TWO EXAMPLES OF Q-TOPOLOGIES

Rade Živaljević

Abstract. A pair (Y,τ) , where Y is an internal set, whereas τ is a topology (usually external) on Y, is called a *-topological space if τ has an internal base. The main example is $({}^*X,\overline{\tau})$ where (X,τ) is a standard topological space and $\overline{\tau}$ the topology generated by * τ . This is the so called Q-topology on *X induced by (X,τ) , a notion introduced by A. Robinson in [4]. This note contains negative answers to some questions of R. W. Button, [1], who asked whether the following implications

$$(^*X, \overline{\tau})$$
 normal $\Rightarrow (X, \tau)$ normal (X, τ) scattered $\Rightarrow (^*X, \overline{\tau})$ scattered

hold in some enlargement.

1. The first question

Theorem 1.1. Let us assume that the nonstandard model ${}^*\mathcal{M}$ has the property $cof({}^*\omega) = |{}^*(2^\omega)|$; in other words the external cofinality of ${}^*\omega$ is equal to the external cardinality of ${}^*(2^\omega)$. Then there exists a counterexample for the first question.

It seems natural to conjecture that every non-standard model contains a counterexample for the first question.

To prove the theorem one should start with a non-normal space (X, τ) . A standard example is the Niemytzki plane (see R. Engelking [2]). The proof could be carried on for the Niemytzki plane but we shall use another (similar) example which is easier to handle.

Let T be the tree of finite 0,1 – sequences and B a family of maximal branches in this tree of the maximal cardinality, i.e., |B|=c. The space (X,τ) is defined as follows: $X=T\cup B, T$ is a set of isolated points and a typical neighborhood of $d\in B, d:\omega\to 2$, is $N_{d,m}=\{d\}\cup\{d|n:n\geq m\}$, where a|n denotes the restriction of a on the natural number n.

Recall the well-known argument that this space is not normal. (X, τ) is separable, T being the dense set, consequently there exists at most c continuous

functions on X. Observing that B is a closed, discrete set of cardinality $c=2^{\aleph_0}$ we see that any function $f:B\to R$ is continuous. If (X,τ) were normal, then by Titze-Urisohn theorem f can be extended to the whole set X which is a contradiction, for there would exist at least 2^c different continuous functions.

Let us prove now that $(*X, \overline{\tau})$ is not only normal but also paracompact in a very strong way.

Looking from outside ${}^*X = {}^*T \cup {}^*B$ is a pseudo-tree (non-wellordered) with set *B of maximal branches. The topology $\overline{\tau}$ on *X is described as follows. *T is a set of isolated points while a typical neighborhood of $d \in {}^*B, d : {}^*\omega \to 2$ is ${}^*N_{d,m} = \{d\} \cup \{a | n : n \ge m\}$ where m is a nonstandard natural number.

A simple consequence of our cardinality assumption, $cof(^*\omega) = k = |^*(2^\omega)|$, is that any intersection of less than k open sets in $(^*X, \overline{\tau})$ is an open set.

Remark. Let us note that a model ${}^*\mathcal{M}$ with the property $\operatorname{cof}({}^*2) = |{}^*(2^\omega)|$ can be constructed under various set theoretical assumptions. For example the existence of 2^{\aleph_0} -scale (see [3, p. 260]) implies this equality if the nonstandard model is a D-ultrapower where E is any nontrivial ultrafilter on ω . Recall that a 2^{\aleph_0} -scale exists under CH or $MA + \neg CH$. On the other hand under GCH one can get a nonstandard model ${}^*\mathcal{M}$ which is $|{}^*\mathcal{M}|$ -saturated which implies the equality $\operatorname{cof}({}^*\omega) = {}^*(2^\omega) = |{}^*\mathcal{M}|$. Indeed, if $A \subset {}^*\omega$ and $|A| < |{}^*\mathcal{M}|$ then $\mathcal{A} = \{[m, \infty) : m \in A\}$ is a family of internal sets of cardillality less than $|{}^*\mathcal{M}|$ which means that $\bigcap \mathcal{A} \neq \infty$ and A is not cofinal in ${}^*\omega$.

To finish the proof of the theorem it is enough to prove the following lemma.

Lemma. Let (Y, τ) be a nulldimensional topological space such that |Y| = k and the intersection of < k open sets is again an open set. Then every open cover of Y contains a disjoint open refinement. In particular, this space is paracompact (or strongly paracompact).

Proof of Lemma. We can assume that the cardinality of the cover \mathcal{U} is $\leq k$ and that its members are clopen. If $\{V_{\alpha} | \alpha < \lambda\}$ is a well-ordering of \mathcal{U} , $\lambda \leq k$, then a required refinement is defined by $U_{\alpha} = V_{\alpha} \setminus \bigcup \{U_{\beta} | \beta < \alpha\}$, $\alpha < \lambda$. This completes the proof of the theorem.

The example above also serves to provide the following consequence.

COROLLARY 2.1. The implication (*X, τ) paracompact \Rightarrow (X, τ) paracompact cannot unconditionally hold in any nonstandard model.

2. The second question

Recall that a topological space (Y,τ) is called scattered if each nonempty subspace $A\subset Y$ contams an isolated point. Iterating the Cantor-Bendixon derivative it is possible to define an ordinal-valued function $r:Y\to \alpha$ such that $r^{-1}(0)=\operatorname{ip}(Y)$, where $\operatorname{ip}(A)$ denotes the set of isolated points in A, and $r^{-1}(\beta)=\operatorname{ip}(Y\setminus\bigcup\{A_\gamma|\,\gamma<\beta\}),\,\beta<\alpha$, whereas $Y=\bigcup_{\beta<\alpha}r^{-1}(\beta)$. The function r^{-1} will be called the rank function of the space Y.

THEOREM 2. Get (X, τ) be a scattered topological space and r the corresponding rank function. Then $(*X, \overline{\tau})$ is scattered if and only if $\sup r(X)$ is a finite ordinal.

Proof. If $\sup r(X)$ is finite, then *r is the rank function of $(*X, \overline{\tau})$, which proves that the last space is scattered. Let us assume that r(X) contains infinite ordinals. By the definition of the rank function r one has

$$(\forall x \in X)(\forall O \text{ open set})(x \in O \Rightarrow r(x) \leq \sup r(O \setminus \{x\}) + 1),$$

since otherwise the rank of x would be smaller. Let $A = \{x \in {}^*X \mid {}^*r(x) \text{ is infinite}\}$. By the Transfer Principle one has that every internal neighborhood of a point $x \in A$ contains a point $y \neq x$ of infinite rank, $y \in A$, which means that A has no isolated points because internal neighborhoods make a base of the Q-topology. Hence, $({}^*X, \overline{\tau})$ is not scattered. Let us note that A is actually perfect, because the function ${}^*r: {}^*X \to {}^*r(X)$ is upper semicontinuous.

REFERENCES

- [1] R.W. Button, A note on the Q-topology, Notre Dame J. Formal Logic 29 (1978) 679-686.
- [2] R. Engelking, General Topology, Monografie Matematyczne, vol. 60, Warszava, 1977.
- [3] T. Jech, Set Theory Academic Press, New York 1978.
- [4] A. Robinson, Non-Standard Analysis, North-Holland, Amsterdam, 1966.

Matematički Institut Knez Mihallova 35 11000 Beograd Jugoslavija (Received 04 10 1983)