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ON THE SOLID HULL
OF THE HARDY-LORENTZ SPACE
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ABSTRACT. The solid hulls of the Hardy—Lorentz spaces HP2, 0 < p < 1,
0 < ¢g<ooand HY, 0 < p<1,as well as of the mixed norm space Hy <,
0<p<1,0<a<oo, are determined.

Introduction

In [JP1] the solid hull of the Hardy space H?, 0 < p < 1, is determined. In this
article we determine the solid hulls of the Hardy—Lorentz spaces H?4, 0 < p < 1,
0 <g¢g<ooand H"™, 0 < p < 1, as well as of the mixed norm space H}"*"%,
0<p<1,0<a<oo. Since H?P = HP our results generalize [JP1l, Theorem 1].

Recall, the Hardy space HP, 0 < p < 00, is the space of all functions f holo-
morphic in the unit disk U, (f € H(U)), for which || f|l, = lim, 1 My(r, f) < oo,
where, as usual,

1 2 ) 1/p
M) = (5 [ i) 0<p <

Moo(raf): Sup |f(r€it)"

ot<2n
Now we introduce a generalization and refinement of the spaces H?; the Hardy—
Lorentz spaces HP?, 0 < p < 00, 0 < ¢ < 0.
Let o denotes normalized Lebesgue measure on 7' = U and let L°(c) be the
space of complex-valued Lebesgue measurable functions on 7. For f € L%(c) and
s > 0 we write

Ap(s) =o({E €T [f(E)] > s})

for the distribution function and
f(s) =1inf ({t > 0: Ap(t) < s})
for the decreasing rearrangement of |f| each taken with respect to o.
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The Lorentz functional | - ||, 4 is defined at f € L°(o) by

! 1/pya s 1
1fllp.q = (/ (f*(s)s'/?) 8) for 0 < ¢ < oo,
0

1£llp.00 = sup{f*(s)s'/? : s > 0}.

The corresponding Lorentz space is LP4(c) = {f € L°0) : || f|lp.g < oo}. The
space LP9(o) is separable if and only if ¢ # oo. The class of functions f € L%(o)
satisfying lim,_o(f*(s)s'/P) = 0 is a separable closed subspace of LP**(o), which
is denoted by L5 (o).

The Nevanlinna class N is the subclass of functions f € H(U) for which

sup /T log™ | £(r€)| dor(€) < oo.

o<r<1

Functions in N are known to have non-tangential limits o-a.e. on 7. Consequently
every f € N determines a boundary value function which we also denote by f.
Thus

&) = lim f(ré&) o-ae. €T

The Smirnov class NV is the subclass of N consisting of those functions f for which

lim /T log™ |£(ré)| do(€) = /T log* |£(£)|do(€).

We define the Hardy—Lorentz space HP9, 0 < p < 00, 0 < ¢ < o0, to be
the space of functions f € NT with boundary value function in L?9(c) and we
put || f|lzra = || fllp,q- The functions in HP**° with a boundary value function in
LB (o) form a closed subspace of HP**°| which is denoted by H§**>°. The cases of
major interest are of course p = g and ¢ = oo; indeed HPP is nothing but HP, and
HP>*° is the weak-HP.

The mixed norm space HP?% 0 < p < o0, 0 < ¢q, a < o0, consists of all
f € H(U) for which

1/q

1
1 Fllmae = [ Flpge = ( / (1r>qa1Mp<r,f>qdr) < o0,

HP%* can also be defined when ¢ = co, in which case it is sometimes known as the
weighted Hardy space HP>>%* and cousists of all f € H(U) for which

[fllp.c0.a = sup (L —7)*Mp(r, f) < occ.
0<r<1

The functions in H?°** 0 < p < oo for which lim, (1 — r)*M,(r, f) = 0 form a
closed subspace which is denoted by H{"**.

Throughout this paper, we identify the holomorphic function f(z) = >-.2, f (k)z*
with its sequence of Taylor coefficients {f (k)}2,-

If f(z) = 372, f(k)z* belongs to HP4, then

(1) f(k):O((k—l—l)(l/p)_l), if0<p<1land0<g< oo
(See [A]] and [Cd].)
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In this paper we find the strongest condition that the moduli of an HP?, 0 <
p < 1,0 < g < oo, satisfy. Our result shows that the estimate (1) is optimal only
if ¢ = o0.

To state our results in a form of theorems we need to introduce some more
notations

A sequence space X is solid if {b,} € X whenever {a,} € X and |b,| < |ap].
More generally, we define S(X), the solid hull of X. Explicitly,

S(X) = {{An} : there exists {a, } € X such that [A,| < |a,|}.
A complex sequence {a,} is of class {(p, q), 0 < p,q < oo, if

00 q/p
Hand g = Hantly = 3 (5l <.

n=0 “kel,

where Iy = {0}, I, = {k € N : 2"} <k < 2"}, n=1,2,... In the case where p or
q is infinite, replace the corresponding sum by a supremum. Note that (p,p) = IP.

For t € R we write D! for the sequence {(n + 1)'}, for all n > 0. If X = {\,}
is a sequence and X a sequence space, we write AX = {{\,z,} : {z,} € X }; thus,
for example, {a,} € D'I* if and only if |a,| = O(n').

We are now ready to state our first result.

THEOREM 1. If0 < p <1 and 0 < ¢ < oo, then S(HP1) = DU/P)=1](c0, q).

In particular, S(H?) = D1/P)=1](c0,p), 0 < p < 1. This was proved in [JP1].
Also, S(HP>°) = D(/P)=1]® means that the estimate (1) valid for the Taylor
coefficients of an HP**° 0 < p < 1, function is sharp.

Our second result is as follows:

THEOREM 2. If 0 < p < 1, then S(HY>) = DA/P)=ley where ¢ is the space
of all null sequences.

Our method of proving Theorem 1 and Theorem 2 depend upon nested em-
bedding [Le, Theorem 4.1] for Hardy—Lorentz spaces. Thus, the strategy is to trap
HP9 between a pair of mixed norm spaces and then deduce the results for HP:4
from the corresponding results for the mixed norm spaces. Our Theorem 1 will
follow from the following two theorems:

THEOREM L. [Le] Let 0 < pp < p < s < 00, 0 < ¢g <t < ooandf >
(1/po) = (1/p). Then
(2) DB Po-0.B+0/p)=(1/po) = ppa < frsa(1/p)=(1/5)

3) D—ﬂH(I)Jo,OO,ﬁ+(1/P)*(1/P0) C HP™® ¢ Hg,oo,(l/p)*(l/S).
THEOREM JP 1. [JPI1] If 0 < p < 1,0 < ¢ < 00 and 0 < o < o0, then
S(HP®) = Dot/ =] (0, q).

To prove Theorem 2 we first determine the solid hull of the space H{™“,
0<p<1,0<a< . More precisely, we prove

THEOREM 3. If0 < p< 1 and0 < a < oo, then S(HY™®) = Do+(1/P) =1,
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Given two vector spaces X,Y of sequences we denote by (X,Y’) the space of
multipliers from X to Y. More precisely,

(X,Y) ={x={\}: {Mnan} €Y, for every {a,} € X}.
As an application of our results we calculate multipliers (H?9,l(u,v)), 0<p<1,
0 < q< oo, (H'*®l(u,v)), 0 < p<1,and (H»>,X), 0 < p < 1, where X is

a solid space. These results extend some of the results obtained by Lengfield [Le|
Section 5].

1. The solid hull of the Hardy—Lorentz space
HP1, 0<p<1l,0<g<oo

PROOF OF THEOREM 1. Let 0 < p < 1. Choose pg and s so that pyp < p <
s <1 and a real number (3 so that 3+ (1/p) — (1/po) > 0. As an easy consequence
of Theorem JP we have

S(D*BHPO%Lﬁ*F(l/P)*(l/PO)) — D(l/p)fll(oo, q).
Also, by Theorem JP,
S(Hsym(l/p)—(l/S)) = DW/P (0, q),
and consequently S(HP?) = D(*/P)=1](c0, q), by Theorem L. O

2. The solid hull of mixed norm space
HP** 0<p<1,0<a< oo

If f(2) = S50, f(k)2F and g(2) = 332, G(k)z"* are holomorphic functions in
U, then the function f % g is defined by (f x g)(z) = > 1o F(k)g(k)2".

The main tool for proving Theorem 3 are polynomials W,,, n > 0, constructed
in [JP1]and [JP3]. Recall the construction and some of their properties.

Let w : R — R be a nonincreasing function of class C*° such that w(t) = 1, for
t <1, and w(t) = 0, for t > 2. We define polynomials W,, = W, n > 0, in the
following way:

0o 2n+1

Wolz) = Y w(k)z* and Wu(z)= 3 w(

k=0 J=2n—1
where () = w(t/2) —w(t), t € R.
The coefficients W, (k) of these polynomials have the following properties:

k
2n—1

)zk, forn>1,

(4) supp{Wn} C [2"7t, 2m ),
(5) 0< Wyo(k) <1, forallk,
oo
(6) > Wa(k)=1, forallk,
n=0

(7) Wi(k) + Wyyi(k) =1, for 2" <k <2 n>0.
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Property (5) implies that

oo

F(2) =Y _(Waxf)(2), [feHU),

n=0
the series being uniformly convergent on compact subsets of U.
If 0 < p < 1, then there exists a constant C' > 0 depending only on p such that
(8) Wl < Cp27"P) 0 > 0.

PROOF OF THEOREM 3. Let f € H"™ 0<p<1,0< a< oco. By using
the familiar inequality
My(r, f) > C(L =)D (%, f), 0<p <,
(see [Dul, Theorem 5.9]), we obtain

:ujp |f(k)|7“2k < Ml(rz,f) < CMy(r, f)(1 - r)l_(l/p), 0<r<l.
E n

Now we take 7, = 1 — 27" and let n — oo, to get {f(k)} € D(1/P)~1¢y. Thus
HY® ¢ Dat(/p)=1¢,

To show that D*+(1/P)=1¢ is the solid hull of HY°*“ it is enough to prove
that if {a, } € D*T(/P)~1¢y then there exists {b,} € HE' ™ such that |b,| > |a,],
for all n.

Let {a,} € D*(1/P)=1c). Define

ZB )+ Wita(z ch

where B; = Supy; ¢ p<oi+1 |ak|. Using (4) and (8) we find that

ZBP (r, W) + MJ(r, Wis1)) < C(BS + ZBﬁ-’rﬂ“g—ﬂl—p))
j=1
Set B§’2*J<ap+1fp> = A;. Then

Mg (r,g) < C()xo +)° /\jrp2”2jap),
j=1
where \; — 0, as j — oo. From this it easily follows that (1 —r)*? M2 (r,g) — 0,
as r — 1. Thus g € H"°%.
To prove that |cx| > |ax|, K = 1,2,..., choose n so that 2" < k < 271 Tt
follows from (7)

k=3 Bij(Wi(k) + Wjz1(k)) = Bn (Wi (k) + Wiy (k)
j=0
=B,= sup |a;| > |axl.

2nLj<2ntl

Now the function h(z) = Y, byz™, where by = ag and b,, = ¢,,, for n > 1, belongs
to H{"°0% and |by| > |ay| for all n > 0. This finishes the proof of Theorem 3. O
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3. The solid hull of the space
HP*, 0<p<1

PROOF OF THEOREM 2. Let 0 < p < 1. Choose pg and s so that pyp < p <
s <1and € R sothat 5+ (1/p) — (1/po) > 0. Then

S(DfﬁHgo,OO,ﬁ-‘r(l/P)—(l/Po)) — p/n)-1,

(3]
S(Hg7w7(1/p)_(1/8)) — D(l/p)71607
by Theorem 3. By Theorem L we have S(HE>) = D(/P)~1¢,. O

4. Applications to multipliers

As it was noticed in the introduction, another objective of this paper is to
extend some of the results given in [Lel Section 5].

The next lemma due to Kellog (see [KI|) (who states it for exponents no smaller
than 1, but it then follows for all exponents, since {A\,} € (I(a,b),(c,d))) if and

only if {\\/NY € (I(at, bt), I(ct, dt)).

LEMMA 1. If 0 < a,b,e,d < oo, then (I(a,b),l(c,d)) = l(a © ¢,b O d), where
aOc=xifa<Lc,bOd=00, if b< d, and

1 1 1

=—-———, for0<c<a,
aOc c a
1 1 1
—_— == — = d <b.
od _d b for0<d<

In particular, (I°°,1(u,v)) = l(u,v). Also, it is known that (co, I(u,v)) = l(u,v).

In [AS] it is proved that if X is any solid space and A any vector space of
sequences, then (A4, X) = (S(A), X).

Since I(u,v) are solid spaces, we have (H??,[(u,v)) = (S(H??),l(u,v)) and
(HY ™ U(u,v)) = (S(HY™),l(u,v)). Using this, Lemma 1, Theorem 1 and Theo-
rem 2 we get

THEOREM 4. Let 0 <p <1 and 0 < g < oo. Then
(HP9, I(u,v)) = D'=/P(u, g0 v).
THEOREM 5. Let 0 < p < 1. Then
(HP™® I(u,v)) = D~=U/P(y,v).
In particular, (H?>°,l(u,v)) = D*~(1/P)|(u,v). In fact more is true.
THEOREM 6. Let 0 < p <1 and let X be a solid space. Then
(HP>=, X) = D*=(/P x,

PROOF. Since X is a solid space, we have (I°°, X) = X. Hence, using Theo-
rem 1 we get

(HP>, X) = (S(HP>®), X) = (D/P=11= X)
= Dl_(l/p)(loo’X) — Dl_(l/p)X_ D
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