Au-
tomata, Languages and Programming, Lect. Notes Comput. Sci. 140, Springer-Verlag, Berlin,
1982, 577–613.

34. P. Selinger, Control categories and duality: on the categorical semantics of the lambda-mu
calculus, Math. Struct. Comput. Sci. 11(2):207–260, 2001.



ON SEMANTICS OF A TERM CALCULUS FOR CLASSICAL LOGIC 95

35. Th. Streicher and B. Reus, Classical logic, continuation semantics and abstract machines, J.
Funct. Program. 8(6):543–572, 1998.

36. Th. Streicher and B. Reus, Continuation semantics: Abstract machines and control operators,
Unpublished manuscript, 1998.

37. C. Strachey and C. P. Wadsworth, Continuations: A mathematical semantics for handling
full jumps, Oxford University Computing Laboratory Technical Monograph PRG-11, 1974.

38. M. Takahashi, Parallel reduction in 𝜆-calculus, Inf. Comput. 118:120–127, 1995.
39. P. Wadler, Call-by-value is dual to call-by-name, in: Proc. 8th Internat. Conf. on Funct.

Prog. ICFP ’03, 189–201, 2003.
40. P. Wadler, Call-by-value is dual to call-by-name-reloaded, in: Proc. Conf. on Rewriting Tech-

nics and Applications RTA ’05, Lect. Notes Comput. Sci. 3467, 185–203, 2005.

Dipartimento di Informatica (Received 05 10 2010)
Università di Torino (Revised 19 07 2011)
Italy
likavec@di.unito.it

University of Lyon
École Normal Supérieure de Lyon
France
pierre.lescanne@ens-lyon.fr


	1. Introduction
	2. Overview of "0365 calculus
	3. Confluence
	4. Continuation semantics
	5. Semantics
	6. Conclusions
	References

