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Abstract. Let A be a finite commutative ring with unity (ring for short).
Define a mapping φ : A2 → A2 by (a, b) 7→ (a + b, ab). One can interpret
this mapping as a finite directed graph (digraph) G = G(A) with vertices A2

and arrows defined by φ. The main idea is to connect ring properties of A
to graph properties of G. Particularly interesting are rings A = Z/nZ. Their
graphs should reflect number-theoretic properties of integers. The first few
graphs Gn = G(Z/nZ) are drawn and their numerical parameters calculated.
From this list, some interesting properties concerning degrees of vertices and
presence of loops are noticed and proved.

1. Introduction

Finite rings have been studied for a long time (e.g., [1, 2]). Also, there have
been some connections made between rings and graphs, more specifically, the graph
of zero-divisors [3–5] and the unitary Cayley graph [6] of a ring. In the present
paper, however, a completely different connection between finite rings and graphs
is proposed and studied. This also has possible connections to elementary number
theory. For basic algebraic and number-theoretic notions used here, see [7,8].

Let A be a finite commutative ring with unity (ring for short). Define a mapping
φ : A2 → A2 by (a, b) 7→ (a + b, ab). Intuitively, it reflects the ring structure of A.
One can interpret this mapping as a finite directed graph (digraph) G = G(A) with
vertices A2 and arrows defined by φ. The main idea is to deduce, if possible, ring
properties of A from graph properties of G (e.g., the number of components, the
lengths of longest paths and longest loops, the maximal degree of vertices, etc.).

Since A is finite, it has integer characteristic char A ∈ N. If n is not a prime,
then A has zero-divisors and A[X] is not a unique factorization ring (if ab = 0,
a ̸= 0, b ̸= 0, then (X − a)(X − b) = X[X − (a + b)] are two distinct, nonassociated
factorizations of X2− (a + b)X). If n = p is prime, then A nevertheless could have
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zero-divisors (e.g., Z2 × Z2). However, if A is a (finite) domain, then it must be a
field, and in such case, A = GF (pk) and A[X] is a UFD.

Particularly interesting are the rings A = Zn = Z/nZ. Their graphs should
reflect some number-theoretic properties of the integers. From the above remark,
we see that either n is prime, Zn is a field and Zn[X] is a UFD, or n is not prime, Zn

has zero-divisors and Zn[X] does not have the UF property. The first few graphs
Gn = G(Zn) can be explicitly drawn (see Fig. 1 and Fig. 2). Already from this list,
some interesting properties can be noticed, concerning the degrees of vertices and
the presence of loops.

2. Degrees of vertices

Consider the degrees of vertices in G. As usual, the outgoing (incoming) degree
of the vertex (a, b) is by definition the number of arrows beginning (ending) in this
vertex. Since G is a graph of a function, the outgoing degree of each vertex (a, b)
equals one. What is the incoming degree of the vertex (a, b)?

Proposition 2.1. The incoming degree of the vertex (a, b) ∈ G equals the
number of distinct roots of the quadratic polynomial X2 − aX + b ∈ A[X].

Proof. If there is an arrow (x, y) −→ (a, b), then x + y = a, xy = b, and by
substitution we deduce that both x and y are roots of this polynomial. Conversely,
if x is a root of this polynomial, then there is an arrow (x, a − x) −→ (a, b), and
for distinct roots such arrows are also distinct. In fact, if x1, . . . , xk are all the
distinct roots of the polynomial, then there is a permutation σ ∈ Sk such that
a− xi = xσ(i). �

In the case of Gp for prime p, the incoming degree of a vertex (a, b) can be
either 0 (if X2 − aX + b is irreducible, i.e., 0 ̸= 4b − a2 ∈ Zp is a quadratic
nonresidue modulo p), or 1 (if 4b − a2 = 0), or 2 (if 4b − a2 ̸= 0 is a quadratic
residue modulo p).

In the case of Gn for nonprime n, the incoming degree of a vertex (a, b) can be
greater than 2, which depends on the different factorizations of X2 − aX + b.

3. Components and closed loops

Consider closed paths, or loops, in G. Up to cyclic permutations, the loops are
described by the corresponding arrow sequences.

Definition. The sequence

(3.1) (a1, b1) −→ (a2, b2) −→ · · · −→ (ak, bk)

of arrows in G defines a loop of length k (or a k-loop) if (ak + bk, akbk) = (a1, b1)
and (ai + bi, aibi) ̸= (aj , bj) for all j 6 i < k.

We see from Fig. 1 that there may exist loops of length 1 as well as longer
loops. Also, some graphs Gn do contain G1 as a (weakly) connected component
and some do not. The definition also implies that if k > 1, then every bi ̸= 0.
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G1: G2:  G1 + 

              = L3

G3:  G1 + G4:    3L2 + 

               = L2

G5:  G1 + 2L2 + G6: G1 + L2 + L3 +

Figure 1

Proposition 3.1. 1) There are exactly n = # A loops of length 1 in G, and
they correspond to the vertices (a, 0).

2) Each connected component of G contains exactly one loop, and the number
of connected components is n + #{loops of length > 1}.
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G7:   G1 + 3L2 +

G8:   3L2  +                G9:  3L2 + 

2              2        3                 2 

               2 

2

Figure 2

3) The graph G1 is a (weakly) connected component of G if and only if A has
no nontrivial nilpotent elements.

Proof. First note that if (a, b) → (a, b) is a 1-loop, then b = 0 (and con-
versely). Therefore 1) follows. Since each component must end with a loop, 2)
follows. Now if a ̸= 0, then the incoming degree of the vertex (a, 0) is at least 2,
since (0, a) −→ (a, 0) ←− (a, 0). Therefore, the only vertex which could be in the
component G1 is (0, 0). But if (x, y) −→ (0, 0), then x2 = 0, and if x ̸= 0, then x
is a nontrivial nilpotent element. �

What is the meaning of loops longer than 1? A closer look leads to necessary
conditions which generalize the condition for 1-loops.
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Proposition 3.2. If the sequence (3.1) is a k-loop, then
σ1(b) = σ2(b) = σ3(b) = 0, (σk(a)− 1) σk(b) = 0

where σm(X) = σm(X1, . . . , Xk) are the usual elementary symmetric polynomials
in k variables.

Proof. There is an arrow (ai−1, bi−1) −→ (ai, bi) if and only if one has the
equality X2 − aiX + bi = (X − ai−1)(X − bi−1) in the polynomial ring A[X].
Therefore, the loop condition implies the equality

k∏
i=1

(X2 − aiX + bi) =
k∏

i=1
(X − ai)(X − bi)

in the polynomial ring A[X]. After a straightforward multiplication, one obtains

X2k−σ1(a)X2k−1+
[
σ2(a)+σ1(b)

]
X2k−2−

[
σ3(a)+

∑
i ̸=jaibj

]
X2k−3+· · ·+σk(b)

= X2k −
[
σ1(a) + σ1(b)

]
X2k−1 +

[
σ2(a) + σ1(a) σ1(b) + σ2(b)

]
X2k−2

−
[
σ3(a) + σ2(a) σ1(b) + σ1(a) σ2(b) + σ3(b)

]
X2k−3 + · · ·+ σk(a) σk(b)

where σm(x) = σm(x1, . . . , xk) =
∑

16j1<···<jm6k xj1 · · ·xjm . Comparing coeffi-
cients, one first obtains σ1(b) = 0, and then σ2(b) = 0. Finally, observing that∑

i ̸=j aibj = σ1(a) σ1(b) −
∑

i aibi = σ1(a) σ1(b) − σ1(b) one has σ3(b) = 0. Com-
parison of constant terms gives the last condition. �

For k 6 3, nice characterizations of loops can be obtained.

Proposition 3.3. For k = 1, the “sequence" (3.1) is a 1-loop ⇔ σ1(b) = 0.
For k = 2, the sequence (3.1) is a 2-loop ⇔ σ1(b) = σ2(b) = 0.
For k = 3, the sequence (3.1) is a 3-loop ⇔ σ1(b) = σ2(b) = σ3(b) = 0.

Proof. The case k = 1 was already discussed above: b1 = 0 ⇔ (a1, b1) −→
(a1, b1). For k = 2, we have b1 + b2 = 0 and b1b2 = 0. It is also easy to check
that these two conditions imply (a2, b2) −→ (a1, b1). Finally, for k = 3, one needs
to prove that conditions σ1(b) = σ2(b) = σ3(b) = 0 imply (a3, b3) −→ (a1, b1).
Suppose that in the sequence (a1, b1) −→ (a2, b2) −→ (a3, b3) one has b1 +b2 +b3 =
b1b2 + b1b3 + b2b3 = b1b2b3 = 0. This implies that (X − b1)(X − b2)(X − b3) = X3.
Now a3 + b3 = a2 + b2 + b3 = a1 + σ1(b) = a1. Using these two facts and comparing
the coefficients of X4 in the polynomial identity
(X2−a1X +a3b3)(X2−a2X + b2)(X2−a3X + b3) = (X−a1)(X−a2)(X−a3)X3,

one obtains σ2(a) + a3b3 + b2 + b3 = σ2(a), and finally a3b3 = b1. �
Remark. 1) It is easy to see that there exists a 2-loop ⇔ the ring A has

nontrivial nilpotent elements. For, since (a2, b2) ̸= (a1, b1), we have b1 ̸= 0, b2
1 = 0

and this is a nilpotent in A. Conversely, if c is a nilpotent, ck−1 ̸= 0, ck = 0 for
k > 1, take b = ck−1. Then b2 = 0 and there is a 2-loop (−1, b) −→ (b− 1,−b) −→
(−1, b). Therefore, the existence of nilpotents in A is visible in the graph G in
two different, equivalent ways: the absence of a G1-component and the presence of
2-loops.
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2) In the case A = Zn, this is equivalent to the condition that n is not square-
free, since Zn has no nontrivial nilpotents if and only if n is square-free. This leads
to an (inefficient) algorithm for deciding whether a given integer n is square-free:
look for 2-loops in the corresponding graph Gn.

3) The existence of a 3-loop implies that the ring A has zero-divisors, since in
such case b1b2b3 = 0 and all bi ̸= 0.

4) Proposition 5 suggests a tempting conjecture: if the sequence (3.1) is a k-
loop, then σ1(b) = σ2(b) = · · · = σk(b) = 0. However, as the example A = Z5 shows
(see Fig. 1), it is already false for k = 4: there is a 4-loop (2, 2) −→ (4, 4) −→
(3, 1) −→ (4, 3) such that σ1(b) = σ2(b) = σ3(b) = 0 and σ4(b) ̸= 0. In this case,
σ4(a) = 1 in accordance with the proposition.

4. Computer calculations

A computer program has been written and run on a PC to calculate some
properties of the graph Gn, such as the number cn of components, the length pn of
the longest path (including the loop closing the path) and ln of the longest loop.
The values of cn, pn, and ln for n 6 50 are shown in the following table.

n cn pn ln

1 1 1 1
2 2 3 1
3 3 5 1
4 5 4 2
5 6 6 4
6 6 5 1
7 7 9 1
8 12 6 4
9 14 6 3

10 12 6 4
11 12 14 6
12 15 6 2
13 14 22 4
14 14 9 1
15 18 8 4
16 30 10 8
17 19 18 10

n cn pn ln

18 28 6 3
19 20 34 8
20 31 6 4
21 21 9 1
22 24 14 6
23 24 32 10
24 36 8 4
25 50 12 5
26 28 22 4
27 63 10 9
28 35 10 2
29 32 35 14
30 36 8 4
31 32 44 18
32 72 18 16
33 36 14 6
34 38 18 10

n cn pn ln

35 42 12 4
36 73 8 6
37 39 49 24
38 40 34 8
39 42 22 4
40 80 8 4
41 45 63 22
42 42 9 1
43 48 98 11
44 61 15 6
45 87 14 12
46 48 32 10
47 50 60 12
48 90 12 8
49 118 10 7
50 100 12 5

From the table, it is evident that local peaks of pn and ln appear for (some,
but not all) primes n and the peaks of ln appear also for n = 2k. Why? This and
many other similar questions can be raised and answered.

We give here two very rough estimates for cn and pn. Consider n = 2k (k > 3).
Suppose that p, q ∈ Zn are not divisible by 2, and let m > 2. There exists an arrow
(2p, 2mq) −→ (2p′, 2m+1q′) where p′ = p + 2m−1q, q′ = pq are again not divisible
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by 2. This gives a path
(2, 22) −→ · · · −→ (2p, 2k−1q) −→ (2p′, 0) 	

of length k − 1. This means that in the case considered, pn > k − 1. Similar
arguments can be used in the general case for any prime factor of n, which means
that pn > k − 1 where k is the maximal multiplicity of any prime factor of n.
However, as the table shows, this rough lower estimate is not very close to pn.

The starting vertices (a, b) (with incoming degree 0) correspond to irreducible
quadratic polynomials X2−aX +b in Zn[X]. It can easily be seen that the number
i of irreducible quadratic polynomials is i > n2−

(
n+1

2
)

= n(n−1)
2 (Zn[X] has unique

factorization exactly when n is prime, and then the equality holds), therefore the
number of starting vertices is i. This gives a rough upper estimate for the number
of components cn 6 i. Again, as the table shows, this is not very close to cn.

5. Graphs for 1 666 n 666 9

Here are the first nine digraphs Gn. The components which appear several
times in the same and/or different graphs are denoted by the same letter (these are
G1, L2, L3) and drawn only by their first appearance. The number to the left of
the component is the number of times this component appears in the whole graph.
The sign + denotes the (disjoint) union of components.

References
1. C. Fletcher, Rings of small order, Math. Gazette 64 (1980), 9-22
2. B. Fine, Classification of finite rings of order p2, Math. Magazine 66 (1993), 248-252
3. D. F. Anderson, P. S. Livingston, The zero-divisor graph of commutative ring, J. Algebra 217

(1999), 434-447
4. D. F. Anderson, M. C. Axtell, J. A. Stickles Jr., Zero-divisor graphs in commutative rings. (In:

Commutative Algebra, Noetherian and Non-Noetherian Perspectives, Fontana M., Kabbaj S.-
E., Olberding B., Swanson I., eds., Springer New York, 2011, 23-45)

5. M. Axtell, J. Stickles, Graphs and zero-divisors, College Math. J. 41 (2010), 396-399
6. R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jimenez, R. Karpman, A. Kinzel, D. Pritikin,

On the unitary Cayley graph of a finite ring, El. J. Combinatorics 216 (2009), #R117
7. T. Hungerford, Algebra (GTM v. 73), Springer, 1980
8. A. Baker, A Concise Introduction to the Theory of Numbers, Cambridge University Press,

1985

Faculty of Mathematics (Received 31 03 2011)
University of Belgrade (Revised 10 04 2012)
Belgrade, Serbia
acal@matf.bg.ac.rs


