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CYLINDER SYMMETRIC MEASURES
WITH THE TAIL PROPERTY

Guus Balkema

Abstract. A Pareto distribution has the property that any tail of the dis-
tribution has the same shape as the original distribution. The exponential
distribution and the uniform distribution have the tail property too. The tail
property characterizes the univariate generalized Pareto distributions. There
are three classes of univariate GPDs: Pareto distributions, power laws, and
the exponential distribution. All these distributions extend to infinite mea-
sures. The tail property translates into a group of symmetries for these infinite
measures: translations for the exponential law; multiplications for the Pareto
and power laws. In the multivariate case, for cylinder symmetric measures in
dimension d � 3, there are seven classes of measures with the tail property,
corresponding to five symmetry groups. The second part of this paper estab-
lishes this classification. The first part introduces the probabilistic setting, and
discusses the associated geometric theory of multiparameter regular variation.
We prove a remarkable result about a class of multiparameter slowly varying
functions introduced in Ostrogorski [1995].

1. Introduction

Let us begin by explaining the real world situation which gave rise to our
interest in measures with the tail property. In risk theory one is concerned that the
state of the system under observation may fall in an undesired region. For simplicity
the state is taken to be a random vector Z in R

d, and the region a halfspace H
far out. One may think of meteorological data, water level, wind velocity and air
pressure over the North Atlantic ocean with the risk of a dyke burst; or of financial
data, a vector of stock prices, with the associated leveraged monetary risk. One is
interested in the distribution of the high risk scenario, ZH . The high risk scenario
ZH is the vector Z, conditioned to lie in H. Since {Z ∈ H} is an extremal event
only few or none of the past observations will lie in the region H. In order to make
statements about the distribution of ZH one needs to assume some form of stability
for the tails of the distribution of Z. In the univariate case one assumes that the
conditional distribution of Z given Z � t, properly normalized, has a limit as t
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increases towards the upper endpoint of the distribution of Z. Under the condition
of asymptotic tail continuity the limit law is a GPD, and the sample clouds, with the
same normalizations, will converge to a Poisson point process whose mean measure
is an infinite measure which extends the GPD. This mean measure ρ has a one-
parameter group of affine symmetries, γt, translations v �→ v+ t, or multiplications
with a given center, v �→ at(v − c) + c for some scale factor a ∈ (0, 1) ∪ (1,∞), and
center c ∈ R. These symmetries ensure that the measure ρ has the tail property:
There is a halfline J0 such that ρ(J0) = 1, and for any halfline J of finite positive
mass the corresponding probability distribution dρJ = 1Jdρ/ρ(J) is of the same
type as dρ0 = 1J0dρ. The probability measure ρ0 is the limit distribution. Similarly
in the multivariate setting, convergence of the multivariate high risk scenarios ZH ,
properly normalized, to a random vector W with a non-degenerate distribution,
entails convergence of the sample clouds to the Poisson point process with mean
measure ρ. This limit measure ρ is infinite, but has the property that it is finite
and positive for many halfspaces, J , and that the associated probability measures
dρJ = 1Jdρ/ρ(J) all are of the same type. Precise definitions are given below.
More details may be found in the forthcoming book of Balkema and Embrechts
[2007].

The aim of this paper is twofold. We want to exhibit an interesting class of
limit measures, and we want to gain insight in the domains of attraction of these
measures. In the second half of the paper we prove that under the condition of
cylinder symmetry there are only seven classes of multivariate measures having the
tail property for d > 2. In dimension d = 2 there are six classes; in dimension
d = 1 there are three. In the first half we show how the multivariate theory of slow
variation may be used to modulate distributions in the domain of attraction of such
measures. The paper begins with a number of examples. We then give a formal
definition of measures with the tail property. In the spirit of Tatjana Ostrogorski
we formulate slow variation in additive terms. Our main result here is constructive.
We show in the simple case, when the underlying space is R

d with the Euclidean
metric, that the class of slowly varying functions is unexpectedly rich. We give
an application to exponential families which are asymptotically Gaussian. One
example of a measure with the tail property is Lebesgue measure on the light cone,
with the Lorentz group of symmetries. Regular variation on this group has been
treated in Ostrogoski [1997]. There exists an extensive literature on multivariate
regular variation, starting with [6]. See for example [5], and the references in [9].

2. Some examples

In this section we show how the asymptotic theory of high risk scenarios for
some classic probability distributions gives rise to measures with a large group
of symmetries. Such measures have the tail property. They will be called XS
measures. The precise definition is given in the next section.

Example 2.1. The vector Z = (X,Y ) ∈ R
h+1 with h+ 1 = d has a standard

normal density f0 on R
d. The high risk scenarios ZH , properly normalized, converge

to a vector W with the Gauss-exponential density e−u
Tu/2e−v/(2π)h/2 on H+ =



CYLINDER SYMMETRIC MEASURES WITH THE TAIL PROPERTY 9

Rh × [0,∞). Indeed, the univariate density f(y) = e−y
2/2/

√
2π has the property

f(tn + vn/tn)/f(tn) = hn(vn) = e−vne−v
2
n/2t

2
n → e−v tn → ∞, vn → v, v ∈ R.

Convergence also holds in L1 on any halfline [v0,∞). Let αt(u, v) = (0, t)+(u, v/t)
for (u, v) ∈ Rh+1. By independence of the components of Z = (X,Y ) we find for
(un, vn) → (u, v)

(2.1)
f0(αtn(un, vn))
f0(αtn(0, 0))

= e−u
T
nun/2hn(vn) → g0(u, v) = e−(uTu/2+v) = e−χ(u,v),

tn → ∞.

The distribution π of Z normalized by α−1
tn and divided by f0(0, tn) converges to the

Gauss-exponential XS measure ρ with density g0(u, v) weakly on every halfspace
{v � v0}. Set v0 = 0 to find α−1

tn (ZHn) ⇒W for Hn = αtn(H+) = Rh×[tn,∞). By
spherical symmetry we obtain weak convergence α−1

Hn
(ZHn) ⇒W for any divergent

sequence of halfspaces Hn.
What are the symmetries? Suppose γ(ρ) = cρ for some constant c > 0. Then

g0(u, v) = e−χ(u,v) satisfies g0 ◦ γ−1 = cg0/|det γ| by the transformation theorem,
and conversely if χ◦α = χ+C then α is a symmetry of ρ. If α(u, v) = (Ru, v) where
R is a rotation in R

h, then ‖Ru‖ = ‖u‖ and hence χ ◦α = χ; if α(u, v) = (u, v+ t)
then χ ◦ α = χ+ t; if α(u, v) = (u+ p, v − pTu) for some vector p ∈ R

h then

χ ◦α(u, v) = (u+ p)T (u+ p)/2+ v = uTu/2+ pTu+ pT p/2+ v− pTu = χ+ pT p/2.

Each of these affine transformations α is a symmetry of ρ. They generate a group
G of dimension (d2 − d) + d. All elements of this group are symmetries of ρ.

HalfspacesH = {v � c+bTu} have finite mass for any c ∈ R, b ∈ R
h. Hence one

may define the corresponding probability measure dρH = 1Hdρ/ρ(H). One may
write H = γ(H+) for some γ ∈ G. Suppose γ(ρ) = cρ. Let ρ0 be the probability
measure corresponding to the upper halfspace H+. Then

γ(1H+dρ) = 1Hγ(dρ) = c1Hdρ⇒ ρH = γ(ρ0).

So all probability measures ρH are of the same type.
Now consider the images of the open unit ball B under the normalizations

αH . The image αr(B) is a coordinate ellipsoid centered in (0, r). This ellipsoid
intersects the horizontal hyperplane {y = r} in the disk ‖u‖ < 1, and the vertical
axis in the interval (r − 1/r, r + 1/r). For a halfspace H supporting the ball rB
in a point p ∈ r∂B, the ellipsoid αH(B) = p + Ep has the same form: it is like a
button sown onto the ball of radius r in the point p. For the sake of continuity we
define p+ Ep = p+B for ‖p‖ � 1.

The family of ellipsoids p+ Ep, p ∈ R
d, is all one needs to normalize the high

risk scenarios. Let pn ∈ R
d, rn = ‖pn‖ → ∞. Let Hn be the halfspace supporting

the ball rnB in the point pn. Choose βn such that

βn(0) = pn βn(B) = pn + Epn
βn(H+) = H H+ = R

h × [0,∞).

Then β−1
n (ZHn) ⇒W . Moreover ρn = β−1

n (π)/f0(pn) → ρ weakly on all halfspaces
{v � v0} since this holds for halfspaces Hrn

= R
h × [rn,∞) by (2.1). In fact one

can prove that weak convergence holds on all halfspaces J on which ρ is finite.
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Convergence ρn → ρ in the example above is of interest to risk theory since it
enables one to describe the behaviour of sample clouds from a multivariate normal
distribution at the edge of the cloud, as was first noted by Eddy in [3]. If Z1, Z2, . . .
are independent observations of Z, and Nn is the n-point sample cloud with points
Z1, . . . , Zn, and if Hn are halfspaces, such that P{Z ∈ Hn} ∼ 1/n, then the normal-
ized sample clouds β−1

n (Nn) converge in distribution to the Poisson point process
with mean measure ρ/(2π)h/2 weakly on all halfspaces J with finite mass ρ(J).

Example 2.2. Let Z have a spherical Student density f(z) = c/(1+zT z)(d+λ)/2

with tail parameter λ > 0. Let Zr be the vector Z conditional on ‖Z‖ � r. Then
Zr/r has density

gr(w) = cr/(r−2 + wTw)(d+λ)/2 → c∞/‖w‖d+λ r → ∞, w �= 0.

It is not hard to see that convergence holds in L1 on the complement of εB for
any ε > 0. If Hn are halfspaces at distance rn to the origin, with rn → ∞, then
Rn(ZHn)/rn ⇒W if we choose rotations Rn mapping Hn onto the horizontal halfs-
pace {v � rn}. Here W lives on J0 = {v � 1} with distribution dρ0 = 1J0dρ/ρ(J0),
where ρ is the XS measure with density 1/‖w‖d+λ on R

d
� {0}. The symmetry

group G of ρ contains the orthogonal group O(d) and the scalar transformations
w �→ rw, r > 0. Here it is geometrically obvious that halfspaces H have finite mass
if they do not contain the origin (recall that halfspaces are assumed closed), that
any such halfspace H has the form H = γ(J0) for a symmetry γ of ρ, and that the
associated probability distributions dρH = 1Hdρ/ρ(H) all are of the same type.

For a halfspace H at distance r > 1 to the origin choose p = pH ∈ ∂H with
‖p‖ = r. Let p + Ep be the open ball of radius r/3 centered in p. For ‖p‖ � 1 we
choose p+Ep to be the open ball of radius 1/3 centered in p. Let ‖pn‖ = rn → ∞.
Let the halfspace Hn support the ball of radius rn in pn, and define the linear
transformations βn to map (0, 1) into pn, J0 = R

h × [1,∞) onto Hn and the ball
(0, 1) + B/3 onto pn + Epn

. Then β−1
n (ZHn) ⇒ W where the vector W = (U, V )

lives on J0 with density c0/‖w‖d+λ, and f(βn(w))/f(pn) → 1/‖w‖d+λ for w �= 0.

3. Measures with the tail property

Let ρ be a Radon measure on an open set O ⊂ R
d. Let A denote the set

of all affine transformations α : z �→ Az + b where A is an invertible matrix of
size d and b a vector in Rd. The set A is a group. An affine transformation γ is
a symmetry of ρ if there exists a positive constant c = cγ such that γ(ρ) = cρ.
Here γ(ρ) is the image of ρ. It may be shown that the symmetries of ρ form a
closed group G in A. The component of the identity, G0, is a normal subgroup
of G. It is a connected Lie group. It is both closed and open in G. From the
examples above we see that there exist measures ρ with a large symmetry group.
These measures have the tail property. If the halfspace H0 has finite positive mass,
then this also holds for all halfspaces H = γ(H0) since ρ(γ−1(H)) = (γ(ρ))(H) =
cγρ(H). Moreover the probability distribution dρH = 1Hdρ/ρ(H) has the same
shape as ρH0 since γ(1H0dρ) = 1Hγ(dρ) = cγ1Hdρ, and the constant drops out
by conditioning. Halfspaces have the form H = {θ � c} where θ is a unit vector
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and c a real constant. The set H of all halfspaces in Rd forms a d-dimensional
manifold, ∂B×R. Convergence (θn, cn) → (θ, c) corresponds to almost everywhere
convergence 1Hn

→ 1H .

Definition 3.1. Let ρ be a Radon measure on an open set in Rd. Let G be the
component of the identity of the group of all affine symmetries of ρ. The measure
ρ is an XS measure if ρ is infinite, if there exists a halfspace J0 of mass ρ(J0) = 1,
if the set of halfspaces γ(J0), γ ∈ G is open, and if ρ lives on an orbit of G.

In principle one could list all XS measures on R
d by first listing all such large

connected non-compact closed subgroups G of A(d), and then checking whether
there is an infinite Radon measure living on an orbit of this group which gives mass
one to some halfspace, and finite mass to an open set of halfspaces. As far as we
know a classification of all such matrix groups does not exist. By imposing an extra
(geometric) symmetry condition on the XS measure we reduce the number of the
corresponding groups to five for dimension d � 3, and four for d = 2, as we shall
prove below.

The domain R of an XS measure ρ is a homogeneous space. It may be identified
with the quotient G/Ga, where Ga is a closed subgroup, the group of all γ ∈ G which
satisfy γ(a) = a. We shall take a to be the intersection point of the vertical axis
and the horizontal hyperplane ∂J0. If we exclude the double Pareto XS measures
of Example 8.7, we may choose J0 horizontal; if we exclude the singular parabolic
XS measure of Example 8.4, the domain R is open. By inspection in the remaining
cases a ∈ R, and Ga is the set of rotations around the vertical axis. It follows that
in these cases there is a continuous family F of open ellipsoids w+Fw = γ(a+B),
w = γ(a) ∈ R, B = {‖w‖ < 1}. The centered ellipsoid Fw does not depend on the
choice of γ. The family F determines a Riemannian metric on R which is invariant
under γ ∈ G. We prefer to work with the ellipsoids. One may have to replace the
open unit ball B by B/3 to ensure that R contains the closures of the ellipsoids.

There is an alternative, analytic approach to F . The density g = e−χ of ρ is
analytic. Assume it is not constant. By inspection the level curves of χ are convex.
By cylinder symmetry J0 supports the level curve {χ = χ(a)} in the unique point
w = a. For each w ∈ R there is a unique halfspace Jw supporting {χ = χ(w)} in
the point w. This yields a duality between points and halfspaces. Clearly J0 = Ja
and Jw = γ(J0), w = γ(a) ∈ R. The boundary ∂Jw is determined by the derivative
χ′(w). For the ellipsoids we need the second derivative. By cylinder symmetry
there is a linear combination χ∗ = aχ′′ + bχ′ ⊗ χ′ such that χ∗(a) = I. Since
χ ◦ γ − χ is a constant, we find

χ∗(γ(a))(Adw,Adw) = χ∗(a)(dw, dw) γ ∈ G, γ(z) = b+Az,

and hence Fw = {z | χ∗(w)(z, z) < 1}. The function χ determines ρ and hence
it determines the symmetry group G. The first two derivatives of χ in any point
w ∈ R determine the fiber {γ ∈ G | γ(a) = w}.

There are many XS measures which are not cylinder symmetric, for instance
Lebesgue measure on (0,∞)d for d > 2. Our next result holds for all XS measures.

Proposition 3.1. Suppose (ρ,G, J0) is an XS measure and J0 = {ϕ � 0} for
some affine function ϕ. Then ϕ(ρ0) has a GPD on [0,∞).
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Proof. We may assume that ϕ is the vertical coordinate. Let Jn = {ϕ � 1/n}.
There is an index m and symmetries σn such that Jn = σn(J0) for n � m since
γ(J0), γ ∈ G is open. One may choose σn → id. Hence there exists a generator and
a one-parameter group σt, t ∈ R, such that J t = σt(J0), and J t = {ϕ � v(t)} ⊂ J0

for t > 0. Moreover ρ(J t) = e−λt for some λ > 0. Let ρ̃ = ϕ(ρ), and let σ̃ describe
the action of σ on the vertical coordinate. Then σ̃t(ρ̃) = eλtρ̃. The measure ρ̃ is
univariate. Hence its restriction to [0,∞) has a GPD. �

Definition 3.2. The shape parameter τ ∈ R of the Pareto distribution ϕ(ρ0),
see (8.1), is called the Pareto parameter of the XS measure ρ.

By symmetry all half spaces J = σ(J0) = {ϕ � 0} have the same Pareto
parameter.

4. Slow variation and flat functions

A continuous positive density f , which satisfies the same relations (2.1) as the
Gaussian density f0, has the form f = Lf0 where L : R

d → (0,∞) is continuous,
and L(p′n)/L(pn) → 1, ‖pn‖ → ∞, p′n ∈ pn + Epn

. Such a function L > 0 will be
called flat; logL varies slowly.

A function ϕ : [0,∞) → R varies slowly (in the additive sense) if

(4.1) ϕ(z′n) − ϕ(zn) → 0 zn → ∞, |z′n − zn| < 1.

These functions form a linear space L+. The function f = eϕ satisfies

f(z′n) ∼ f(zn) zn → ∞, |z′n − zn| < 1.

One may read this equation as an asymptotic equality for matrices, with asymptotic
equality defined by f(zn)−1f(z′n) → id. (The alternative definition f(z′n)f(zn)−1 →
id gives a different theory!) The associated theory of regular variation is well
understood. See [4]. We are interested in a different generalization. Read z′n and
zn in (4.1) as vectors in Rd, and | · | as the euclidean norm. The set of functions
ϕ : R

d → R which satisfy (4.1) in this sense is a linear space L(d). One can go
a step further and define L(E) as the set of functions ϕ on an open set U in R

d

which satisfy ϕ(z′n) − ϕ(zn) → 0, zn → ∂U , d(z′n, zn) < 1, where E is a continuous
collection of open ellipsoids which generates the Riemannian metric d on U , and
zn → ∂U means that zn diverges in U : any compact subset of U contains only
finitely many terms of the sequence (zn).

Ostrogorski [1995, Section 2] shows that for very general topological structures
on the underlying space, one may approximate a slowly varying function ϕ by a C1

function whose derivative vanishes in infinity. We shall show that in the Euclidean
topology, one may specify the behaviour of ϕ along rays in infinitely many different
directions.

For ϕ ∈ L(d) there exists ϕ1 which is constant on cubes k + [0, 1)d, k ∈ Z
d,

such that ϕ1 − ϕ vanishes in ∞. Now define ϕ0 = ϕ1 � χ by convolution, for a
C∞ probability density living on the unit ball B. Then ϕ0 −ϕ vanishes in infinity,
and the partial derivatives of ϕ0 of all orders are continuous and vanish in infinity.
Compare Theorem 2.6 in [7].
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Let ϕ ∈ L+, say ϕ(r) = log(1 + r)γ , or ϕ(r) = rα sin(rβ), with α < 1 and
α + β < 1, to ensure that ϕ′(r) vanishes for r → ∞. Then z �→ ϕ(‖z‖) belongs to
L(d). Conversely if ϕ ∈ L(d), then for any unit vector ω the function r �→ ϕ(rω)
lies in L+. What is the relation between the behaviour of ϕ ∈ L(d) along different
rays? The graph of ϕ is asymptotically horizontal far out. Yet for any sequence of
continuous functions (ϕn) in L+, for instance the countable collection of functions
log(1 + r)γ + rα sin(rβ) with α, β, γ rational, α < 1 and α+ β < 1, enumerated in
any order, and for any dense sequence of distinct directions ωn ∈ ∂B, there exists
a continuous ϕ ∈ L(d) such that on the ray through ωn the function ϕ agrees with
ϕn eventually.

Proposition 4.1. Let ϕ1, ϕ2, . . . be piecewise C1 functions on [0,∞) with
derivatives which vanish in infinity. Let ω1, ω2, . . . be distinct unit vectors in Rd.
There exists a continuous function ϕ ∈ L(d), and a sequence of positive reals rn,
such that ϕ(rωn) = ϕn(r) for r � rn, n = 1, 2, . . ..

To ease the exposition we assume that the functions ϕn are non-negative. The
lemma below expresses the well-known fact that any sequence of univariate slowly
varying functions is bounded above in the order �.

Lemma 4.1. There exists a concave piecewise linear function ψ ∈ L+ with
ψ(0) = 0 such that for each index n both ϕn(r) � ψ(r) for r → ∞, and |ϕ′

n(r)| �
ψ′(r).

Proof. One may alter each function ϕn on an initial segment. Hence we
may assume that ϕn(0) = 0 and |ϕ′

n| � 1/n on [0,∞). There then exists an
increasing sequence sn → ∞ with s1 = 0 such that on each halfline [sm,∞) all
derivatives satisfy |ϕ′

n| � 1/m. Let ψ(0) = 0, and let ψ have slope ψ′ = 1/
√
m on

[sm, sm+1]. Then ϕ′
n(r)/ψ

′(r) → 0 for r → ∞ holds for each index n, and hence
also ϕn(r)/ψ(r) → 0. �

We shall construct ϕ by describing its behaviour on spheres of radius r > 0.
Set ϕ(0) = 0. For r > 0, ω ∈ ∂B and θ ∈ (0, π) define Dr(ω, θ) as the open set
in the r-sphere consisting of all points z ∈ r∂B for which there exists a piecewise
C1 curve γ ⊂ r∂B, of length less than rθ, connecting z and rω. (One may take
γ to be a section of the great circle passing through z and rω.) With the disk
D = Dr(ω, θ) associate the tent function τD : r∂B → [0, 1]. This function vanishes
on r∂B �D, has the value one in rω, and decreases linearly to the boundary of D
so that {τD > c} = Dr(ω, (1 − c)θ) for 0 � c < 1.

For n � 1 choose tn � 0 minimal so that the disks Dk(r) = Dr(ωk, θ), k =
1, . . . , n, with θ = ψ(r)/r are disjoint for r = tn, and hence, by concavity of ψ, for
r � tn. Choose piecewise C1 functions ϕ̃n which agree with ϕn eventually, which
vanish on [0, tn], and whose derivatives satisfy |ϕ̃′| � ψ′/n on [0,∞). There is a
function ε(r) → 0 for r → ∞ such that |ϕ̃n(r)| � ε(r)ψ(r) for all n � 1. We
construct a function ϕ on Rd which equals ϕ̃n(r) in rωn for r � 0 by defining ϕ on
the r-sphere with tn � r < tn+1 as follows: On Dk the function ϕ equals ϕk(r)τDk

for k = 1, . . . , n, and outside the union of these n disjoint disks ϕ vanishes on r∂B.
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Then for z1, z2 in the same sphere

|ϕ(z2) − ϕ(z1)| � rθ(z1, z2)ε(r) � 2‖z2 − z1‖ε(r)
where θ(z1, z2) ∈ [0, π] denotes the angle between the vectors z1 and z2. For z1, z2
on the same ray, zi = riω with ω ∈ ∂B and r1 < r2 and r1, r2 ∈ [tm, tm+1], we have

(4.2) |ϕ(z2) − ϕ(z1)| � |ϕ̃k(r2) − ϕ̃k(r1)| � ‖z2 − z1‖ψ′(r1)

if ω = ωk. Now assume z1 ∈ Dr1
k for some k = 1, . . . ,m. The values c1 and c2

of the tent functions τD in the points z1 and z2 differ. The situation becomes
clearer if one sketches the graph of r �→ ψ(r) and of the linear function r �→ θ0r
in one figure, where θ0 ∈ [0, π] is the scalar angle between ωk and ω. Let ϕ̃ :
[0,∞)2 → [0,∞) vanish above the graph of ψ, and be linear on the vertical interval
from (r, 0) to (r, ψ(r)) with the value ϕ̃k(r) in (r, 0) and zero in (r, ψ(r)). Then
ϕ(zi) = ϕ̃(ri, θ0ri). If r2 − r1 � ψ(r1) then r2 − r1 � ψ(r2)/2 and hence

|ϕ(z2) − ϕ(z1)| � ϕ(z2) + ϕ(z1) = o(ψ(r2)) + o(ψ(r1)) = o(r2 − r1).

Otherwise let ci be the values of the tent function in zi: 1 − ci = 1/ψ(ri). So
c1 > c2 � 0, and

|ϕ(z2) − ϕ(z1)| � c2|ϕ̃k(r2) − ϕ̃k(r1)| + (c1 − c2)ϕ̃k(r1).

The first term is o(r2 − r1) by (4.2) since c2 � 1; the second term is o(r2 − r1)
since (c1 − c2)ψ(r1) � (r2 − r1)θ0, and θ0 vanishes as r → ∞. This completes the
construction.

5. Exponential families

There is no XS measure for which the associated Riemann metric is the eu-
clidean metric. Lebesgue measure on R

d is very symmetric but has no halfspaces
of finite mass. We shall use exponential families to show how the set L(d) works.

Recall that the exponential family generated by a density g = e−ψ on Rd

consists of the vectors Xξ with densities gξ(x) = eξxg(x)/L(ξ), L(ξ) =
∫
eξxg(x) dx.

We shall assume that g has very thin tails so that the Laplace transform L(ξ) is
finite for all ξ. We also assume that ψ is a convex function on Rd. If ψ is C1 and
strictly convex then there is a duality between points x ∈ R

d, and linear functionals
ξ = xL, such that ψ′(x) = xL. This Legendre duality is a homeomorphism of R

d.
If ψ is C2, and ψ′′(x) is positive definite in each point x then we have a continuous
family of ellipsoids x + Ex where Ex = {u | ψ′′(x)(u, u) < 1}. The standard
Gaussian density g0 is special. The ellipsoids x + Ex are unit balls centered in x,
the vectors Xξ are translates: Xξ = X+ξL, and the Legendre duality is the duality
of the standard inner product transforming row vectors into column vectors and
vice versa. Now replace g0 by f = g0e

ϕ with ϕ ∈ L(d) continuous. The exponential
family Xξ generated by f is not Gaussian, but Xξ − ξT ⇒ U for ξ → ∞ where ξT

is the transpose of ξ and U standard normal. In fact fξ(x+ ξT ) → g0(x) uniformly
on Rd, and in L1. The factor eϕ in a neighbourhood of ξT may be treated as a
positive constant, which drops out by the normalization with the Laplace transform.
Convergence of the integrals is easily established using the convexity of log gξ.
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Now suppose ψ is C2 with ψ′′ positive definite, and the family E of ellipsoids
x+ Ex is asymptotically euclidean: For any divergent sequence xn, in coordinates
in which xn + Exn

is the unit ball, for x′n ∈ xn + Exn
the ellipsoids Ex′

n
will also

approach the unit ball. One may write this as:

Ex′
n
∼ Exn

xn → ∞, x′n ∈ xn + Exn
.

Here Cn∼Dn for bounded convex open sets Cn and Dn means |Cn∩Dn|/|Cn∪Dn|
→ 1 where |A| denotes the volume of A. Let αn(B) = xn + Exn

. The normalized
convex exponents converge to the standard parabola: ϕn(u) = ψn(αn(u)) → uTu/2
uniformly on bounded sets, where ψn(x) = ψ(x)−ψ(xn)− (x−xn)ψ′(xn), since ϕn
and its derivative vanishes in the origin, and ϕ′′

n(un) → I for any bounded sequence
un. It follows that the exponential family Xξ generated by e−ψ is asymptotically
Gaussian: αn(Xξn

) ⇒ U if we choose xn = ξLn and αn as above. This also holds for
the exponential family generated by the density eϕ−ψ with ϕ ∈ L(E) continuous.

Flat functions allow one to alter a density g without altering the asymptotic
behaviour of the associated exponential family. For statistical applications of multi-
variate asymptotically Gaussian exponential families we refer to Barndorff-Nielsen
and Klüppelberg [2].

6. Flat functions for high risk scenarios

Now let us replace the euclidean metric on R
d generated by the ellipsoids z+B

by the Riemannian metric defined by the family E of ellipsoids z + Ez in the two
examples of Section 2. Introduce the class Lc(E) of all continuous functions ϕ on
R
d which satisfy ϕ(z′n)− ϕ(zn) → 0, zn → ∞, z′n ∈ zn +Ezn

. The function f = eϕ

is flat for E .
First consider the class E of ellipsoids z + (r/3)B, with r = 1∨ ‖z‖, associated

with the Student density of Example 2.2. Let f0 : [0,∞) → (0,∞) be continuous
and vary slowly in the classical sense, f0(rc)/f0(r) → 1 for r → ∞ for any c > 0.
The function z �→ f(z) = f0(‖z‖) is flat for E . Observe that the ring R1 = {1 �
‖z‖ � 2} may be covered by a finite number of balls from the family E with their
centers in R1. By scalar homogeneity the same number of balls in E will cover any
ring {r � ‖z‖ � 2r} with r > 1. It follows that flat functions are asymptotically
constant on these rings. Hence any flat function is asymptotic to a function of the
form z �→ f0(‖z‖) where f0 is continuous and varies slowly in the classical sense.

Now consider the class E of ellipsoids z + Ez associated with the Gaussian
density in Example 2.1. The ellipsoids Ez have width 1/r for r = ‖z‖ � 1 in
the radial direction, and intersect the tangent hyperplane in a disk of radius one.
Since Ez ⊂ B for all z it follows that L(d) ⊂ L(E), and f = eϕ is flat for E for
any continuous ϕ ∈ L(d). Let ϕ0 : [0,∞) → R be piecewise C1, and suppose
rϕ′

0(r) → 0 for r → ∞. Then ϕ : z �→ ϕ0(‖z‖) lies in L(E) since the ellipsoid z+Ez
lies between the balls r2B and r1B eventually for r = ‖z‖ → ∞ with r1 = r − 1/r
and r2 = r + 2/r. One may choose ϕ0(r) = r4/3 sin(r3/2), r � 0. The period of
the oscillations goes to zero; their size increases faster than linear. Yet ϕ′(r)/r
vanishes for r → ∞, and hence the spherically symmetric function ϕ which agrees
with ϕ0 on the vertical axis belongs to L(E). Now observe that any ϕ ∈ L(E)



16 BALKEMA

which satisfies ϕ(rω0) = ϕ0(r) for some unit vector ω0, has the same oscillatory
behaviour on every ray. If sin r3/2n → c �= 0 then ϕ(rnω)/ϕ0(rn) → 1 uniformly
in ω ∈ ∂B since ϕ(rω) − ϕ(rω0) = o(r) for r → ∞. For any function ϕ ∈ L(E)
the positive function e−z

T z/2+ϕ(z) is integrable (see [1]), and may be normalized
to yield a probability density f . This probability density lies in the domain of
attraction of the Gauss-exponential law for high risk scenarios. One may use the
normalizations for the Gaussian density.

7. Regular variation

We return to the high risk scenarios from the standard Gaussian density f0 =
e−ϕ0 in Example 2.1. The basic limit relation (2.1) in terms of the exponents
becomes
(7.1)
ϕ0(αpn

(wn))−ϕ0(pn) → χ(w) = uTu/2+v pn → ∞, wn → w = (u, v) ∈ R
h+1.

The functions ϕ0 and χ are analytic. Hence we also have convergence of the deriva-
tives. Observe that χ∗

0 = χ′′
0 + χ′

0 ⊗ χ′
0, and

ϕ∗
0(0, r) = id + diag(0, . . . , 0, r2) = diag(1, . . . , 1, 1 + r2).

The ellipsoid {w | ϕ∗
0(0, r)(w,w) < 1} is asymptotic to the ellipsoid E0,r for r → ∞.

By spherical symmetry this holds for z ∈ r∂B. The Riemannian metric associated
with the second order differential form ϕ∗

0 is asymptotic to the Riemannian metric
associated with the ellipsoids z + Ez defined in Example 2.1.

Let (w+Fw, Jw) denote the ellipsoid and the halfspace in the point w, associated
with the Gauss-exponential XS measure ρ with density e−χ on Rd, and (z+Ez,Hz)
the ellipsoid and halfspace associated with the Gaussian density in the point z. Let
zn → ∞. In coordinates in which zn + Ezn

is the unit ball and Hzn
the upper

halfspace, the family (z+Ez,Hz) will converge to the family (w+Fw, Jw). Let βn
map F0 = B into zn +Ezn

and J0 = H+ into Hzn
. Let wn → w. Let z′n = βn(wn).

Then

(7.2) β−1
n (z′n + Ez′n) → Fw β−1

n (Hz′n) → Jw.

This is just a geometric reformulation of the convergence of the derivatives of order
one and two in (7.1). If we call the Riemannian metric associated with the ellipsoids
w + Fw parabolic, one may say that the Riemannian metric associated with the
ellipsoids z + Ez is asymptotically parabolic.

Now let us turn to the normalizations αH in the limit relation α−1
H (ZH) ⇒

W , where W has a Gauss-exponential distribution. There is a duality between
halfspaces H which do not contain the origin, and points z �= 0, where z = zH
denotes the point in ∂H closest to the origin, and z �→ Hz is as above. Write
αz = αHz

. We may choose αz so that αz(B) = z+Ez. By definition αz(H+) = Hz.
The normalizations αz are only determined up to a symmetry of the limit vector.
In our case one may replace αz by αzRz for any family of rotations Rz around the
vertical axis. Since z �→ Ez is continuous we may choose αz to depend continuously
on z, at least locally. One can prove that for dimension d = 3, 5, . . . it is not possible



CYLINDER SYMMETRIC MEASURES WITH THE TAIL PROPERTY 17

to choose the normalizations αz to depend continuously on z. In three-space such a
continuous map for z ∈ r∂B would yield a coordinate system on the tangent plane
to rB in z, which varies continuously. In particular it would yield a non-zero vector
field on the two-sphere. It is known that one cannot comb a tennis ball without
creating crowns. See [1] for details.

Introduce the family A of all affine transformations α which map B into an
ellipsoid z + Ez. This is a fiber bundle over Rd. For each z ∈ Rd, the fiber Az

consists of all affine transformations mapping B into z + Ez. The fiber has the
form Az = {αzR | R ∈ O(h)}. If we restrict attention to affine transformations for
which the linear part has positive determinant the fiber is αSO(h). Non-existence
of continuous sections a : R

d → A mapping z into Az just says that the fiber bundle
is not trivial. Note that the symmetry group G also is a fiber bundle over the orbit
R = R

d with fiber group SO(h). This bundle is trivial!
We may now define regular variation. For zn → ∞, wn → w

α−1
zn
αz′n → γw mod SO(h)

where we choose αz ∈ Az, and z′n = αzn
(wn). This is just an algebraic reformulation

of the geometric limit relation (7.2).
The task of a probabilist is to understand and describe the domains of attrac-

tion of the various high risk limit laws. Under the assumption of cylinder symmetry
and a density this means that we have to describe suitable Riemannian metrics on
the interior of the convex support of the distribution in Dhr(ρ).

For the Gauss-exponential limit law there exist only partial results. See [1,
Chapter III]. Not every asymptotically parabolic Riemannian metric on R

d derives
from a C2 density f = e−ϕ in the domain of the Gauss-exponential limit law!

For the spherical Pareto measure in Example 8.2 a description of the Riemann-
ian metrics is simple. One needs an increasing sequence of centered ellipsoids En
such that En+1 ∼ 2En. Such a sequence may be embedded in a continuous strictly
increasing family of ellipsoids Et, which varies regularly in the sense that

Etn+sn
∼ 2sEtn tn → ∞, sn → s, s ∈ R.

Now take E to be the family of ellipsoids z + Ez where Ez = Et/3 for z ∈ ∂Et,
t � 0. One may define Ez = E0/3 for z ∈ E0 to obtain a continuous family of
ellipsoids z + Ez, z ∈ R

d.
For Lebesgue measure on a paraboloid, see Example 8.3, the domain of at-

traction contains the uniform distribution on a ball, and more generally on any
egg-shaped convex set D. The boundary of such a set is C2; the curvature is posi-
tive definite in each point. The high risk scenario ZH has a uniform distribution on
the cap D∩H. This cap is asymptotic to a parabolic cap, as its diameter vanishes,
by our conditions on ∂D. The Riemannian metric is related to the non-euclidean
hyperbolic metric if D is a ball. It is determined by the form of D. The boundaries
of the parabola v = −uTu/2 and the ball (0,−1)+B osculate in the origin. Assume
D contains the origin. For a point p ∈ D, p �= 0, there is a boundary point q on
the same ray as p, and an ellipsoid Fp which osculates ∂D in the point q. Define
Ez = z + Fz/3 for z ∈ D � {0}.
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For XS measures on the cone {v > ‖u‖} the situation is very different. We
refer to Ostrogorski [1997]. One of the problems here, and in the remaining cases,
about which nothing is known, is that Dhr(ρ) is empty. Convergence of the high
risk scenarios ZH , for halfspaces H diverging in any direction, is not possible.
One needs a theory of local convergence in which conditions are imposed on the
way in which the halfspaces H are allowed to diverge, and thus on the asymptotic
behaviour of the Riemannian metric in certain directions.

8. The cylinder symmetric XS measures

This section describes the seven classes of cylinder symmetric XS measures.
These measures are unique up to affine coordinate transformations and a multi-
plicative constant. In each case we choose the coordinates and the constant to
yield a simple expression. We choose a half space J0 of a simple form on which the
measure is finite and positive. In general ρ(J0) �= 1. The corresponding probability
measure dρ0 = 1J0dρ/ρ(J0) is an XS distribution. Where possible we choose J0

horizontal. The distribution ρ0 then is also cylinder symmetric.
From the point of view of the XS distribution it is natural to choose coordinates

so that J0 is the upper half space H+ = {v � 0}. We prefer to choose coordinates
to suit the Radon measure rather than the probability measure ρ0 since it is the
infinite measure ρ which is symmetric for the affine transformations in the group G.
In dimension d = 1 this dilemma already occurs. There there are three classes of XS
measures: the density e−v on R with J0 = [0,∞) and G the group of translations
v �→ v+ t, and the densities vλ−1 on (0,∞) with the group G of expansions v �→ cv,
c > 0, and the half spaces J0 = (−∞, 1] for λ > 0 and J0 = [1,∞) for λ > 0. The
corresponding XS distributions are the GPDs. These are usually standardized to
have tail functions

(8.1) 1 −Gτ (y) = (1 + τy)−1/τ
+ y � 0, τ �= 0

By continuity G0 is the standard exponential distribution.

Example 8.1. The Gauss-exponential measure ρ on Rh+1 has density e−χ(u,v)

in (2.1). Halfspaces {v � v0 + bTu} have finite measure for v0 ∈ R, b ∈ R
h, and

ρ{v � 0} = (2π)h/2 ρ{v � t} = e−tρ{v � 0}.
The domain contains the standard Gauss distribution on Rd. The group generated
by the vertical translations and the shears which leave the parabola uTu/2 + v = 0
invariant but moves the top to a preassigned point on the parabola, acts transitively
and simply on the domain R = Rd. For the multiparameter regular variation
associated with the convergence of the Gaussian high risk scenarios we need the
full symmetry group G, which includes the rotations around the vertical axis.

Example 8.2. The spherical Pareto measure ρ = ρλ, λ > 0, on R = R
d

� {0}
has density 1/‖w‖d+λ. The half spaces {bTw � 1}, b ∈ R

d
�{0} have finite measure,

and

ρ{v � 1} =
πh/2

λ

Γ((1 + λ)/2)
Γ((d+ λ)/2)

ρ{v � t} = ρ{v � 1}/tλ t > 0.
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The domain contains the spherical Student distributions.

Example 8.3. The parabolic power measures ρ = ρλ on the open paraboloid
R = {v + uTu/2 < 0} ⊂ R

h+1 has density sλ−1, λ > 0, with s = −v − uTu/2.
In particular λ = 1 yields Lebesgue measure on the paraboloid. The half spaces
{v � v0 + bTu} with v0 < bT b/2 have finite positive measure:

ρ{v � −1} = (2π)h/2
Γ(λ)

Γ(λ+ h/2 + 1)
ρ{v � −t} = t(λ−h)/2ρ{v � −1} t > 0.

The domain of ρ1 contains the uniform distribution on the unit ball; the domain of
ρλ contains the spherical beta distributions.

Example 8.4. The singular parabolic distribution ρ is Lebesgue measure on R
h

lifted to the parabolic surface R = {v+ uTu/2 = 0} by the map u �→ (u,−uTu/2).
The half spaces {v � v0 + bTu} with v0 < bT b/2 have finite positive measure and

ρ{v � −1} = (2π)h/2/Γ(h/2 + 1) ρ{v � −t} = ρ{v � −1}/th/2 t > 0.

The domain contains the uniform distribution on the sphere, but also densities
L(1 − ‖w‖)/(1 − ‖w‖) on the unit ball with L(s) = Cc/(1 − log s)c, with c > 1.

Spherical symmetry of a distribution ensures that ZHn may be normalized to
converge to W in law for any sequence of half spaces Hn with P{Z ∈ Hn} → 0+
provided the high risk scenarios for horizontal half spaces may be normalized to
converge to W . The XS distributions associated with the XS measures in the
examples above are global limit laws, the multivariate GPDs. They may be stan-
dardized to form a continuous one parameter family, Wτ = (Uτ , Vτ ), such that Vτ
has a standard GPD on [0,∞), see (8.1).

The symmetry of the limit distribution is only indirectly due to the symmetry
of the vector Z. This is clear for the uniform distribution on a ball. A random
vector uniformly distributed on an egg shaped convex domain D will have the same
high risk limit distribution.

We now give two cylinder symmetric XS distributions which are local limit laws
for excesses over linear thresholds.

Example 8.5. The hyperbolic Lorentz measure ρ = ρλ lives on the open cone
R = {v > ‖u‖} ⊂ Rh+1 and has density sλ−1, λ > 0, with s =

√
v2 − ‖u‖2.

The parameter value λ = 1 yields Lebesgue measure on the cone. Half spaces
{v � v0 + bTu} with v0 > 0, ‖b‖ < 1, have finite positive measure:

ρ{v � 1} =
πh/2

h+ λ

Γ((h+ 1)/2)
Γ((h+ 1 + λ)/2)

ρ{v � t} = ρ{v � 1}tλ t > 0.

Convergence of ZH now holds for halfspaces Hn for which the diameter δn of
Hn ∩ R vanishes. Under the extra condition δdn = O(|Hn ∩ R|) it suffices that ZH

converges for horizontal halfspaces, see [1], Section 15.3. For an analysis without
any regularity assumptions, see Ostrogorski [1997].

Example 8.6. The parabolic Pareto measure ρ = ρλ on the open set R = {v >
−uTu/2}, the complement of a closed paraboloid, has density 1/sλ+h/2+1, λ > 0,
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with s = v + uTu/2. The half spaces {v � v0 + bTu} with v0 > bT b, b ∈ Rh, have
finite measure:

ρ{v � 1} = 2(2π)h/2
Γ(λ)

Γ(λ+ h/2 + 1)
ρ{v � t} = ρ{v � 1}/tλ.

Nothing is known about the domains of attraction.

In these six classes the vertical coordinate of the XS distribution has a GPD.
The integrals may be computed in dimension d = h+ 1 by using polar coordinates
for f(u, v) = f0(‖u‖, v)∫

{v∈[a,b]}
f(v, u) du dv =

∫ b

a

dv

∫ ∞

0

b(h)rh−1drf0(r, v) =
∫ ∞

0

b(h)rh−1dr

∫ b

a

dvf0(r, v)

with b(h) = 2πh/2/Γ(h/2) = |∂B| = d|B| where |B| is the volume on the unit ball
B in R

h, and the standard identities∫ ∞

0

r2a−1/(1 + r2)b+adr =
∫ 1

0

r2a−1(1 − r2)b−1dr = B(a, b)/2
∫ ∞

0

sa−1/(1 + s)a+bds =
∫ 1

0

(1 − s)a−1sb−1ds = B(a, b) = Γ(a)Γ(b)/Γ(a+ b).

These XS distributions may be normalized so that the vertical coordinate has dfGτ ,
see (8.1), and so that for τ → 0 the distributions converge to the Gauss-exponential
distribution with density e−ve−u

Tu/2/(2π)h/2 on H+ = {v � 0}.
In dimension d > 2 there also is a class of cylinder symmetric XS measures for

which horizontal slices {a < y < b} have measure zero or infinite.

Example 8.7. The double Pareto measure ρ = ρλ,µ on the open setO = {v > 0,
‖u‖ �= 0} is a product measure with density vλ−1/‖u‖h+λ+µ, λ, µ > 0. The half
spaces of finite positive measure are {v � v0 + bTu} with v0 < 0, b ∈ R

h
� {0}, and

for any unit vector b ∈ R
h

ρ{v � t(bTu− 1)} =
π(h−1)/2

tµ
Γ(λ)Γ(µ)

Γ(h+ λ+ µ)
Γ((1 + λ+ µ)/2)

Γ(1 + λ+ µ)
t > 0.

The reader is invited to determine the symmetry groups G for each of these
seven classes. By assumption the symmetry group contains the group of measure
preserving rotations η around the vertical axis. There also is a one-parameter
group of affine transformations αt which preserve the vertical axis and the class of
horizontal half spaces, such that αt(ρ) = etρ. In addition there are one parameter
groups of measure preserving transformations βt, t ∈ R such that the following
relations hold: βtαs = αsβt, ηαs = αsη, s, t ∈ R. In each case the set Jρ of half
spaces of finite positive measure is an open orbit of G.

9. Taboo configurations

A Radon measure ρ on an open set O ⊂ Rd may have a large group of sym-
metries but fail to be an XS measure since there are too few half spaces of finite
measure. Take Lebesgue measure on R

d, or a measure with density f(x, y) = ‖x‖µ
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on (Rh � {0}) × R for some µ ∈ R. These measures have large symmetry groups.
Measures dρ1(x)dy or ‖x‖µf(y)dxdy with ρ1 a non-zero measure and f strictly
positive also have too few half spaces of finite measure.

If ρ is invariant under the translation τ : z �→ z + a, with a �= 0, then ρ is
not an excess measure since any half space J which is not parallel to the line Ra
contains infinitely many points z0 + ka, k ∈ Z, and also, for any ε > 0, infinitely
many open balls z0 + ka+ εB.

Hence if the Lie algebra g of the symmetry group of ρ contains two independent
translations, or if [g, g] contains a translation, then ρ is not an excess measure.
Below we give some more taboo configurations.

Proposition 9.1. Suppose ρ is an infinite measure on R
d. Let X �= 0 generate

a one parameter group of affine transformations αt which preserve the measure ρ.
If X2 = 0 then ρ is not an XS measure.

Proof. The condition X2 = 0 implies that etX = I + tX, and hence the
trajectories z(t) = αtz of the one parameter group generated by X are linear:
αt(z) = z + tż(0). Suppose ρ is an XS measure. Then ρ does not live on a
proper affine subspace of R

d and hence the support of ρ contains a point p so that
ṗ(0) = a �= 0. Since the set of half spaces of positive finite measure is open there is
a half space J with finite positive measure which is not parallel to the trajectory
p + Ra. Choose an open half space H0 ⊂ J which does not contain the point p.
This half space contains points of the line p + Ra, and replacing X by cX with
c �= 0 if need be we may arrange that p + a ∈ H0. The balls p + δB have positive
measure. We shall show that one may choose δ > 0 so small that the ellipsoids
Ek = α2k(p + δB), k ∈ Z are disjoint and that H0 contains the ellipsoids Ek for
k � 1. Since ρ(Ek) = ρ(p+ δB) > 0 for all k it follows that ρ(J) = ∞.

We now supply the details. Choose an affine function ϕ so that ϕ(p+ ta) = t,
and write ϕt = ϕ ◦ α−t. Then for r < s the wedge {ϕr < 0 < ϕs} is mapped onto
{ϕr+t < 0 < ϕs+t} by αt. This implies that the open wedges

Wk = {ϕ2k−1 < 0 < ϕ2k+1} = α2kW0 k ∈ Z

are disjoint. If δ0 > 0 is so small that p+ δ0B ⊂W0 then Wk contains the ellipsoid
Ek = α2k(p+ δ0B) and hence these ellipsoids are disjoint.

Let C be the convex open cone with top p which intersects the hyperplane
{ϕ1 = 0} in the set H0 ∩ {ϕ1 = 0}. The inequality ϕ(p) < 1 implies C ∩ {ϕ1 > 0}
⊂ H0. Note that p + a ∈ C, and hence p + a + εB ⊂ C for some ε > 0. Hence C
contains the cone Cε which is the union of the balls p + ta + tεB, t > 0. We may
represent X and αt by blocked matrices of size 1 + d and write

I + tX X =
(

0 0
X10 X11

)
αt(z + w) = αt(z) +X11w z,w ∈ R

d.

Let r = ‖X11‖. Then

αt(p+ δB) = p+ ta+ δ(I + tX11)(B) ⊂ p+ ta+ δ(1 + rt)B t > 0
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and these ellipsoids are contained in the union (p+ δ0B∪Cε if we choose δ ∈ (0, δ0]
so small that δ(1 + rt) � δ0 ∨ εt. Hence α2k(p + δB) ⊂ C ∩ {ϕ1 > 0} ⊂ J for
k � 1. �

10. Exceedances over horizontal thresholds

Limit laws for exceedances over horizontal thresholds have a simple represen-
tation, in particular if we assume a cylinder symmetric density.

If the high risk scenarios ZH
t

for exceedances of the vector Z = (X,Y ) over
the horizontal thresholds {y = t}, properly normalized, converge in law to a limit
vector W = (U, V ), then V has a GPD and Y lies in the domain of attraction of V
for exceedances in R. Moreover the high risk scenarios WHt

of the limit vector W
all have the same shape. This implies, see [1], that the distribution of W extends
to an infinite Radon measure ρ which satisfies αt(ρ) = etρ, t ∈ R. The projection
of ρ onto the vertical axis is a univariate excess measure. In suitable coordinates
it has density e−y on R or yλ−1 on (0,∞). The one parameter group αt and its
generator are unique up to symmetries of W preserving the upper half space. If the
limit vector is symmetric for reflection in the vertical axis, (−U, V ) is distributed
like (U, V ), then the generator has the form⎛

⎝0 0 0
0 S 0
a 0 c

⎞
⎠

and αt is the direct product of a linear transformation St of the horizontal coor-
dinate, and an affine transformation y �→ a(t) + c(t)y of the vertical coordinate.
One may choose the origin on the vertical axis so that (a, 0, c) = (1, 0, 0) or so that
(a, 0, c) = (0, 0, τ) for some τ = c �= 0. Then τ is the GPD parameter of the GPD
on the vertical axis. If W has cylinder symmetry then S = σI for some constant
σ ∈ R and hence the generator has the form⎛

⎝0 0 0
0 σI 0
1 0 0

⎞
⎠ τ = 0 or

⎛
⎝0 0 0

0 σI 0
0 0 τ

⎞
⎠ τ �= 0.

If the measure ρ has a density, the density has the form g(u, v) = g0(‖u‖, v),
(u, v) ∈ R

h+1, and is determined by its value at v = sign τ ∈ {−1, 0, 1}. The
density g is also determined by any level set {g = c0} since αt maps level sets into
level sets.

If the distribution of Z has spherical symmetry then the limit distribution will
have an extra symmetry, and be an XS distribution. Such an extra one parameter
symmetry group βt, t ∈ R, may also arise if the high risk scenarios ZH may
be normalized to converge to W for half spaces H which are not asymptotically
horizontal. The symmetries βt may be chosen to preserve the density. Then any
orbit Γ = {w(t) = βt(w0) | t ∈ R} will lie in a level set {g = c}, and so will the
surface generated by revolving the curve Γ around the vertical axis.

In dimension d = 2 the level sets of XS densities are conic sections: parabo-
las, hyperbolas or circles, corresponding to orbits of the one parameter groups βt
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generated by

(10.1)

⎛
⎝0 0 0

1 0 0
0 1 0

⎞
⎠

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ .

Only certain values of τ, σ are allowed in each of the three cases: For a parabola
τ = σ = 0 yields the Gauss-exponential measure, and τ = 2, σ = 1 yields the
parabolic power measures, the singular parabolic measure and the parabolic Pareto
measures. For the hyperbola and the circle the group αt, t ∈ R, is a group of scalar
expansions corresponding to τ = σ.

11. Completeness

Now we shall prove the main result:

Theorem 11.1. Every cylinder symmetric XS measure on R
h+1, h � 1, has

the form γ(ρ)/C with C > 0, ρ an XS measure in one of the seven families of
Section 2 and γ an affine transformation of the form (x, y) �→ (bx, cy + a) with
b > 0, c �= 0.

In this section ρ is an XS measure on an open set O ⊂ R
h+1 with connected

symmetry group G and J0 = {ϕ0 � 0} is a half space of finite positive measure
such that the orbit G(J0) is open. Elements of the Lie algebra g will be denoted
by X,Y, · · · . (Random variables will not occur in this section, so confusion is not
possible.) The Lie algebra g is the set of all generators of G. It is a linear space
closed under the Lie product [X,Y ] = XY − Y X. If we interpret elements of G as
matrices of size 1+h+1 with top row (1, 0, 0) then elements X ∈ g are matrices of
size 1+h+1 with top row zero and the set of matrices eX = I+X+X2/2+· · · with
X ∈ g contains an open neighbourhood of the identity in G. We concentrate on the
case d > 2 and leave the minor adjustments needed when the group of rotations
around the vertical axis is not connected to the reader.

Lemma 11.1. The Lie algebra g has a basis of elements of the form Y , W or
Z, non-zero, where

(11.1) Y =

⎛
⎝0 0 0

0 A 0
0 0 0

⎞
⎠ W =

⎛
⎝0 0 0

0 S 0
a 0 c

⎞
⎠ Z =

⎛
⎝0 0 0
p 0 q
0 bT 0

⎞
⎠

with AT = −A, S = σI with σ ∈ R, a, c ∈ R and p, q, b ∈ R
h. The one parameter

groups generated by Y and Z are measure preserving.

Proof. The elements Y generate the group of rotations around the vertical
axis, which may be identified with SO(h). Clearly g contains all generators of this
form, and the group SO(h) preserves ρ. By linearity any matrix of size 1 + h + 1
with top row zero may be written as the sum of a matrix Y and a matrix X of
the form (10.1) with S symmetric. Let j be the inversion (u, v) �→ (−u, v). If
B ∈ g generates the one parameter group βt in G then B̃ = jBj generates the one
parameter group β̃t which lies in G since j is a symmetry of ρ, even though j �∈ G for
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d even. By linearity W = (X + X̃)/2 and Z = (X − X̃)/2 lie in g. We may choose
an orthonormal basis so that S is diagonal. Then so is etS , which maps balls into
balls on R

h by cylinder symmetry. So the etS are scalar expansions and S = σI for
some σ ∈ R as in Section 4. Since j is measure preserving and jZj = −Z we find
j ◦ γ ◦ ψ = γ−1 for γ = etZ and hence γ(ρ) = ρ. �

Let us now first consider the symmetric partW . This element generates a group
which is the direct sum of expansions in the horizontal plane and a one parameter
group of affine transformations β̃t on the vertical axis. The elements W1 and W2

of the form (11.1) generate one parameter groups which commute if and only if β̃t1
and β̃t2 commute, and that is the case if and only if (a1, c1) and (a2, c2) are linearly
dependent. Else the Lie bracket [W1,W2] = W1W2 − W2W1 is the translation
(1, x, y) �→ (0, x, y+ a) with a = c1a2 − a1c2 �= 0. This is a taboo configuration, see
Section 9. Hence if g contains two independent symmetric elements W1 and W2

then these commute, the vectors (a1, c1) and (a2, c2) are dependent and by linearity
we may assume that a1 = c1 = 0 and σ1 = 1, and that σ2 = 0 and (by a suitable
choice of the vertical coordinate) (a2, c2) = (0, 1) or (a2, c2) = (1, 0). In the latter
case the measure ρ has density c‖x‖µeλy on O = {x �= 0} with c > 0, λ, µ ∈ R,
and any half space not parallel to the vertical axis has infinite measure since the
integral

∫
H
‖x‖µdx is infinite for any half space H in Rh which contains the origin.

Lemma 11.2. If g contains two independent elements of the form W in (11.1)
then ρ is a double Pareto measure. There is no horizontal slice with positive finite
measure.

Now introduce the logarithmic excess function L on the d+1-dimensional linear
space A of all affine functions ϕ on R

h+1 and for (z, x, y) ∈ R
1+h+1 by

L(z, x, y) = L(ϕ) = log ρ(J) J = {ϕ � 0}, ϕ(u, v) = z + xTu+ yv.

Lemma 11.3. The function L has values in the extended real line, [−∞,∞]. It
is finite and continuous, and even analytic on a neighbourhood U of the point ϕ0

where J0 = {ϕ0 � 0} is the half space of finite positive measure with open orbit
G(J0).

Proof. The function γ �→ log γ̂ describing the symmetry is analytic since it
corresponds to a linear function on the Lie algebra. The function L is the pull back
of this function to the orbit of J0. �

The logarithmic excess function has the following properties:
1) Cylinder symmetry: Since ρ is symmetric for horizontal rotations L is determined
by a function L0 on R × [0,∞) × R:

L(z, x, y) = L0(z, ‖x‖, y).
2) Positive homogeneity: For y �= 0 set s = z/y and r = ‖x‖/y. There is a function
L1 on R × (R � {0}) so that

L0(z, ‖x‖, y) = L0(±s,±r, 1) =: L1(s, r) y �= 0.
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For later use we observe that for y �= 0:

(11.2) y(∂0L0, ∂1L0, ∂2L0)(z, ‖x‖, y) = (∂1L1, ∂2L1,−(s∂1L1 + r∂2L1))(s, r).

Let X ∈ g and suppose etX preserves ρ. Pick an affine function ϕ on R
h+1

and consider the curve Γ in A described by ϕ(t) = ϕetX , t ∈ R. Suppose J =
{ϕ � 0} has finite positive measure. Then L(ϕ(t)) = L(ϕ). The curve Γ lies on
the hypersurface {L = C} with C = L(ϕ) and

∑
∂iLϕ̇i(t) = 0 since t �→ L(ϕ(t)) is

constant. There is a close relation between vector ODEs and one parameter matrix
groups. Regard ϕ as a row vector of size 1 + h+ 1. Then

ϕ̇(t) = ϕdetX/dt = ϕetXX = ϕ(t)X.

If the curve Γ passes through the point ξ = (z, xT , y) ∈ {−∞ < L <∞} ⊂ R
1+h+1

then the tangent vector to Γ in this point is

(A,BT , C) = (z, xT , y)X = (xT p+ ya, xTS + ybT , xT q + yc) ⊥ (∂0L, ∂1L, ∂2L)(ξ).

By simple geometry the radial part of the vector B in the direction e = x/‖x‖ is

B0 = BT e = BTx/‖x‖ = (xTSx+ ybTx)/‖x‖ x �= 0

and for y �= 0, x �= 0 relation (11.2) gives

A∂0L0 +B0∂1L0 + C∂2L0 = y−1((A− sC)∂1L1 + (B0 − rC)∂2L1) = 0.

A straightforward computation gives

Lemma 11.4. Let Z ∈ g as in (11.1). Suppose (z, x, y) ∈ U and y �= 0. Define
u, r, s by x = yu, ‖x‖ = r, z = sy. Then (p− sq)Tu∂1L1 + (b/r − rq)Tu∂2L1 = 0.

This relation may be simplified.

Lemma 11.5. The functions ϕi : V → R, i = 1, 2, are continuous on the
connected open set V ⊂ R× (0,∞), neither vanishes identically on V , and ϕ2

1 +ϕ2
2

is positive on V . The functions s→ b1(s) ∈ R
h and r → b2(r) ∈ R

h with h > 1 are
analytic for (s, r) ∈ V and satisfy

ϕ1(s, r)uT b1(s) = ϕ2(s, r)uT b2(r) r = ‖u‖, (s, r) ∈ V, u ∈ R
h.

Then there exists a unit vector e ∈ R
h and analytic real functions ci so that

(11.3) c1(s)ϕi(s, r) = c2(r)ϕ2(r, s) bi = cie (s, r) ∈ V.

Proof. If b1 ≡ 0 then b2 vanishes on the non-empty open set {ϕ2 �= 0}, and
hence vanishes identically on V by analytic continuation. So if one of the functions
bi vanishes on a non-empty open subset of V they both vanish identically and the
result holds with ci ≡ 0 and e arbitrary.

Let (r0, s0) ∈ V , and assume ϕ1(s0, r0) �= 0. Then uT b1(s0) = c0u
T b2(r0) for

all vectors u in the sphere with radius r0 with c0 = (ϕ2/ϕ1)(s0, r0). The linear
function u �→ bT0 u with b0 = c0b2(r0)− b1(s0) vanishes on the sphere. Hence b0 = 0
and b1(s0) = c0b2(r0). Similarly if ϕ2(s0, r0) �= 0 then b2(r0) = (1/c0)b1(s0). Hence

(11.4) ϕ1(s, r)b1(s) = ϕ2(s, r)b2(r) (s, r) ∈ V.

It suffices to show that this implies (11.3) if V is an open rectangle I × J .
Choose a point (s0, r0) where b1 and b2 do not vanish. (Such points are dense.)
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Then ϕ1 and ϕ2 do not vanish. There is a unit vector e, unique up to sign, so
that b1(s0) = c1(s0)e and b2(r0) = c2(r0)e. Vary s over I. This does not effect
b2(r0). Since b1(s) is finite and b2(r0) �= 0, the quotient (ϕ2/ϕ1)(s, r0) is finite and
b1(s) = c1(s)e for s ∈ I. By symmetry b2(r) = c2(r)e for r ∈ J . This establishes
the right side of (11.3). The left side then follows by (11.4). �

We conclude that any element Z ∈ g as in (11.1) has the form

Z = Zme =

⎛
⎝ 0 0 0
m0e 0 m2e
0 m1e

T 0

⎞
⎠ m = (m0,m1,m2) ∈ R

3, e ∈ R
h.

If we perform a rotation R in the horizontal plane then W = Wm
e is transformed

into RWRT = Wm
f with f = Re. All these matrices are elements of g. Note that

m1 �= 0 since else W 2 = 0 and since etW preserves the measure ρ Proposition 9.1
states that ρ is not an XS measure. This shows that if W and W ′ both are
generators of G then m′ and m are linearly dependent. (By a suitable rotation we
may arrange that e′ = re for some r > 0. By linearity g contains an element W ′′

so that m′′
1 = 0.) So there is essentially only one generator of the form Z.

Not all half spaces in the orbit G(J0) have the same measure. Hence g also
contains at least one generator of the form W . Since g is a Lie algebra it contains
the Lie bracket [W,Z] = WZ − ZW⎡

⎣
⎛
⎝0 0 0

0 σI 0
a 0 c

⎞
⎠

⎛
⎝0 0 0
p 0 q
0 bT 0

⎞
⎠

⎤
⎦ =

⎛
⎝ 0 0 0
σp− aq 0 (σ − c)q

0 (c− σ)bT 0

⎞
⎠ .

We see that Z is transformed into a generator ZW of the same form. If Z = Zme
then ZW = ZmW

e where

(11.5) mW = (σm0 − am2, (c− σ)m1, (σ − c)m2).

We may simplify Z by an affine change of coordinates on the vertical axis T :
(x, y) = (x, t + sy), s �= 0. In the new coordinates the generator Z has the form
TZme T

−1 = Zm
′

e where m′ = (m0 − tm2/s, sm1,m2/s). If m2 �= 0 then we may
arrange that m′ = c(0, 1,±1) and else m′ = c(1, 1, 0) (where we allow s to be
negative). So there are only three cases to consider. In dimension d = 2 these
correspond to the generators in (10.1), with orbits that are parabolas, hyperbolas
or circles. Now apply (11.5) to these three cases.
1) m = (1, 1, 0): mW = (σ, c − σ, 0) and dependence implies c − σ = σ and hence
σ = c/2. If c = 0 then σ = 0 and W = W00. Else, by a vertical coordinate
translation (which does not affect m since m0 = 0) we may achieve a = 0 so that
W = W1,1/2.
2) m = (0, 1, 1): mW = (−a, c− σ, σ− c) and dependence implies a = 0 and σ = c.
Hence W = W11.
3) m = (0, 1,−1), mW = (a, c− σ, c− σ) and dependence implies a = 0 and σ = c.
Hence once more W = W11.

This establishes the theorem.
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