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Abstract. The infinite combinatorics here give statements in which, from
some sequence, an infinite subsequence will satisfy some condition – for exam-
ple, belong to some specified set. Our results give such statements generically
– that is, for ‘nearly all’ points, or as we shall say, for quasi all points – all off
a null set in the measure case, or all off a meagre set in the category case. The
prototypical result here goes back to Kestelman in 1947 and to Borwein and
Ditor in the measure case, and can be extended to the category case also. Our
main result is what we call the Category Embedding Theorem, which contains
the Kestelman–Borwein–Ditor Theorem as a special case. Our main contribu-
tion is to obtain functionwise rather than pointwise versions of such results.
We thus subsume results in a number of recent and related areas, concerning
e.g., additive, subadditive, convex and regularly varying functions.

1. Introduction and motivation

The theory of regular variation was initiated by Jovan Karamata, to whom this
paper is dedicated, in 1930 and developed by himself and his pupils till 1963, as
well as by others. This subject is given monograph treatment in [5]. The main
result of the subject is the Uniform Convergence theorem (UCT) of slow variation
which is as follows (see e.g., [5, Ch. 1]).

UCT: If 𝑙 : R+ → R+ satisfies 𝑙(𝜆𝑥)/𝑙(𝑥) → 1 (as 𝑥 → ∞) for all 𝜆 > 0 and 𝑙
is measurable or (has the property of) Baire – then the convergence is uniform on
compact 𝜆-sets in R+. Two points need emphasis here.

(i) Some regularity on 𝑙 is required. For counterexamples showing this, see [5]
e.g., Th.1.2.2.

(ii) So 𝑙 measurable/Baire are sufficient for UCT. Neither includes the other.
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The principal foundational question in the theory of regular variation (explicitly
raised in [5, p. 11]) is the search for a minimal common generalization of measur-
ability and the Baire property to serve as a necessary and sufficient condition on
𝑙 in UCT. This question has now been fully answered; see [6] and [7]. The answer
involves infinite combinatorics, hence the title of this paper. This is the subject
matter of Section 2 and 3. One consequence of our approach is that it reveals
the Baire case, rather than the more traditional measurable case, to be the more
important.

The arguments 𝜆𝑥 in the definition above refer to the multiplication group
of positive reals. The question arises of the extent to which the theory can be
developed in more general settings—Euclidean space R𝑑, Hilbert space, suitable
topological groups etc. The question is raised explicitly in [5, Appendix 1], where
the (then rather sparse) literature was reviewed.

In the two decades since [5] a great deal of work has been done on such ques-
tions. This has been largely motivated by extreme value theory within probability
theory. For extremal value theory in one dimension see [5, Section 8.11]; the motiva-
tion here is the greatest flood height in a set of readings, or the greatest wind-speed,
etc., since it is the maximum that is most damaging or dangerous, or in a financial
context the highest (or lowest) stock price. Extensions to higher dimensions are
natural: in climatic contexts because one may have data from a number of record-
ing stations, and in the financial context because one may hold portfolios of stocks
to diversify one’s risks. Infinite-dimensional extensions are equally natural, one
classic example being the difference in profiles between the sea dykes protecting
the Netherlands and the sea level. There are a number of recent monographs on
such higher-dimensional theory, including e.g., de Haan and Fereira [30], Resnick
[43], [44], and in the financial case Balkema and Embrechts [3].

In Section 4 we turn to normed groups to provide a suitable setting in which a
unified theory of regular variation can be developed. This permits the same kind
of infinite combinatorics to play the key role. We work in Section 4 in the setting
of function spaces over normed groups. Similarly in Section 5 we extend to these
settings topological results on deformation, in the spirit of [40], a matter which we
approach within the framework of homotopy theory in a forthcoming paper.

Equally relevant to the foundations of regular variation is the question of when
𝑘(𝑥𝑦) = 𝑘(𝑥)𝑘(𝑦) (∀𝑥, 𝑦 ∈ R+) implies that 𝑘(𝑥) ≡ 𝑥𝜌 for some 𝜌 (called the index
of regular variation, see e.g., [5, Section 1.4]). This can be reformulated as when
an additive function – i.e., one satisfying

𝑓(𝑥+ 𝑦) = 𝑓(𝑥) + 𝑓(𝑦), ∀𝑥, 𝑦 ∈ R

– satisfies 𝑓(𝑥) ≡ 𝑐𝑥 for some 𝑐 ∈ R. For these, one has a dichotomy – such
functions are either very good or very bad. Additivity and continuity clearly give
𝑓(𝑥) = 𝑐𝑥, so this question reduce to one of automatic continuity, for additive
functions (see [18] for the algebraic background, and [31] for a topological view).
Regularity conditions discriminating between the two extremes of behaviour may
be given in either measure or category forms (see e.g., [9]); here again it turns out
that the underlying explanation hinges on the same kind of infinite combinatorics
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as in the UCT question. We give elsewhere a unified treatment, including as special
cases classical results of Steinhaus and Ostrowski. Additivity may be weakened to
subadditivity, with 𝑓(𝑥 + 𝑦) 6 𝑓(𝑥) + 𝑓(𝑦); the subadditive case is treated along
similar lines in [8]. It may also be weakened to (mid-point) convexity

𝑓( 1
2 (𝑥+ 𝑦)) 6 1

2 (𝑓(𝑥) + 𝑓(𝑦)),
a matter we study in a forthcoming publication; yet again infinite combinatorics
underpin regularity considerations.

The recurring theme in these examples is group structure (or additive struc-
ture in the commutative case), as all of the above defining functional equations
or inequalities may be restated in the language of normed groups, and of normed
vector spaces in particular.

Thus the motivation and theme of this paper rests on extending the recur-
ring feature of infinite combinatorics (e.g., the Kestelman–Borwein–Ditor Theorem
below) to function spaces in general.

The advantage of applying Baire category methods – and thereby making the
Baire case the primary one, rather than the classical measurable case – is that it
shows the natural setting here to be Baire spaces.

It is category questions that are crucial, not questions of compactness or lo-
cal compactness. This assists the generalization from finite dimensions to infinite
dimensional settings: Hilbert space, for example, is not locally compact (the unit
ball is not compact in infinitely many dimensions), but is Baire so our methods do
apply to it. We recall (see e.g., [24, 3.3]) that Baire spaces, i.e., spaces in which
the Baire Theorem applies, include Polish spaces and locally compact spaces.

2. Preliminaries

We shall be concerned here with both measure and category (cf. [41]), and
need concepts of smallness for each. On the measure side, we deal with the class ℒ
of (Lebesgue) measurable sets, and interpret small sets as (Lebesgue) null sets; on
the category side we deal with the class ℬ𝑎 of sets with the Baire property (briefly,
Baire sets), and interpret small sets as meagre sets (those of the first category).
We use quasi everywhere (q.e.), or for quasi all points, to mean for all points off
a meagre set. For Γ in ℒ or ℬ𝑎, we say that 𝑃 ∈ Γ holds for generically all 𝑡
if {𝑡 : 𝑡 /∈ 𝑃} is null/meagre according as Γ is ℒ or ℬ𝑎. Our starting-point is
the following result, due to Kestelman [33] and to Borwein and Ditor [11]. This
exemplifies the infinite combinatorics of the title, but concerns scalars, rather than
functions.

Theorem 2.1. (Kestelman–Borwein–Ditor Theorem). Let {𝑧𝑛} → 0 be a null
sequence of reals. If 𝑇 is measurable and non-null/Baire and non-meagre, then for
generically all 𝑡 ∈ 𝑇 there is an infinite set M𝑡 such that {𝑡+ 𝑧𝑚 : 𝑚 ∈M𝑡} ⊆ 𝑇 .

This result (briefly, the KBD theorem) is a corollary of a topological result, the
Category Embedding Theorem (CET), given in two forms in Section 3 below. The
starting point there is that ℎ𝑛(𝑡) := 𝑡 + 𝑧𝑛 is a sequence of autohomeomorpisms
(or, self-homeomorphisms) of the line which converges uniformly to the identity.
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Our object here is to give a unified treatment of such infinite combinatorics
on function spaces in general, thus providing a common perspective on all these
results. In Section 3 below we give the CET, in what we call its consecutive form
(the motivation being results of van der Waerden type, and also the need to handle
bilateral shifts, 𝑡−𝑧𝑚 and 𝑡+𝑧𝑚). In Section 4 we work in normed groups, an area
that we study in extenso elsewhere, applying the bitopological approach of CET to
this more general group setting for shifts. What motivates such a broader context
is the re-interpretation of a sequence of autohomeomorphisms ℎ𝑛(𝑡) uniformly con-
verging to the identity as giving rise to null function sequences 𝑧𝑛(𝑡) := ℎ𝑛(𝑡) − 𝑡
(converging in supremum norm to zero), which need not be constant as in the KBD
Theorem. In Section 5 we give generic forms of some results appearing in Kuczma
[34, Ch. IX], which we term reflection theorems, and we close with a treatment in
this vein of a genericity result, due to Császár [17], which makes explicit the ideas
implicit in arguments presented in [34, IX.7]. Section 6 illustrates how the com-
binatorics may be applied to deduce automatic continuity of (mid-point) convex
functions.

We will need the density topology (introduced in [29], [26], [38] and studied
also in [27] – see also [16], and for textbook treatments [32], [36]). Recall that for
𝑇 measurable, 𝑡 is a (metric) density point of 𝑇 if lim𝛿→0 |𝑇 ∩ 𝐼𝛿(𝑡)|/𝛿 = 1, where
𝐼𝛿(𝑡) = (𝑡− 𝛿2 , 𝑡+ 𝛿

2 ). By the Lebesgue Density Theorem almost all points of 𝑇 are
density points ([28, Section 61], [41, Th. 3.20], or [25]). A set 𝑈 is 𝑑-open (open in
the density topology) if (𝑈 is measurable and) each of its points is a density point
of 𝑈 . We mention five properties:

(i) The density topology (𝑑, say) is finer than (contains) the Euclidean topology
[32, 17.47(ii)].

(ii) A set is Baire in the density topology iff it is (Lebesgue) measurable [32,
17.47(iv)].

(iii) A Baire set is meagre in the density topology iff it is null [32, 17.47(iii)].
So (since a countable union of null sets is null), the Baire theorem holds for the
line under 𝑑:

(iv) (R, 𝑑) is a Baire space.
(v) A function is 𝑑-continuous iff it is approximately continuous in Denjoy’s

sense [19], [36, pp. 1,149].
The reader unfamiliar with the density topology may find it helpful to think,

in the style of Littlewood’s Three Principles: general situations are ‘nearly’ the
easy situations – i.e., are easy situations modulo small sets. See [35, Ch. 4], [46,
Section 3.6, p. 72].

3. Consecutive Category Embedding Theorem

We formulate two variant forms of a notion that we call weak category conver-
gence (to distinguish it from the related notion of category convergence introduced
by Wilczyński and his collaborators – see e.g., [42]). The first two definitions refer
to homeomorphisms which form a sequence of ‘approximations’ to the identity in
the sense of (approx) below, while the third introduces a relaxation. We follow
set-theoretic usage and write 𝜔 := {0, 1, 2, . . . }.
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Definition 3.1 (weak category convergence). A sequence of autohomeomor-
phisms ℎ𝑛 of a topological space 𝑋 satisfies the weak category convergence condition
if: for any non-empty open set 𝑈 , there is an non-empty open set 𝑉 ⊆ 𝑈 such that,
for each 𝑘 ∈ 𝜔,

(wcc)
⋂︁
𝑛>𝑘

𝑉 r ℎ−1
𝑛 (𝑉 ) is meagre.

Equivalently, for each 𝑘 ∈ 𝜔, there is a meagre set 𝑀𝑘 = 𝑀𝑘(𝑉 ) in 𝑋 such that,
for 𝑡 /∈𝑀𝑘,
(approx) 𝑡 ∈ 𝑉 =⇒ (∃𝑛 > 𝑘) ℎ𝑛(𝑡) ∈ 𝑉.
We say that the homeomorphisms ℎ𝑛 satisfy the weak category convergence con-
junctively if, for each 𝑘 ∈ 𝜔,

(wccc)
⋂︁
𝑛>𝑘

𝑉 r [ℎ−1
2𝑛 (𝑉 ) ∩ ℎ−1

2𝑛+1(𝑉 )] is meagre.

Equivalently, for each 𝑘 ∈ 𝜔, there is a meagre set 𝑀𝑘 in 𝑋 such that, for 𝑡 /∈𝑀𝑘,
𝑡 ∈ 𝑉 =⇒ (∃𝑛 > 𝑘) ℎ2𝑛(𝑡) ∈ 𝑉 and ℎ2𝑛+1(𝑡) ∈ 𝑉.

Finally, we formulate a local version of (wcc) appropriate to the case 𝑋 = R (but
generalizable to 𝑋 a group in the context of Section 3 below), which allows some
rescaling of ℎ𝑛.

Say that the sequence of homeomorphisms ℎ𝑛 satisfies the re-scaled weak cate-
gory convergence condition at 𝑢 if for every open set 𝑈 with 𝑢 ∈ 𝑈 there is an open
set 𝑉 with 𝑢 ∈ 𝑉 ⊂ 𝑈 and 𝜂 = 𝜂𝑢 > 0 such that, for each 𝑘 ∈ 𝜔,

(rwcc)
⋂︁
𝑛>𝑘

𝜂𝑉 r ℎ−1
𝑛 (𝑉 ) is meagre.

Equivalently, for each 𝑘 ∈ 𝜔, there is a meagre set 𝑀𝑘 in 𝑋 such that, for 𝑡 /∈𝑀𝑘,
𝑡 ∈ 𝜂𝑉 =⇒ (∃𝑛 > 𝑘) ℎ𝑛(𝑡) ∈ 𝑉,

or, writing 𝜂𝑠 for 𝑡 and 𝜂𝑁𝑘 for 𝑀𝑘, for each 𝑘 ∈ 𝜔, there is a meagre set 𝑁𝑘 in 𝑋
such that, for 𝑠 /∈ 𝑁𝑘,
(approx-eta) 𝑠 ∈ 𝑉 =⇒ (∃𝑛 > 𝑘) ℎ𝑛(𝜂𝑠) ∈ 𝑉.

Remarks. 1. In the case of the line with Euclidean topology the functions
ℎ𝑛(𝑡) = 𝑡 ± 𝑧𝑛, with sign selected according to parity, are autohomeomorphisms.
The condition (wccc) is used to deduce the bilateral embedding result

{𝑡− 𝑧𝑚, 𝑡+ 𝑧𝑚 : 𝑚 ∈M𝑡} ⊆ 𝑇.

Multiple consecutive forms, 𝑝-fold ones, may also be considered by working modulo
𝑝 rather than 2 in (wccc). These forms are important in connection with van der
Waerden’s Theorem and its relatives; we treat such extensions elsewhere.

2. Note that 𝑡 ∈ lim supℎ−1
𝑛 (𝑇 ) :=

⋂︀
𝑘∈𝜔
⋃︀
𝑛>𝑘 ℎ

−1
𝑛 (𝑇 ) iff for some infinite

M𝑡 ⊂ 𝜔
{ℎ𝑚(𝑡) : 𝑚 ∈M𝑡} ⊆ 𝑇.
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The theorem below implies that for Baire 𝑇 the sets lim supℎ−1
𝑛 (𝑇 ) and 𝑇 are equal

modulo a meagre set.
3. Taking ℎ2𝑛+1 = ℎ2𝑛 reduces (wccc) to (wcc).
4. Consider the affine homeomorphisms 𝐴𝑛(𝑡) = 𝛼𝑛𝑡 + 𝑧𝑛 with 𝛼𝑛 > 2𝜂 > 0

and 𝑧𝑛 → 0. For any symmetric interval 𝐼𝛿 about the origin of radius 𝛿, we have
𝛼𝑛𝐼𝛿 + 𝑧𝑛 ⊇ 2𝜂𝐼𝛿 + 𝑧𝑛 = 𝐼2𝜂𝛿 + 𝑧𝑛.

For 𝑛 large enough we have 𝑧𝑛 ∈ 𝐼𝜂𝛿, so 𝛼𝑛𝐼𝛿 + 𝑧𝑛 ⊇ 𝐼𝜂𝛿, i.e., 𝐴𝑛[𝐼𝛿] ⊇ 𝐼𝜂𝛿, so that
𝜂𝐼𝛿 r𝐴𝑛[𝐼𝛿] is meagre. Thus 𝐴−1

𝑛 satisfies (rwcc) at the origin.
Note that if 𝑀 is meagre then 𝑇 := 𝐼𝛿 r𝑀 is Baire non-meagre, and we have

𝐴𝑛[𝑇 ] = 𝐴𝑛[𝐼𝛿 r𝑀 ] ⊇ 𝜂𝐼𝛿 r𝐴𝑛[𝑀 ],
so 𝜂𝑇 r𝐴𝑛[𝑇 ] is meagre.

5. When 𝑋 is a group one may interpret the condition (rwcc) as referring
to group multiplication by 𝜂 – specifically on the left when adopting the formal
context (approx-eta).

Theorem 3.1. (Category Embedding Theorem—Consecutive form). Let 𝑋 be
a Baire space. Suppose the homeomorphisms ℎ𝑛 : 𝑋 → 𝑋 satisfy the weak category
convergence condition conjunctively. Then, for any Baire set 𝑇 , for quasi all 𝑡 ∈ 𝑇
there is an infinite set M𝑡 such that {ℎ𝑚(𝑡), ℎ𝑚+1(𝑡) : 𝑚 ∈M𝑡} ⊆ 𝑇 .

Proof. We may assume that 𝑇 = 𝑈 r 𝑀 with 𝑈 open, non-empty and 𝑀
meagre. Consider homeomorphisms ℎ𝑛 : 𝑋 → 𝑋 satisfying the weak category
convergence condition conjunctively. By assumption, there is 𝑉 ⊆ 𝑈 satisfying
(wccc). Since the functions ℎ𝑛 are homeomorphisms, the set 𝑀 ′ := 𝑀∪

⋃︀
𝑛 ℎ
−1
𝑛 (𝑀)

is meagre. Put

𝑊 = h(𝑉 ) :=
⋂︁
𝑘∈𝜔

⋃︁
𝑛>𝑘

𝑉 ∩
[︀
ℎ−1

2𝑛 (𝑉 ) ∩ ℎ−1
2𝑛+1(𝑉 )

]︀
⊆ 𝑉 ⊆ 𝑈.

Then 𝑊 is co-meagre in 𝑉 . Indeed

𝑉 r𝑊 =
⋃︁
𝑘∈𝜔

⋂︁
𝑘>𝑛

𝑉 r
[︀
ℎ−1

2𝑛 (𝑉 ) ∩ 𝑉 r ℎ−1
2𝑛 (𝑉 )

]︀
,

which by assumption is meagre.
Let 𝑡 ∈ 𝑉 ∩𝑊r𝑀 ′ so that 𝑡 ∈ 𝑇 . Now there exists an infinite set M𝑡 such that,

for 𝑚 ∈ M𝑡, there are points 𝑣2𝑚, 𝑣2𝑚+1 ∈ 𝑉 with 𝑡 = ℎ−1
2𝑚(𝑣2𝑚) = ℎ−1

2𝑚+1(𝑣2𝑚+1).
Since ℎ−1

2𝑚(𝑣2𝑚) = 𝑡 /∈ ℎ−1
2𝑚(𝑀), we have 𝑣2𝑚 /∈ 𝑀 , and hence 𝑣2𝑚 ∈ 𝑇 ; likewise

𝑣2𝑚+1 ∈ 𝑇 . Thus {ℎ2𝑚(𝑡), ℎ2𝑚+1(𝑡) : 𝑚 ∈ M𝑡} ⊆ 𝑇 for 𝑡 in a co-meagre set, as
asserted.

To deduce that quasi all 𝑡 ∈ 𝑇 satisfy the conclusion of the theorem, put
𝑆 := 𝑇 r h(𝑇 ); then 𝑆 is Baire and 𝑆 ∩ h(𝑇 ) = ∅. If 𝑆 is non-meagre, then by
the preceding argument there are 𝑠 ∈ 𝑆 and an infinite M𝑠 such that {ℎ𝑚(𝑠) : 𝑚 ∈
M𝑠} ⊆ 𝑆, i.e., 𝑠 ∈ h(𝑆) ⊆ h(𝑇 ), a contradiction. �

Following Remark 3 above, we obtain as a special case a result derived by us
elsewhere.
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Corollary 3.1. (Category Embedding Theorem—single form). Let 𝑋 be a
Baire space. Suppose the homeomorphisms ℎ𝑛 : 𝑋 → 𝑋 satisfy the weak category
convergence condition (wcc). Then, for any Baire set 𝑇 , for quasi all 𝑡 ∈ 𝑇 there
is an infinite set M𝑡 such that {ℎ𝑚(𝑡) : 𝑚 ∈M𝑡} ⊆ 𝑇 .

We close with a further strengthening obtained by reworking the proof so as
replace (wccc) with (rwcc).

Corollary 3.2. (Locally rescaled CET). Let R be given a Baire topology and
let 𝑇 be Baire. Suppose that ℎ𝑛 are homeomorphisms satisfying (rwcc) at 0. Then,
for quasi all 𝑢 ∈ 𝑇 and quasi all 𝑡 ∈ 𝑇 near 𝑢 (i.e., in some open set 𝑈 with 𝑢 ∈ 𝑈),
there is an infinite M𝑡,𝑢 such that 𝑢+ ℎ𝑚(𝑡− 𝑢) ∈ 𝑇 , for all 𝑚 ∈M𝑡,𝑢.

Proof. Let 𝑇 = 𝑈r𝑀∪𝑁 with 𝑈 open and 𝑀,𝑁 meagre. As our conclusions
concern quasi all members of 𝑇 , we may take 𝑁 = ∅, which means that ‘for quasi
all 𝑢 ∈ 𝑇 ’ is synonymous with ‘for all 𝑢 ∈ 𝑈 r 𝑀 ’. Fix 𝑢 ∈ 𝑇 . Then 0 ∈ 𝑈 − 𝑢.
Let the autohomeomorphisms ℎ𝑛 satisfy (rwcc) at 0. Thus we may select 𝑉 with
𝑢 ∈ 𝑉 ⊂ 𝑈 and 𝜂 = 𝜂𝑢 > 0 such that 0 ∈ 𝑉 ⊆ 𝑈 − 𝑢 and

⋂︀
𝑛>𝑘 𝜂𝑉 r ℎ−1

𝑛 (𝑉 ) is
meagre. Further, select open 𝑊 ⊂ 𝑉 (e.g., 𝑊 = 𝜂−1𝑉 ) with 0 ∈ 𝜂𝑊 ⊆ 𝑉 ⊆ 𝑈 −𝑢.
Put

𝑆 = 𝜂𝑊 ∩
⋂︁
𝑘∈𝜔

⋃︁
𝑛>𝑘

ℎ−1
𝑛 (𝑇𝑢);

then
𝑀 ′ = 𝜂𝑊 r 𝑆 =

⋃︁
𝑘∈𝜔

⋂︁
𝑛>𝑘

𝜂𝑊 r ℎ−1
𝑛 (𝑇𝑢) ⊂

⋃︁
𝑘∈𝜔

⋂︁
𝑛>𝑘

𝜂𝑉 r ℎ−1
𝑛 (𝑇𝑢)

is meagre. But 𝜂𝑊 r (𝑀 − 𝑢) ⊆ (𝑈 − 𝑢) r (𝑀 r 𝑢), so for 𝑡 ∈ (𝑢+ 𝜂𝑊 ) ∩ 𝑇 with
𝑡 /∈ (𝑀 ′+𝑢)∪𝑀 we have 𝑥 := 𝑡−𝑢 ∈ (𝑇𝑢 ∩𝑆), and so there is an infinite set M𝑡,𝑢
such that
(equiv) 𝑡− 𝑢 = 𝑥 ∈ ℎ−1

𝑚 (𝑇𝑢), for 𝑚 ∈M𝑡,𝑢.
Thus 𝑢+ ℎ𝑚(𝑡− 𝑢) ∈ 𝑇 , for 𝑚 ∈M𝑡,𝑢. �

4. Shift-embeddings

We now specialize Corillary 3.1 to a metric group setting in order to consider
sequences of autohomeomorphisms generated as shifts ℎ𝑛(𝑥) = 𝑥𝑧𝑛. We say that
the group 𝑋 is normed if it has a group-norm as defined below (cf. [20]).

Definition 4.1. We say that ‖ · ‖ : 𝑋 → R+ is a group-norm if the following
properties hold:

(i) Subadditivity (Triangle inequality): ‖𝑥𝑦‖ 6 ‖𝑥‖+ ‖𝑦‖;
(ii) Positivity: ‖𝑥‖ > 0 for 𝑥 ̸= 𝑒;
(iii) Inversion (Symmetry): ‖𝑥−1‖ = ‖𝑥‖.

By the Birkhoff–Kakutani Theorem, a metrizable topological group 𝑇 has a
right-invariant invariant metric 𝑑𝑇 generating the topology. (For a proof see that
offered in [47] for Th. 1.24 (pp. 18–19), which derives a metrization of a topological
vector space in the form 𝑑(𝑥, 𝑦) = 𝑝(𝑥 − 𝑦) and makes no use of the scalar field.
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That proof may be rewritten verbatim with 𝑥𝑦−1 substituting for the additive
notation 𝑥 − 𝑦.) Such a metric induces the group-norm ‖𝑡‖ := 𝑑𝑇 (𝑡, 𝑒𝑇 ). Thus
𝑑𝑇 (𝑥, 𝑦) = 𝑑𝑇 (𝑒𝑇 , 𝑦𝑥−1) = ‖𝑦𝑥−1‖. The conjugate metric, defined by 𝑑𝑇 (𝑥, 𝑦) =
‖𝑥𝑦−1‖ = 𝑑𝑇 (𝑒𝑇 , 𝑥𝑦−1) = 𝑑𝑇 (𝑥−1, 𝑦−1), is continuous relative to 𝑑𝑇 iff 𝑇 is a
topological group. That is, the continuity of inversion characterizes topological
groups as a subcategory of normed groups. We turn to an exhaustive account of
the subject in a forthcoming publication.

Let 𝒜 = 𝒜(𝑇 ) denote the set of bounded autohomeomorphisms ℎ from 𝑇 to
𝑇 (i.e., having sup𝑇 𝑑(ℎ(𝑡), 𝑡) < ∞) with composition ∘ as group operation. Thus
𝑒𝒜(𝑡) ≡ 𝑡. Then 𝒜 has the right-invariant metric 𝑑𝒜(ℎ, ℎ′) = sup𝑇 𝑑(ℎ(𝑡), ℎ′(𝑡)),
which generates the norm

‖ℎ‖𝒜 := 𝑑𝒜(ℎ, 𝑒𝒜) = sup
𝑇
𝑑(ℎ(𝑡), 𝑡).

For the purposes of studying topological flows one is interested in topological sub-
groups of 𝒜 either under 𝑑𝒜, or under its symmetrization 𝑑𝑆𝒜 = 𝑑𝒜 + 𝑑𝒜, where
𝑑𝒜(𝑓, 𝑔) is the conjugate metric 𝑑𝒜(𝑓−1, 𝑔−1). We note for completeness the fol-
lowing.

Lemma 4.1. Under 𝑑𝒜 on 𝒜 and 𝑑𝑇 on 𝑇 , the evaluation map (ℎ, 𝑡)→ ℎ(𝑡) is
continuous.

Proof. Fix ℎ0 and 𝑡0. The result follows from continuity of ℎ0 at 𝑡0 via
𝑑𝑇 (ℎ0(𝑡0), ℎ(𝑡)) 6 𝑑𝑇 (ℎ0(𝑡0), ℎ0(𝑡)) + 𝑑𝑇 (ℎ0(𝑡), ℎ(𝑡))

6 𝑑𝑇 (ℎ0(𝑡0), ℎ0(𝑡)) + 𝑑𝒜(ℎ, ℎ0). �

Remark. Here, for background, we mention without proof some pertinent
results, which we establish elsewhere. If 𝑇 is a topological normed group then
the left shift 𝑡→ 𝑎𝑡, regarded as homeomorphism, is both bounded and uniformly
continuous in norm, in fact it is bi-uniformly continuous, since its inverse 𝑡→ 𝑎−1𝑡
is also uniformly continuous in norm. As a subgroup the shifts metrized by 𝑑𝒜
form a normed topological group, isometric to 𝑇 . In general the subgroup ℋ𝑢 of
bi-uniformly continuous bounded homeomorphisms is a topological group under
the symmetrized metric 𝑑𝑆𝒜 (and is complete if 𝑑𝑇 is complete).

Let 𝒞 = 𝒞𝑏(𝑇 ) denote the set of continuous functions from 𝑇 to 𝑇 with norm-
bounded range and with group operation pointwise multiplication:

(𝑥 · 𝑦)(𝑡) = 𝑥(𝑡)𝑦(𝑡).
Here the identity element is the constant function 𝑒𝒞(𝑡) ≡ 𝑒𝑇 . To retain a unified
setting we give 𝒞 the supremum norm; thus 𝒞 is now a metric space.

Remarks. 1. The symmetrized metric 𝑑(ℎ, ℎ′) = 𝑑𝒜(ℎ, ℎ′) + 𝑑𝒜(ℎ, ℎ′) is ad-
missible in that it endows ℋ𝑢 with the structure of a topological group. We note
that, if a group 𝒢 is metrizable, non-meagre and analytic (for which see [45]) in
the metric, and left and right shifts are continuous, then 𝒢 is a topological group
(see e.g., [49, p. 352]). Our choice of 𝑑𝒜 retains metrizability and right-invariance
(normability) and is sufficient to ensure that the natural 𝒜(𝑇 )-flow on 𝑇 , i.e., the
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evaluation action (ℎ, 𝑡)→ ℎ(𝑡), is continuous (compare the structural assumptions
of Ellis’ Theorem in [23], or [49, p. 351]).

2. Rather than use the supremum metric, one may consider the compact-open
topology (the topology of uniform convergence on compacts, introduced by Fox and
studied by Arens in [1], [2]). However, in order to ensure the kind of properties
we need, the metric space 𝑇 would need to be restricted to a special case, which
we prefer to deal with on its own merits. (On this point see the remarks in [50];
for an alternative topology see [4, Ch. IV].) From this perspective we recall some
salient features of the compact-open topology. For composition to be continuous
local compactness is essential ([22, Ch. XII.2], [37], [4, Section 8.2], or [51, Ch. 1]).
When 𝑇 is compact the topology is admissible, but the issue of admissibility in
the non-compact situation is not currently fully understood (even in the locally
compact case for which counter-examples with non-continuous inversion exist, and
so additional properties such as local connectedness are usually invoked – see [21]
for the strongest results). Our focus of interest is on separable function spaces;
we recall that, by a theorem of Arens, if 𝑇 is separable metric and the compact-
open topology on 𝒞 (𝑇,R) is metrizable, then 𝑇 is necessarily locally compact and
𝜎-compact, and conversely (see e.g., [24, pp. 165, 266]). We consider the locally
compact, 𝜎-compact case, typified by R, at the end of Section 5.

Definition 4.2. Say that 𝑧𝑛 ∈ 𝒞 is a null sequence in 𝒞 or simply that 𝑧𝑛 is
uniformly null, if 𝑧𝑛 → 𝑒𝑇 , in sup norm, i.e., ‖𝑧𝑛‖ := sup 𝑑𝑇 (𝑧𝑛(𝑡), 𝑒𝑇 )→ 0.

Thus 𝑧𝑛 is a null sequence in 𝒞 iff 𝑧−1
𝑛 is a null sequence in 𝒞 (where 𝑧−1

𝑛 (𝑡) :=
𝑧𝑛(𝑡)−1). Put 𝜃𝑛(𝑡) = 𝑧𝑛(𝑡)𝑡; then

‖𝜃𝑛‖𝒜 := sup 𝑑𝑇 (𝜃𝑛(𝑡), 𝑡) = sup 𝑑𝑇 (𝑧𝑛(𝑡)𝑡, 𝑡) = sup 𝑑𝑇 (𝑧𝑛(𝑡), 𝑒𝑇 ) = ‖𝑧𝑛‖𝒞 .

One thus has the following result.

Lemma 4.2. For 𝑧𝑛 in 𝒞, the sequence 𝜃𝑛 converges to the identity in 𝒜 iff 𝑧𝑛
is a uniformly null sequence (in 𝒞).

The next two theorems verify circumstances when the condition (wccc) holds
thus permitting Corollary 3.1 to apply.

Theorem 4.1. (Norm topology verification theorem). If 𝜓𝑛 in 𝒜 converges
to the identity, then 𝜓𝑛 satisfies the weak category convergence condition (wcc).
Indeed the sequence satisfies (wccc).

Proof. It is more convenient to prove the equivalent statement that 𝜓−1
𝑛 sat-

isfies the category convergence condition.
Put 𝑧𝑛 = 𝜓𝑛(𝑧0), so that 𝑧𝑛 → 𝑧0. Let 𝑘 be given.
Suppose that 𝑦 ∈ 𝐵𝜀(𝑧0), i.e., 𝑟 = 𝑑(𝑦, 𝑧0) < 𝜀. For some 𝑁 > 𝑘, we have

𝜀𝑛 = 𝑑(𝜓𝑛, 𝑖𝑑) < 1
3 (𝜀− 𝑟), for all 𝑛 > 𝑁 . Now

𝑑(𝑦, 𝑧𝑛) 6 𝑑(𝑦, 𝑧0) + 𝑑(𝑧0, 𝑧𝑛) = 𝑑(𝑦, 𝑧0) + 𝑑(𝑧0, 𝜓𝑛(𝑧0)) 6 𝑟 + 𝜀𝑛.
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For 𝑦 = 𝜓𝑛(𝑥) and 𝑛 > 𝑁 ,

𝑑(𝑧0, 𝑥) 6 𝑑(𝑧0, 𝑧𝑛) + 𝑑(𝑧𝑛, 𝑦) + 𝑑(𝑦, 𝑥)
= 𝑑(𝑧0, 𝑧𝑛) + 𝑑(𝑧𝑛, 𝑦) + 𝑑(𝑥, 𝜓𝑛(𝑥))
6 𝜀𝑛 + (𝑟 + 𝜀𝑛) + 𝜀𝑛 < 𝜀.

So 𝑥 ∈ 𝐵𝜀(𝑧0), giving 𝑦 ∈ 𝜓𝑛(𝐵𝜀(𝑧0)). Thus

𝑦 /∈
⋂︁
𝑛>𝑁

𝐵𝜀(𝑧0) r 𝜓𝑛(𝐵𝜀(𝑧0)) ⊇
⋂︁
𝑛>𝑘

𝐵𝜀(𝑧0) r 𝜓𝑛(𝐵𝜀(𝑧0)).

It now follows that ⋂︁
𝑛>𝑘

𝐵𝜀(𝑧0) r 𝜓𝑛(𝐵𝜀(𝑧0)) = ∅,

giving (wcc) as required; similarly for (wccc). �

Remark. Taking the viewpoint afforded by Remark 2 of Section 3, the referee
has kindly pointed out that the argument above may be re-formulated to say that
𝐵𝜀𝑠(𝑧0) ⊆ 𝜓𝑛(𝐵𝜀(𝑧0)) for each 0 < 𝑠 < 1 and hence implies

𝐵𝜀(𝑧0) ⊆ lim inf 𝜓𝑛(𝐵𝜀(𝑧0)).

Theorem 4.2. (Density topology verification theorem). For 𝑇 a normed locally
compact group with left-invariant Haar measure 𝑚,𝑉 an 𝑚-measurable non-null set
and 𝑧𝑛 a null sequence in 𝒞(𝑇 ), let ℎ𝑛(𝑡) := 𝑡𝑧𝑛(𝑡)−1 be an autohomeomorphism.
Then for each 𝑘 ∈ 𝜔,

𝐻𝑘 :=
⋂︁
𝑛>𝑘

𝑉 r
[︀
ℎ−1

2𝑛 (𝑉 ) ∩ ℎ−1
2𝑛+1(𝑉 )

]︀
is 𝑚-null, so meagre in the 𝑑-topology.

That is, the sequence ℎ𝑛(𝑡) = 𝑡𝑧𝑛(𝑡)−1 satisfies the weak category convergence con-
dition (wccc).

Proof. Suppose not; then 𝑚(𝐻𝑘) > 0 for some 𝑘; write 𝐻 for 𝐻𝑘. We write
𝑉 𝑧 for 𝑉 · 𝑧, etc., so that 𝑡 ∈ ℎ−1

𝑛 (𝑉 ) iff ℎ𝑛(𝑡) ∈ 𝑉 iff 𝑡 ∈ 𝑉 𝑧𝑛(𝑡).
For 𝑛 > 𝑘 we have, since 𝐻 ⊆ 𝑉 r

[︀
ℎ−1

2𝑛 (𝑉 )∩ℎ−1
2𝑛+1(𝑉 )

]︀
, that ∅ = 𝐻∩ℎ−1

2𝑛 (𝑉 )∩
ℎ−1

2𝑛+1(𝑉 ) and so ∅ = 𝐻 ∩ℎ−1
2𝑛 (𝐻)∩ℎ−1

2𝑛+1(𝐻). Thus, for ℎ ∈ 𝐻, either ℎ /∈ ℎ−1
2𝑛 (𝐻)

or ℎ /∈ ℎ−1
2𝑛+1(𝐻); so there are infinitely many odd, or infinitely many even, 𝑛 > 𝑘

for which ℎ /∈ 𝐻𝑧𝑛(ℎ) – that is, ℎ /∈ 𝐻𝑧𝑛(ℎ) for ℎ ∈ 𝐻 for infinitely many 𝑛 > 𝑘.
Let 𝑢 be a metric density point of 𝐻. Thus, for some bounded (Borel) neigh-

bourhood 𝑈𝜈𝑢 we have 𝑚[𝐻 ∩ 𝑈𝜈𝑢] > 3
4𝑚[𝑈𝜈𝑢]. Fix 𝑈𝜈 and put 𝛿 = 𝑚[𝑈𝜈𝑢].

Let 𝐸 = 𝐻∩𝑈𝜈𝑢. For any 𝑧𝑛(𝑡), we have 𝑚[(𝐸𝑧𝑛(𝑡))∩𝑈𝜈𝑢𝑧𝑛(𝑡)] = 𝑚[𝐸] > 3
4𝛿.

By Theorem A of [28, p. 266], for all large enough 𝑛, we have

𝑚(𝑈𝜈𝑢△𝑈𝜈𝑢𝑧𝑛(𝑡)) < 𝛿/4.

Hence, for all 𝑛 large enough we have |(𝐸𝑧𝑛(𝑡)) r 𝑈𝜈𝑢| 6 𝛿/4.
Put 𝐹 = (𝐸𝐵‖𝑧𝑛‖(𝑒)) ∩ 𝑈𝜈𝑢; then 𝑚[𝐹 ] > 𝛿/2 for all large enough 𝑛. But

𝛿 > 𝑚[𝐸 ∪ 𝐹 ] = 𝑚[𝐸] +𝑚[𝐹 ]−𝑚[𝐸 ∩ 𝐹 ] > 3
4 𝛿 + 1

2 𝛿 −𝑚[𝐸 ∩ 𝐹 ].
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So for all large enough 𝑛 and ℎ ∈ 𝐻, we have 𝑚[𝐻 ∩ (𝐻𝑧𝑛(ℎ))] > 𝑚[𝐸 ∩ 𝐹 ] > 1
4 𝛿,

so 𝐻 ∩ (𝐻𝑧𝑛(ℎ)) is non-empty. But this contradicts ℎ /∈ 𝐻𝑧𝑛(ℎ), for ℎ ∈ 𝐻 and
infinitely many 𝑛. �

Remark. The only fact about ℎ𝑛 used in the proof above is that, for some
sequence of radii 𝑟(𝑛) tending to zero, ℎ𝑛(𝑡) ∈ 𝐵𝑟(𝑛)(𝑡). One may thus verify the
(rwcc) condition in the following context.

Corollary 4.1. For 𝐴𝑛(𝑡) := 𝛼𝑛𝑡 + 𝑧𝑛, with 𝛼𝑛 → 𝛼 > 0 and 𝑧𝑛 uniformly
null, and for 𝑉 bounded and of finite positive measure,⋂︁

𝑛>𝑘

𝛼𝑉 r𝐴𝑛(𝑉 ) is 𝑚-null, so meagre in the 𝑑-topology.

Proof. Put 𝛼𝑛 = 𝛼+ 𝜀𝑛, so that 𝜀𝑛 → 0, and let
𝑊𝑛 := (𝜀𝑛 + 𝑧𝑛)(𝑉 ) := {𝜀𝑛𝑣 + 𝑧𝑛(𝑣) : 𝑣 ∈ 𝑉 }

so that (𝛼𝑛 + 𝑧𝑛)(𝑉 ) ⊆ 𝛼𝑉 + 𝑊𝑛. Now 𝑚[𝑊𝑛] → 0 and diam(𝑊𝑛) → 0, so since
𝛼𝑉 is of finite positive measure, Theorem 4.2 yields that

⋂︀
𝑛>𝑘 𝛼𝑉 r𝐴𝑛(𝑉 ) is null,

as required. �

As an immediate corollary of Corollary 3.1 and Theorem 4.1 we obtain the
following special case of Corollary 3.1.

Theorem 4.3. If 𝒳 is a Baire subset of functions 𝑥(.) in 𝒞[0, 1] and 𝑓𝑛 → 𝑓
in 𝒞[0, 1] in sup-norm, then for quasi all 𝑥 ∈ 𝒳 there is an infinite set M𝑥 such
that {𝑥+ 𝑓𝑚 − 𝑓 : 𝑚 ∈M𝑥} ⊆ 𝒳 .

Proof. Let 𝑧𝑛 = 𝑓𝑛 − 𝑓 ; then 𝑧𝑛 → 0. Since 𝒞[0, 1], a complete metric space,
is a Baire space, and 𝑥 → 𝑥 + 𝑧𝑛 is a sequence of homeomorphisms, Theorem 4.1
applies. �

We may now deduce two strengthened forms of the KBD theorem. Putting
ℎ𝑛(𝑡) = 𝑡𝑧𝑛(𝑡) we obtain the following corollary.

Theorem 4.4. (Functionwise Embedding Theorem). Let 𝑇 be a normed locally
compact group, 𝑧𝑛 a null sequence in 𝒞𝑏(𝑇 ) such that 𝑡→ 𝑡𝑧𝑛(𝑡) is, for each 𝑛, an
autohomeomorphism. If 𝑆 is Haar measurable, resp., Baire, then for generically
all 𝑡 ∈ 𝑆 there is an infinite set M𝑡 such that {𝑡𝑧𝑚(𝑡) : 𝑚 ∈M𝑡} ⊆ 𝑆.

Next let 𝑧𝑛 and 𝑤𝑛 be null sequences in 𝒞𝑏(𝑇 ). Put ℎ2𝑛(𝑡) = 𝑡𝑧𝑛(𝑡) and
ℎ2𝑛+1(𝑡) = 𝑡𝑤𝑛(𝑡); then the merged sequence 𝑧0(𝑡), 𝑤0(𝑡), 𝑧1(𝑡), 𝑤1(𝑡), . . . is a null
sequence in 𝒞𝑏(𝑇 ). Thus one has

Theorem 4.5. (Functionwise Consecutive Embedding Theorem). Let 𝑇 be
a normed locally compact group, 𝑧𝑛 and 𝑤𝑛 null sequences in 𝒞𝑏(𝑇 ) such that
𝑡 → 𝑡𝑧𝑛(𝑡) and 𝑡 → 𝑤𝑡𝑛(𝑡) are, for each 𝑛, autohomeomorphisms. If 𝑆 is Haar
measurable, resp., Baire, then for generically all 𝑡 ∈ 𝑆 there is an infinite set M𝑡
such that {𝑡𝑧𝑚(𝑡), 𝑡𝑤𝑚(𝑡) : 𝑚 ∈M𝑡} ⊆ 𝑇 .

This includes the result on bilateral shifts mentioned earlier.
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5. Generic Reflection Theorem

In this section, working again in the context of 𝑇 = R, we begin by formulating
simple conditions ensuring that various null sequences 𝑧𝑛 → 0 in 𝒞𝑏(R) lead to
autohomeomorphisms ℎ𝑛(𝑡) := 𝑡+𝑧𝑛(𝑡) of R in the usual or in the density topology.
This will enable us to apply the functionwise embedding theorems.

Definition 5.1. Say that ℎ : R→ R is bi-Lipschitz (a notion implicit in [12])
if, for some 𝛼, 𝛽,

0 < 𝛼 6
ℎ(𝑢)− ℎ(𝑣)

𝑢− 𝑣
6 𝛽, for 𝑢 ̸= 𝑣.

In particular, ℎ is continuous and strictly increasing, and so is invertible with
continuous and strictly increasing inverse, also bi-Lipschitz, and differentiable, ex-
cept possibly for at most countably many points. The bi-Lipschitz functions pre-
serve density points – in particular images and preimages of null/meagre sets are
null/meagre (see [12], [13], or [15] and [14]) – and so are homeomorphisms in the
𝑑-topology on R.

Definition 5.2. Call a null sequence 𝑧𝑛 in 𝒞𝑏 bi-Lipschitz if the mappings
𝑢→ 𝑢+ 𝑧𝑛(𝑢) are bi-Lipschitz uniformly in 𝑛, i.e., for some 𝛼, 𝛽 and all 𝑛 we have

(5.1) 0 < 𝛼 6 1 + 𝑧𝑛(𝑢)− 𝑧𝑛(𝑣)
𝑢− 𝑣

6 𝛽, for 𝑢 ̸= 𝑣.

In particular 𝑧′𝑛, where it exists, is bounded away from −1.

Definition 5.3. For 𝑧𝑛 a sequence in 𝒞𝑏, the 𝑓 -conjugate sequence 𝑧𝑛 is defined
as follows:

𝑧𝑛(𝑡), or 𝑧𝑓𝑛(𝑡), := 𝑓(𝑡+ 𝑧𝑛(𝑡))− 𝑓(𝑡).

Lemma 5.1. For 𝑓 : R→ R Lipschitz, the 𝑓 -conjugate sequence is null in 𝒞𝑏. If
𝑧𝑛(𝑡) satisfies (5.1) and the derivative 𝑓 ′(𝑡) is continuous near 𝑧 = 𝑢 and satisfies
1 + (𝛼 − 1)𝑓 ′(𝑢) > 0, and is bounded above in a neighbourhood of 𝑡 = 𝑢, then the
𝑓 -conjugate sequence {𝑧𝑛(𝑡)} is locally bi-Lipschitz near 𝑡 = 𝑢. In particular for 𝑧𝑛
differentiable this is so if 1 + 𝑓 ′(𝑢)𝑧′𝑛(𝑢) > 0, for all 𝑛.

Proof. For 𝑓 with Lipschitz constant 𝛽𝑓 we have ‖𝑧𝑛‖ 6 𝛽𝑓‖𝑧𝑛‖, as
|𝑧𝑛(𝑡)| = |𝑓(𝑡+ 𝑧𝑛(𝑡))− 𝑓(𝑡)| 6 𝛽𝑓 |𝑧𝑛(𝑡)|.

For 𝑓 differentiable, we may write 𝑓(𝑢)− 𝑓(𝑣) = 𝑓 ′(𝑤(𝑢, 𝑣))(𝑢− 𝑣) and
𝑓(𝑢+ 𝑧𝑛(𝑢))− 𝑓(𝑣 + 𝑧𝑛(𝑣)) = 𝑓 ′(𝑤𝑛(𝑢, 𝑣))[𝑧𝑛(𝑢)− 𝑧𝑛(𝑣) + (𝑢− 𝑣)].

Thus we have
𝑧𝑛(𝑢)− 𝑧𝑛(𝑣)

𝑢− 𝑣
= 𝑓 ′(𝑤𝑛(𝑢, 𝑣))𝑧𝑛(𝑢)− 𝑧𝑛(𝑣)

𝑢− 𝑣
+ [𝑓 ′(𝑤𝑛(𝑢, 𝑣))− 𝑓 ′(𝑤(𝑢, 𝑣))].

Hence

1 + 𝑧𝑛(𝑢)− 𝑧𝑛(𝑣)
𝑢− 𝑣

= 1 + 𝑓 ′(𝑤𝑛)
𝑧𝑛(𝑢)− 𝑧𝑛(𝑣)

𝑢− 𝑣
+ [𝑓 ′(𝑤𝑛(𝑢, 𝑣))− 𝑓 ′(𝑤(𝑢, 𝑣))]

> 1 + (𝛼− 1)𝑓 ′(𝑤𝑛) + [𝑓 ′(𝑤𝑛(𝑢, 𝑣))− 𝑓 ′(𝑤(𝑢, 𝑣))],
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and the latter term is positive for 𝑣 in a small enough neighbourhood of 𝑡 = 𝑢. To
obtain the differentiable case we note that in the preceding line

1 + 𝑓 ′(𝑤𝑛)
𝑧𝑛(𝑢)− 𝑧𝑛(𝑣)

𝑢− 𝑣
> 0

for 𝑣 in a small enough neighbourhood of 𝑡 = 𝑢. �

As an immediate corollary of the above Lemma, the CET (Th. 3.1) and the
two shift theorems (Th. 4.1 and 4.2), we have:

Theorem 5.1. (Generic Reflection Theorem]. Let 𝑇 be measurable/Baire, 𝑓(.)
be continuously differentiable and non-stationary at generically all points, 𝑧𝑛 → 0
in supremum norm a null sequence that is bi-Lipschitz with
(5.2) 1 + 𝑓 ′(𝑡)𝑧′𝑛(𝑡) > 0, for all 𝑛,
for generically all 𝑡 ∈ 𝑇 . Then, for generically all 𝑡 ∈ 𝑇 , there is an infinite set M𝑡
such that
(5.3) 𝑡+ 𝑓(𝑡+ 𝑧𝑛(𝑡))− 𝑓(𝑡) ∈ 𝑇, for all 𝑛 ∈M𝑡.
In particular, if in addition 𝑓 is linear and 𝑓(𝑡) = 𝛼𝑡 with 𝛼 ̸= 0, then for generically
all 𝑢 ∈ 𝑇 there is an infinite set M𝑢 such that
(5.4) 𝛼𝑢𝑛 + (1− 𝛼)𝑢 ∈ 𝑇 for all 𝑛 ∈M𝑢, where 𝑢𝑛 = 𝑢+ 𝑧𝑛(𝑢).

The term ‘reflection’ above is motivated by Lemma 6.1. For our closing results
we need the following.

Definition 5.4. 1. Say that 𝑓 is smooth for 𝑧𝑛 if (5.2) holds.
2. More generally, say that the sequence 𝑓𝑛 of functions from R to R is smooth

for 𝑧𝑛 if:
(i) 𝑧𝑛(𝑡) := 𝑓𝑛(𝑡+ 𝑧𝑛(𝑡))− 𝑓𝑛(𝑡) is a null sequence, and
(ii) ℎ𝑛(𝑡) := 𝑡+ 𝑧𝑛(𝑡) is an autohomeomorphism.

Example 5.1. The linear case 𝑓(𝑡) = 𝛼𝑡 is of particular interest. Here
ℎ𝑛(𝑡) := 𝑡+ 𝑓(𝑡+ 𝑧𝑛(𝑡))− 𝑓(𝑡) = 𝑡+ 𝛼𝑧𝑛(𝑡).

For 𝛼 > 0, the derivative condition for ℎ𝑛 to be increasing reads
1 + 𝛼𝑧′𝑛(𝑡) > 0, or 𝑧′𝑛(𝑡) > −1/𝛼.

So, if the null function sequence is constant (as in KBD theorem), with 𝑧𝑛(𝑡) ≡ 𝑧𝑛,
the condition is satisfied, as it reduces simply to 0 > −1/𝛼.

Example 5.2. Let 𝜆𝑛 be a sequence of non-zero reals and 𝑧𝑛 a null sequence
in 𝒞𝑏. Put 𝑓𝑛(𝑡) = 𝜆𝑛𝑓(𝑡), where 𝑓(.) is continuously differentiable. Thus

|𝑧𝑛(𝑡)| = |𝑓𝑛(𝑡+ 𝑧𝑛(𝑡))− 𝑓𝑛(𝑡)| = 𝜆𝑛|𝑧𝑛(𝑡)‖𝑓 ′(𝑣𝑛(𝑡))|,
for some 𝑣𝑛(𝑡). Thus |𝑧𝑛(𝑡)| → 0 on compacts if 𝜆𝑛 is bounded. Now
𝑑

𝑑𝑡
(𝑡+𝜆𝑛𝑓(𝑡+𝑧𝑛(𝑡))−𝜆𝑛𝑓(𝑡)) = 1+𝜆𝑛(𝑓 ′(𝑡+𝑧𝑛(𝑡))[1+𝑧′𝑛(𝑡)]−𝑓 ′(𝑡))

= 1+𝜆𝑛𝑓 ′(𝑡+𝑧𝑛(𝑡))𝑧′𝑛(𝑡)+𝜆𝑛[𝑓 ′(𝑡+𝑧𝑛(𝑡))−𝑓 ′(𝑡)].
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Thus, for 𝜆𝑛 bounded, a condition such as 1 + 𝜆𝑛𝑓
′(𝑡)𝑧′𝑛(𝑡) > 0 (∀𝑛 ∈ N) ensures

that each 𝑡+𝑧𝑛(𝑡) is a Euclidean homeomorphism. This will be so when 𝑧𝑛(𝑡) ≡ 𝑧𝑛
(constant).

For 𝑓(𝑡) = 𝑡 we have 𝑧𝑛(𝑡) = 𝜆𝑛𝑧𝑛(𝑡). Thus if (5.1) holds for 𝑧𝑛, then, for 𝑢, 𝑣
distinct and 𝜆𝑛 > 0,

1− 𝜆𝑛 < 1 + 𝜆𝑛(𝛼− 1) 6 1 + 𝜆𝑛
𝑧𝑛(𝑢)− 𝑧𝑛(𝑣)

𝑢− 𝑣
6 1 + 𝜆𝑛(𝛽 − 1).

So, for 0 < 𝜆𝑛 < 1, we conclude that 𝑧𝑛 is bi-Lipschitz. If 𝑧𝑛(𝑡) = 𝑧𝑛 (constant) then
the only condition that needs to be in place is that 𝜆𝑛‖𝑧𝑛‖ → 0. This can be easily
arranged by replacing 𝑧𝑛 by a subsequence 𝑧𝑛 = 𝑧𝑘(𝑛) such that 𝜆𝑛‖𝑧𝑘(𝑛)‖ → 0.

Theorem 5.2. (Smooth Image Theorem). Let 𝑓 and 𝑔 both be smooth for
𝑧𝑛 ∈ 𝒞𝑏 which is differentiable and bi-Lipschitz. Then, for generically all 𝑡 ∈ 𝑇 ,
there is an infinite set M𝑡 such that

𝑡+ 𝑧𝑓𝑛 ∈ 𝑇, and 𝑡+ 𝑧𝑔𝑛 ∈ 𝑇 for all 𝑛 ∈M𝑢.
In particular, for 𝑓 smooth and 𝑔(𝑡) = 𝑡 the identity map we obtain the simultaneous
embedding:

𝑡+ 𝑧𝑓𝑛 ∈ 𝑇, and 𝑡+ 𝑧𝑛 ∈ 𝑇 for all 𝑛 ∈M𝑡.
Furthermore, if 𝑓 and 𝑔 are smooth and linear and 𝑓(𝑡) = 𝛼𝑡 with 𝛼 ̸= 0, 𝑔(𝑡) = 𝛽𝑡
with 𝛽 ̸= 0, then for generically all 𝑡 ∈ 𝑇 there is an infinite set M𝑡 such that

𝑡+ 𝛼𝑧𝑛 ∈ 𝑇, and 𝑡+ 𝛽𝑧𝑛 ∈ 𝑇 for all 𝑛 ∈M𝑡.
For instance, taking 𝛼 = 1, 𝛽 = −1 we obtain generic bilateral embedding:

𝑡+ 𝑧𝑛 ∈ 𝑇, and 𝑡− 𝑧𝑛 ∈ 𝑇 for all 𝑛 ∈M𝑡.

For 𝛼𝑛 = 2𝑛 and 𝑧𝑛(𝑡) = 𝑧𝑛 constant, the following result (though not its
proof) appears implicitly in the proof of Császár’s Non-separation Theorem (of a
mid-point convex function and its lower hull by a measurable function); we consider
its applications in a forthcoming publication.

Theorem 5.3. (Császár’s Genericity Theorem, [34, pp. 223–226], [17]). Let 𝑇
be measurable or Baire.

(i) Let {𝛼𝑛} be bounded from below by unity and let {𝑧𝑛} → 0 be uniformly
null. For generically all 𝑡 ∈ 𝑇 , there are points 𝑡𝑛 ∈ 𝑇 such that, along some
subsequence of 𝑛,

𝑡 = 𝛼𝑛𝑡𝑛 + (1− 𝛼𝑛)𝑢𝑛(𝑡), where 𝑢𝑛(𝑡) = 𝑡+ 𝑧𝑛(𝑡).
(ii) Let {𝛼𝑛} be positive and bounded away from zero and let {𝑧𝑛} → 0 be a

null sequence of reals. For generically all 𝑢 ∈ 𝑇 and generically all 𝑡 near 𝑢, there
are points 𝑡𝑛 ∈ 𝑇 such that, along some subsequence of 𝑛,

𝑡 = 𝛼𝑛𝑡𝑛 + (1− 𝛼𝑛)𝑢𝑛, where 𝑢𝑛 = 𝑢+ 𝑧𝑛.

Proof. The conclusions concern subsequences; so we may divide the argument
according as 𝛼𝑛 tends to infinity or is convergent. Suppose first that 𝑎𝑛 →∞, and
so also that, for all 𝑛, 𝛼𝑛 > 1. For 𝛾𝑛 := 1/𝛼𝑛 and 𝜆𝑛 = 1 − 𝛾𝑛, we have
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0 < 𝜆𝑛 < 1. Taking 𝑓𝑛(𝑡) = 𝜆𝑛𝑡 = (1 − 𝛾𝑛)𝑡, we conclude from Example 2 above
that for generically all 𝑡 ∈ 𝑇 there is an infinite set M𝑡 such that

𝑡𝑛 = 𝑡+ (1− 𝛾𝑛)𝑧𝑛(𝑡) ∈ 𝑇, for 𝑛 ∈M𝑡.

So

(csa) 𝑡𝑛 = 𝛾𝑛𝑡+ (1− 𝛾𝑛)[𝑡+ 𝑧𝑛(𝑡)] ∈ 𝑇,

and equivalently 𝑡 = 𝛼𝑛𝑡𝑛 + (1− 𝛼𝑛)𝑢𝑛(𝑡).
Now suppose that 𝛼𝑛 → 𝛼 > 0. Thus (1− 𝛼𝑛)𝑧𝑛 → 0. Take ℎ−1

𝑛 (𝑡) = 𝐴𝑛(𝑡) =
𝛼𝑛𝑡 + (1 − 𝛼𝑛)𝑧𝑛(𝑡). Since (rwcc) holds at 0 in the Euclidean case (by Remark 4
of Section 2), and also in the density case by Cor. 3.2, we conclude that there is
an infinite set M𝑡,𝑢 such that 𝑡 − 𝑢 = 𝑥 ∈ ℎ−1

𝑚 (𝑇𝑢), for 𝑚 ∈ M𝑡,𝑢, as in equation
(equiv) in the proof of Corollary 3.1 (end of Section 3). Thus again we have

𝑡− 𝑢 = ℎ−1
𝑛 (𝑡𝑛 − 𝑢) = 𝛼𝑛(𝑡𝑛 − 𝑢) + (1− 𝛼𝑛)𝑧𝑛,

or again 𝑡 = 𝛼𝑛𝑡𝑛 + (1− 𝛼𝑛)(𝑢+ 𝑧𝑛). �

Remarks. 1. Theorem 5.1 applies also to sequences 𝑧𝑛 which converge to
zero on compacts. This is because all our results are local, by capping, as follows.
Suppose 𝑧𝑛(𝑡) only converges to zero on compacts and that 𝑡+ 𝑧𝑛(𝑡) is a Euclidean
homeomorphism (i.e., is strictly increasing and continuous). For any interval (𝑎, 𝑏)
in R, the capped sequence

𝑧𝑛(𝑡) =

⎧⎪⎨⎪⎩
𝑧𝑛(𝑎), for 𝑡 6 𝑎,
𝑧𝑛(𝑡), for 𝑎 < 𝑡 < 𝑏,

𝑧𝑛(𝑏), for 𝑡 > 𝑏

has 𝑧𝑛 → 0 in supremum norm, and the substitution of 𝑧𝑛 for 𝑧𝑛 preserves the
homeomorphism property (i.e., 𝑡 + 𝑧𝑛(𝑡) is strictly increasing and continuous) as
well as equality with 𝑡+ 𝑧𝑛(𝑡) on (𝑎, 𝑏).

For instance, consider 𝑓(𝑡) = 𝑡2 and a given null sequence of constants 𝑤𝑛 → 0.
Here its 𝑓 -conjugate sequence is 𝑧𝑛(𝑡) := 𝑤𝑛(2𝑡+ 𝑤𝑛) and

ℎ𝑛(𝑡) := 𝑡+ 𝑧𝑛(𝑡) = 𝑡(1 + 2𝑤𝑛) + 𝑤2
𝑛

is increasing for 𝑛 large enough; however 𝑧𝑛 → 0 uniformly only on compacts.
Nevertheless, by the capping procedure, here too, for 𝑇 Baire /measurable, for
generically all 𝑡 in 𝑇 there is an infinite set M𝑡 such that {𝑡+ 𝑧𝑛(𝑡) : 𝑚 ∈M𝑡} ⊂ 𝑇 .

2. Other examples of smooth generation of null sequences are

𝑧𝑛(𝑡) := 𝑓(𝜙(𝑡) + 𝑧𝑛(𝑡))− 𝑓(𝜙(𝑡)),

where 𝜙 is a homeomorphism. Thus if 𝜓 = 𝜙−1, then 𝑡+ 𝑧𝑛(𝑡) becomes, under the
substitution 𝑢 = 𝜙(𝑡),

𝜓(𝑢) + 𝑓(𝑢+ 𝑧𝑛(𝜓(𝑢)))− 𝑓(𝑢).

The special case 𝜓 = 𝑓 then leads to the embedding of the sequence 𝑓(𝑢+𝑧𝑛(𝜓(𝑢))).
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6. Applications

The theorems of this section illustrate one area of use of the infinite combi-
natorics asserted by the KBD theorem – in relation to automatic continuity of
(mid-point) convex functions 𝑓 : R → R. Call 𝑇 in R subuniversal if for any null
sequence {𝑧𝑛} → 0 in R there is an infinite M ⊆ 𝜔, and 𝑡 ∈ R such that
(6.1) {𝑡+ 𝑢𝑛 : 𝑛 ∈M} ⊆ 𝑇.
The term originates with Kestelman, who calls 𝑇 universal for null sequences when
(6.1) holds with M co-finite. Thus a Baire non-meagre/measurable non-null set
𝑇 is subuniversal. Although subuniversality is the key combinatorial concept, it
needs a geometric rephrasing in the Lemma which follows to suit the needs of the
arguments below, which are geometric in nature.

Lemma 6.1. (Averaging-Reflection Lemma). A set 𝑇 is subuniversal iff it is
‘averaging’, that is, for any null sequence {𝑧𝑛} → 0, any given point 𝑢 ∈ 𝑇 , and
with 𝑢𝑛 := 𝑢+𝑧𝑛 (thus an arbitrary convergent sequence, but with limit in 𝑇 ), there
are 𝑤 ∈ R (an averaging translator) and {𝑣𝑛} ⊆ 𝑇 such that, for infinitely many
𝑛 ∈ 𝜔, we have 𝑢𝑛 = 1

2𝑤 + 1
2𝑣𝑛.

Equivalently, there are 𝑤 ∈ R (a reflecting translator) and {𝑣𝑛} ⊆ 𝑇 such that,
for infinitely many 𝑛 ∈ 𝜔, we have 𝑣𝑛 = 1

2𝑤 + 1
2𝑢𝑛.

Proof. In the averaging case, it is enough to show that 1
2𝑇 is subuniversal

iff 𝑇 is averaging. If 1
2𝑇 is subuniversal then, given 𝑢𝑛 → 𝑢, there are 𝑤 ∈ R and

some infinite M so that {− 1
2𝑤+ 𝑢𝑛 : 𝑛 ∈M} ⊆ 1

2𝑇 ; hence, putting 𝑣𝑛 := 2𝑢𝑛 −𝑤,
we have {𝑣𝑛 : 𝑛 ∈ M} ⊆ 𝑇 . Conversely, if 𝑇 is averaging and {𝑧𝑛} → 0, then for
some 𝑥 and some M, {2𝑥+ 2𝑧𝑛 : 𝑛 ∈M} ⊆ 𝑇 , so {𝑥+ 𝑧𝑛 : 𝑛 ∈M} ⊆ 1

2𝑇 and hence
1
2𝑇 is subuniversal. Similar reasoning yields the reflecting case. �

We recall some properties of convex functions, for which we need to define the
lower hull 𝑚𝑓 (𝑥) of 𝑓 by

𝑚𝑓 (𝑥) = lim inf
𝛿→0+

{𝑓(𝑡) : |𝑡− 𝑥| < 𝛿}.

Theorem 6.1. (Portmanteau Theorem for Convex Functions). For convex 𝑓 :
(i) If 𝑓 is locally bounded above at some point, then 𝑓 is locally bounded above

at all points [34, p. 138].
(ii) If 𝑓 is locally bounded below at some point, then 𝑓 is locally bounded below

at all points [34, p. 139].
(iii) If 𝑓 is locally bounded above at some point, then it is everywhere locally

bounded [34, p. 140].
(iv) If 𝑓(𝑥) ̸= 𝑚𝑓 (𝑥) for some 𝑥, then 𝑓 is not locally bounded at 𝑥 [34, p. 144].

The common feature here is that the sequence witnessing bad behaviour at
one point yields by translation a sequence witnessing bad behaviour at any desired
point.

Theorem 6.2. If 𝑓 is convex and bounded below on a subuniversal set 𝑇 , then
𝑓 is locally bounded below.
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Proof. Suppose not. Let 𝐾 be a lower bound on 𝑇 . We use the reflecting
property of 𝑇 . If 𝑓 is not locally bounded from below, then at any point 𝑢 in 𝑇
there is a sequence {𝑢𝑛} → 𝑢 with {𝑓(𝑢𝑛)} → −∞. For some 𝑤 ∈ R, we have
𝑣𝑛 = 1

2𝑤 + 1
2𝑢𝑛 ∈ 𝑇 , for infinitely many 𝑛. Then

𝐾 6 𝑓(𝑣𝑛) 6
1
2𝑓(𝑤) + 1

2𝑓(𝑢𝑛), or 2𝐾 − 𝑓(𝑤) 6 𝑓(𝑢𝑛),

i.e., 𝑓(𝑢𝑛) is bounded from below, a contradiction. �

Theorem 6.3. [39, Th. 3]. If 𝑓 is convex and bounded above on a subuniversal
set 𝑇 , then 𝑓 is continuous.

Proof. We use the averaging property of 𝑇 . Suppose that 𝑓 is not continuous,
but is bounded above on 𝑇 by 𝐾. Then 𝑓 is not locally bounded above at some
point of 𝑢 ∈ 𝑇 . Then there is a null sequence 𝑧𝑛 → 0 with 𝑓(𝑢𝑛) → ∞, where
𝑢𝑛 = 𝑢 + 𝑧𝑛. Select {𝑣𝑛} in 𝑇 and 𝑤 in R so that, for infinitely many 𝑛, we have
𝑢𝑛 = 1

2𝑤+ 1
2𝑣𝑛. But for such 𝑛, we have 𝑓(𝑢𝑛) 6 1

2𝑓(𝑤) + 1
2𝑓(𝑣𝑛) 6 1

2𝑓(𝑤) + 1
2𝐾,

contradicting the unboundedness of 𝑓(𝑢𝑛). �

Theorem 6.3, taken together with the KBD theorem, implies the classical result
below, an early automaticity theorem.

Theorem 6.4. (Császár–Ostrowski Theorem, [17], [34, p. 210]). A convex
function 𝑓 : R → R bounded above on a set of positive measure/non-meagre set is
continuous.

Likewise Theorem 6.3 implies the following earlier classical result due to Sierpiń-
ski [48] (cf. [5, p. 5]).

Corollary 6.1. (Sierpiński’s Theorem, [48], [34, p. 218]). A measurable/Baire
convex function 𝑓 : R→R is continuous.

This is immediate since such a function 𝑓 is bounded above on a set of positive
measure/non-meagre set, so is continuous.

Theorem 6.5. (Császár’s First Theorem, [34, p. 223]). Suppose 𝑓 is convex
and bounded below by 𝐾 on a Baire non-meagre/measurable non-null set 𝑇 . Then
𝑚𝑓 is bounded below by 𝐾 on the closure of 𝑇 and hence 𝑓 is continuous.

Proof. Suppose otherwise. Let 𝛾𝑛 → 0 rational (e.g., 𝛾𝑛 = 2−𝑛) and 𝑓
convex. Suppose 𝑚𝑓 (𝑢) < 𝐾, for some 𝑢 ∈ 𝑇 ; then there is a sequence 𝑢𝑛 → 𝑢,
say with 𝑓(𝑢𝑛) → 𝐿 < 𝐾. By Theorem 5.3 with 𝛼𝑛 = 1/𝛾𝑛 (cf. equation (csa)),
there is 𝑤 and 𝑚(𝑛) such that 𝑣𝑛 := 𝛾𝑛𝑤 + (1− 𝛾𝑛)𝑢𝑚(𝑛) ∈ 𝑇 . Hence

𝐾 6 𝑓(𝑣𝑛) 6 𝛾𝑛𝑓(𝑤) + (1− 𝛾𝑛)𝑓(𝑢𝑚(𝑛)).

Passing to the limit we obtain the contradiction 𝐾 6 𝐿. �
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