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FROM CONSTANT MEAN CURVATURE
HYPERSURFACES TO THE GRADIENT THEORY

OF PHASE TRANSITIONS

FRANK PACARD & MANUEL RITORÉ

Abstract
Given a nondegenerate minimal hypersurface Σ in a Riemannian manifold,
we prove that, for all ε small enough there exists uε, a critical point of
the Allen-Cahn energy Eε(u) = ε2

∫ |∇u|2 +
∫

(1 − u2)2, whose nodal set
converges to Σ as ε tends to 0. Moreover, if Σ is a volume nondegenerate
constant mean curvature hypersurface, then the same conclusion holds with
the function uε being a critical point of Eε under some volume constraint.

1. Introduction

Let Ω ⊂ Rn+1, n � 1, be an open bounded set with smooth boundary
∂Ω. For any ε > 0 and any function u : Ω → R such that u ∈ H1(Ω),
we consider the energy

Eε(u) := ε2
∫

Ω
|∇u|2 dx +

∫
Ω

(1− u2)2 dx,

being understood that Eε(u) = ∞ if u /∈ L4(Ω). We also consider the
constraint

V (u) :=
∫

Ω
u dx.

Given c0 ∈ (−1, 1), we are interested in the critical points of Eε
subject to the constraint V (u) = c0 |Ω|, where |Ω| denotes the volume
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of Ω. Any critical point of this variational problem is a solution to{
ε2 ∆u + 2 (u− u3) = ε λ, in Ω
∂νu = 0, on ∂Ω,

(1.1)

where ν denotes a unit vector field normal to ∂Ω and where ε λ ∈
R corresponds to the Lagrange multiplier associated to the constraint
V (u) = c0 |Ω|. One can also ignore the volume constraint, in which case
a critical point would satisfy Equation (1.1) with λ = 0.

Since classical methods of the calculus of variation apply, there is
no difficulty in finding minimizers of Eε. The real issue is the study
of the asymptotic behavior of the minimizers (or more generally of the
critical points) of Eε as the parameter ε tends to 0. There has been a
number of important work on this question over the last two decades
and the basic result can be described as follows: Assume that (εk)k�0

tends to 0 and let (uk)k�0 be a sequence of minimizers of Eεk under the
constraint V (u) = c0 |Ω|. Then, up to a subsequence, one can assume
that (|uk|)k�0 converges a.e. to the constant function 1. In the definition
of the energy Eε, the role of the term∫

Ω
(1− u2)2 dx,

is precisely to force the sequence of functions (|uk|)k�0 to converge to
1 when the parameter εk tends to 0. Extracting subsequences if this is
necessary, we can define Ω+ (resp. Ω−) to be the set of points where uk
converges to +1 (resp. −1). The subsets Ω± are not arbitrary since the
constraint V (uk) = c0 |Ω| forces Ω± ⊂ Ω to satisfy

|Ω+| − |Ω−| = c0 |Ω|.

Now, the role of the Dirichlet integral

ε2
∫

Ω
|∇u|2 dx,

in the definition of Eε forces the interface between the subsets Ω+ and
Ω− to be “as small as possible”, since this is where the gradient of the
function uk will concentrate when εk tends to 0. More precisely

N := ∂Ω+ ∩ Ω = ∂Ω− ∩ Ω,
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can be shown to be a minimizer of the isoperimetric problem: Mini-
mize amongst all domains D ⊂ Ω the n-dimensional Hausdorff measure
Hn(∂D) of the boundary ∂D subject to the volume constraint

|D| =
1 + c0

2
|Ω|.

We refer to [16], [15], [12], [3], [4], [21] for more precise statements.
From a purely analytic point of view, N can be understood as the limit
of the nodal sets of the functions uk, as k tends to +∞.

2. Statement of the problem

It is interesting to generalize the above problem first by considering
instead of Ω ⊂ Rn+1, any compact Riemannian manifold with or without
smooth boundary and also by replacing the nonlinearity (1− u2)2 by a
more general one.

Hence, in this paper, we consider (M, g) to be a (n+ 1)-dimensional
compact Riemannian manifold with or without smooth boundary. In
the case where ∂M , the boundary of M , is not empty, we can assume
without loss of generality that M is a subdomain of a larger Rieman-
nian manifold (M̃, g̃), with g̃|M = g. In particular, ∂M is a smooth
hypersurface of M̃ .

Let W : R → R be a smooth function which is positive away from
u = ±1. We assume that

W (±1) = 0,(2.1)

so that the infimum of W is achieved at the points u = ±1. Further
assume that these points are nondegenerate critical points of W . In
other words

W ′′(±1) > 0.(2.2)

For any ε > 0 and any function u : M −→ R, such that u ∈ H1(M),
we define the energy

Eε(u) := ε2
∫
M
|∇u|2g dvg +

∫
M
W (u) dvg,(2.3)

where ∇ denotes the gradient and dvg the volume form on M associated
to the Riemannian metric g. As usual, we agree that Eε(u) = ∞ when
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W (u) /∈ L1(M). We also define the volume constraint

V (u) :=
∫
M
u dvg.(2.4)

Granted the above definitions, there are two closely related varia-
tional problems we can consider:

1. We can consider the critical points of the energy u −→ Eε(u),
which are solutions of

−ε2 ∆gu +
1
2
W ′(u) = 0,(2.5)

in M , where ∆g is the Laplace-Beltrami operator in M . Moreover,
if ∂M �= ∅ then the additional condition

∂ν∂M
u = 0,(2.6)

must hold on ∂M , where ν∂M denotes the unit vector field normal
to ∂M . This problem is related to the Allen-Cahn equation [2] and
it is well-known that, as ε tends to 0, the interfaces (i.e., the nodal
sets of the solutions of (2.5)) converge to minimal hypersurfaces.
Concerning this variational problem, the question we would like
to address in this paper is the following:

(P-1)
Assume that N ⊂M is a minimal hypersurface. Does
N appear as the limit, as the parameter ε tends to 0,
of the nodal sets of a sequence of critical points of Eε?

2. Given c0 ∈ (−1, 1), we can consider the critical points of the en-
ergy u −→ Eε(u) under the constraint V (u) = c0 |M |, where |M |
denotes the volume of M . This time, such a critical point u is
solution of

−ε2 ∆gu +
1
2
W ′(u) = ε λ,(2.7)

in M , where ε λ ∈ R corresponds to the Lagrange multiplier as-
sociated to the constraint V (u) = c0 |M |. Moreover, u satisfies
(2.6) on ∂M if ∂M �= ∅. According to [19], [8], the energy Eε
corresponds to the total energy of a fluid within the Wan der
Waals-Cahn-Hilliard theory of phase transitions. The Lagrange
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multiplier ε λ, which appears in (2.7), is known in the physics lit-
erature as the chemical potential of the density configuration u.
Now, the question we would like to address becomes:

(P-2)

Assume that N ⊂ M is a constant mean curvature
hypersurface. Does N appear as the limit, as the
parameter ε tends to 0, of the nodal sets of a se-
quence of critical points of Eε subject to the constraint
V (u) = c0 |M |?

Before we proceed, let us observe that, in both problems, we are not
only looking for minimizers of Eε but more generally for critical points.

Remark 2.1. If the infimum of the function W is achieved at
exactly two points u±, there is no loss of generality in considering
that u± = ±1 since we can always reduce to this case by considering
u 
→W (au + b) where a and b are chosen appropriately.

3. Definitions and Preliminaries

3.1 Admissible hypersurfaces in M

Obviously if N is the nodal set of some function u which is defined in
M and if 0 is a regular value of u then M −N is the union of

M+(N) := u−1((0,+∞)) and M−(N) := u−1((−∞, 0)).(3.1)

We shall associate to N the unit normal vector field which points into
M+(N). In the case where M has a boundary, it may happen that N
also has a boundary ∂N ⊂ ∂M . In this case, if N is the nodal set of the
function u and if in addition the function u has 0 Neumann boundary
condition on ∂M , then for all p ∈ ∂N ⊂ ∂M , the normal vector to
N at p and the normal vector to ∂M at p are orthogonal. This later
condition is standard in the study of minimal and constant mean curva-
ture hypersurfaces. Indeed, it is well-known that smooth hypersurfaces
N which are stationary points of the area functional (possibly with a
volume constraint) and have a boundary ∂N ⊂ ∂M , satisfy the later
orthogonality condition. This motivates the following:

Definition 3.1. A smooth embedded hypersurface N ⊂ M (not
necessarily connected) is admissible if N is the nodal set of a smooth
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function u for which 0 is a regular value of u and which, in the case
where M has a boundary, has 0 Neumann boundary condition.

A hypersurface N ⊂M which separates M into two regions M±(N),
and which meets ∂M orthogonally in the case where N has a nonempty
boundary, is easily shown to be admissible by using partitions of unity.
Observe that N may have many connected components.

3.2 The Jacobi operator

Before we introduce our next definition, we recall a few basic facts about
the study of constant mean curvature hypersurfaces N in a Riemannian
manifold (M, g). To begin with, let us recall that the Jacobi operator,
that is the linearized mean curvature operator about N , is given by

LN := ∆N + |AN |2 + Ricg(νN , νN ),(3.2)

where ∆N is the Laplace-Beltrami operator on N , |AN |2 denotes the
norm of the second fundamental form of N , Ricg is the Ricci tensor of
M and νN is a unit normal to N .

Given any (smooth) small function w on N , we can consider the
hypersurface N(w) which is the normal graph on N of the function w
(the image of N by the map p ∈ N 
→ expp(w(p)νN (p))). If H(w)
denotes the mean curvature of N(w), defined as the arithmetic mean of
the principal curvatures, then the linear operator LN is the differential
of w 
→ nH(w) at w ≡ 0.

When ∂N is empty, solutions of the homogeneous problem

LN w = 0,(3.3)

on N are called Jacobi fields. When ∂N is not empty, we further assume
that N meets ∂M orthogonally, then Jacobi fields are the solutions of
LN w = 0 in N which satisfy the boundary condition

BN w := ∂ν∂M
w + A∂M (νN , νN )w = 0,(3.4)

on ∂N , where A∂M is the second fundamental form of ∂M in M̃ . Equa-
tion (3.4) has its origin in the requirement that all the hypersurfaces
we are looking at meet ∂M orthogonally and this should be true for
the hypersurfaces generated by the flow associated to a vector field X
satisfying X = w νN on N .

Minimal hypersurfaces are critical points of the area functional while
constant mean curvature hypersurfaces are critical points of the area
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functional with respect to deformations that keep constant the volume
enclosed by the hypersurface. Consider a deformation of the hypersur-
face N by the flow generated by a vector field X. The second variation
formula for the area functional is then given by

X −→ −
∫
N
wLNw dag +

∫
∂N

wBN w dsg,

where the function w := g(νN , X). If one considers a deformation which
is volume preserving up to first order, then the function w also has to
satisfy ∫

N
w dag = 0.

We refer to [5] or [18] for a derivation of the second variation of the area
functional in a Riemannian manifold. Here dag and dsg are the volume
forms on N and ∂N which are induced by the metric g.

3.3 Nondegeneracy

The previous definitions being understood, we can now give the notions
of nondegeneracy which are associated to the two problems we are in-
terested in. To begin with let us define the notion of nondegenerate
minimal hypersurface:

Definition 3.2. An admissible minimal hypersurface N is said to
be nondegenerate if there are no nontrivial solutions w ∈ C2,α(N) of

LN w = 0,

in N , with BN w = 0 on ∂N if N has a boundary.

The notion of nondegeneracy for minimal hypersurfaces is standard.
Consider the Jacobi operator

LN :
[C2,α(N)

]
0
−→ C0,α(N),(3.5)

where the subscript 0 is meant to point out that functions in
[C2,α(N)

]
0

satisfy BNw = 0 on ∂N when this latter is not empty. Nondegeneracy
is equivalent to the fact that the operator LN is injective. This operator
being self-adjoint and elliptic, nondegeneracy is also equivalent to the
invertibility of the operator LN defined in (3.5). On a more geometric
point of view, if N is a nondegenerate minimal hypersurface, the implicit
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function theorem ensures that it is possible to find a hypersurface Ñ
which is close to N and whose mean curvature H̃ is prescribed, close to
the mean curvature H of N .

We will also need the notion of volume-nondegenerate constant mean
curvature hypersurface:

Definition 3.3. An admissible constant mean curvature hypersur-
face N is said to be volume-nondegenerate if there are no nontrivial
solutions (w, c) ∈ C2,α(N)× R of

LN w + c = 0, and
∫
N
w dvg = 0,

in N , with BN w = 0 on ∂N if N has a boundary.

The notion of volume-nondegeneracy is less standard and perhaps re-
quires some explanation. This time, we consider the extended-operator

LN :
[C2,α(N)

]
0
× R −→ C0,α(N)× R

(w, c) 
−→
(
LNw + c,

∫
N
w dag

)
.

(3.6)

Thus, volume-nondegeneracy is equivalent to the fact that the operator
LN is injective. Observe that LN is self-adjoint with respect to the
scalar product

〈(v, c), (w, d)〉 :=
∫
N
v w dag + c d,

in L2(N)×R. The operator LN being clearly elliptic, volume-nondege-
neracy is also equivalent to the invertibility of the operator LN defined
in (3.6). From a geometric point of view, if N is a constant mean curva-
ture volume-nondegenerate hypersurface, the implicit function theorem
ensures that it is possible to find a hypersurface Ñ which is close to
N , whose mean curvature H̃ is, up to a constant function, prescribed
close to H the mean curvature of N and such that the volume enclosed
by this hypersurface M+(Ñ) is prescribed close to M+(N), the volume
enclosed by N . Hence, it is possible to prescribe the volume enclosed
by Ñ and, up to a constant function, the mean curvature of Ñ .

4. Statement of the result

The previous definitions being understood, we can now state the
results we have obtained concerning both (P-1) and (P-2).
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We have the:

Theorem 4.1. Assume that N ⊂M is an admissible nondegenerate
minimal hypersurface. Then, there exists ε0 > 0 and for all ε ∈ (0, ε0)
there exists uε, critical point of u −→ Eε(u), such that uε converges
uniformly to 1 on compact subsets of M+(N) (resp. to −1 on compact
subsets of M−(N)).

Let us mention the work of M. Kowalczyk [11] where a similar result
is obtained when M is a two dimensional domain of R2 and N is a line
segment.

We will also prove the:

Theorem 4.2. Assume that N ⊂ M is an admissible volume-
nondegenerate constant mean curvature hypersurface. Then, there exists
ε0 > 0 and for all ε ∈ (0, ε0) there exists uε, critical point of u −→ Eε(u)
under the constraint V (u) = |M+(N)| − |M−(N)|, such that uε con-
verges uniformly to 1 on compact subsets of M+(N) (resp. to −1 on
compact subsets of M−(N)).

It is in general extremely hard to check whether a given minimal
hypersurface (resp. constant mean curvature hypersurface) is nonde-
generate (resp. volume-nondegenerate). Hopefully, first observe that
both nondegeneracy and volume-nondegeneracy are “open conditions”,
namely are stable under small perturbation of the metric. Moreover, in
[23], B. White has proved that minimal hypersurfaces are nondegener-
ate for a generic choice of the metric. It follows from similar arguments
that volume-nondegeneracy also holds for a generic choice of the metric.

The solutions constructed in Theorem 4.2 are solutions of

−ε2∆uε +
1
2
W ′(uε) = ε λε.

As a byproduct of our construction, we obtain a precise expansion of uε
in terms of ε. We also get the expansion of the Lagrange multiplier λε

λε =
1
2
c� nHN +O(ε),

where HN is the mean curvature of the limit interface N and where the
constant c� is given by

c� :=
∫ +1

−1

√
W (s) ds.
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Finally, in both problems, the expansion of the energy Eε(uε) of the
solutions we construct, is given by

Eε(uε) = 2 ε c� |N |+O(ε2).

where |N | is the volume of the interface N . These expansions agree
with the expansions which have already been obtained in [13] in the case
where uε are minimizers of Eε subject to the constraint V = |M+(N)|−
|M−(N)|.

Unfortunately, in many interesting cases and despite the genericity of
these notions, minimal hypersurfaces are degenerate and constant mean
curvature hypersurfaces are volume-degenerate. This is for example
the case when there is a nontrivial group of isometries acting on M .
It is well-known that any (φt)t∈(−1,1) smooth one-parameter group of
isometries of M (φs◦φt = φs+t) gives rise to a Jacobi field on N (when M
has a nonempty boundary, we ask that these isometries preserve globally
∂M). Actually, the Jacobi field w is explicitly given by w := g(νN , X),
where νN is the normal vector field to N and where X := ∂tφt|t=0 is
the Killing field corresponding to the one-parameter group of isometries
{φt}t∈(−1,1). Observe that the isometries φt preserve the volume of the
regions M±(N). Therefore, it follows from the first variation of volume
that the Jacobi field w has mean zero on N . In particular, w is a
nontrivial solution of LNw = 0 (resp. (w, 0) is a nontrivial solution
of LN (w, 0) = 0) and the hypersurface N is degenerate (resp. volume-
degenerate).

In some cases, it is possible to reduce to a nondegenerate (or volume-
nondegenerate) problem by working in the space of functions and hyper-
surfaces which are equivariant with respect to the action of some finite
group of symmetries. If this can be done, then the above theorems apply
mutatis mutandis. We give here a short list of examples.

1. Consider M = Sn+1 the unit (n+ 1)-dimensional sphere with the
standard metric and N = Sn(r) the meridian at height

√
1− r2.

The hypersurface N has constant mean curvature and is volume-
degenerate since there are nontrivial Jacobi fields wi(x) = x · ei,
for i = 1, . . . , n coming from the action of the orthogonal group.
Here e1, . . . , en+1 is an orthonormal basis of Rn+1. However, one
may work with hypersurfaces and functions which are invariant
under the action of the n hyperplanar symmetries

Ii : (x1, . . . , xi, . . . , xn+1) −→ (x1, . . . ,−xi, . . . , xn+1)
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for i = 1, . . . , n. Namely, hypersurfaces Ñ ⊂ Sn+1 such that
Ii(Ñ) = Ñ and functions u : Sn+1 −→ R such that u ◦ Ii = u.
Since none of the Jacobi fields is invariant under all the symmetries
Ii, our construction applies and the conclusion of Theorem 4.2
is still valid. Moreover, when r = 1, the equator is a minimal
hypersurface and Theorem 4.1 is also valid.

2. Consider M = Bn+1 the unit ball of Rn+1 endowed with the in-
duced metric and N is a spherical cap. This example can be
dealt like the previous one and the result of Theorem 4.2 holds.
Moreover, when N is the horizontal hyperplane, Theorem 4.1 also
holds.

3. Consider a flat torus Tn+1 and let N ⊂ Tn+1 be a pair of paral-
lel hyperplanes. For the sake of simplicity, assume that Tn+1 =
Rn+1/Zn+1 and is identified with [−1

2 ,
1
2 ]n+1. Finally, assume that

N is given by xn+1 = ±α for some fixed α ∈ (0, 1/2). The action of
vertical translations induce a nontrivial Jacobi field. Again, one
may work with hypersurfaces and functions which are invariant
under the action of the n + 1 hyperplanar symmetry

In+1 : (x1, . . . , xi, . . . , xn+1) −→ (x1, . . . , xn,−xn+1),

and reduce to a volume-nondegenerate problem to show that the
conclusion of Theorem 4.1 and Theorem 4.2 are valid.

5. Comments

We state here a number of comments, open problems and directions
for further investigations:

1. In [14], A. Malchiodi and M. Montenegro have constructed solu-
tions of

ε2 ∆u− u + up = 0,(5.1)

which are defined on a 2 dimensional domain and which have 0
Neumann boundary condition. These solutions have the property
that they concentrate along the boundary of the domain and they
can be obtained for ε belonging to some sequence of intervals which
converge to 0. Behind this result, lies a very interesting bifurcation
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phenomena which somehow prevents the construction to work for
all ε close enough to 0. The analysis of A. Malchiodi and M.
Montenegro relies on the precise estimate of the least eigenvalue
of the linearized operator about an approximate solution, and this
forces them to work in 2 dimensional domains. It would be very
interesting to construct solutions of (5.1) which concentrate along
a geodesic of a two dimensional manifold and also to extend their
result to higher dimensional domains.

2. As already mentionned, M. Kowalczyk [11] has obtained a similar
result when M is a two dimensional domain of R2 and N is a line
segment. Our result can be also be compared to the result of C.H.
Taubes [22] where solutions of the Seiberg-Witten equation con-
centrating along holomorphic curves are constructed, though our
analysis is completely different. Very closely related to our result,
is the one of S. Brendle [7] on the construction of solutions of the
Ginzburg-Landau equation which concentrate along codimension
2 minimal submanifolds. In all these results, solutions to nonlin-
ear partial differential equation which concentrate along smooth
submanifolds are constructed. The concentration set is always a
minimal submanifold, which has to be assumed to be nondegen-
erate. Hence the construction holds for a generic choice of the
background metric.

3. Let us also mention the work of S. Brendle concerning Yang-Mills
connections in higher dimensions [6]. However, in this result, the
construction does not hold for a generic choice of the metric but
rather for a fairly restricted set of metrics.

4. We have not studied the case where the hypersurfaces are singular.
For example, it is known that stable minimal cones do exist in
dimension n + 1 � 8 and it would be very interesting to develop
the corresponding analysis in this case.

5. We have not studied the case where there is a nontrivial group of
isometries acting on M and where the problem cannot be reduced
to a nondegenerate problem by working in the space of functions
and hypersurfaces which are equivariant with respect to some fi-
nite group of symmetries. For example, one may consider the case
where M is the (n+ 1)-sphere with the standard metric and N is
the equator. Now, let us perturb slightly the metric on Sn+1 in
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some neighborhood of the north pole. Unless the perturbed met-
ric is invariant under the action of Ii, for i = 1, . . . , n which are
defined in Example (1), our method does not apply in this setting.

6. The canonical profile

In this section, we consider the case where M = R and λ = 0. In
this case, Equation (2.7) reduces to the following second order ordinary
differential equation

∂2
t u−

1
2
W ′(u) = 0.(6.1)

Observe that

H(u, ∂tu) := (∂tu)2 −W (u),

is constant along solutions of (6.1). Using this property it is easy to
check that there exists a solution of (6.1), which will be denoted by u�
in the remaining of the paper, and which satisfies

lim
t→±∞u�(t) = ±1, and u�(0) = 0.

This solution corresponds to H(u, ∂tu) ≡ 0 and is implicitly defined by

t =
∫ u�(t)

0

dx√
W (x)

.

We define the indicial roots γ± > 0 by

γ2
± :=

1
2
W ′′(±1),(6.2)

(observe that ±1 are minimizers of W and are assumed to be nonde-
generate, hence W ′′(±1) > 0 and this implies that γ± are well-defined).
The asymptotics of the function u� as t tends to ±∞ are easy to derive
by linearizing (6.1) about u ≡ ±1. We find that, for all k ∈ N, there
exists ck > 0 such that

|∂kt (u�(t) + 1)| � ck e
γ−t for all t � 0,(6.3)

and

|∂kt (u�(t)− 1)| � ck e
−γ+t for all t � 0.(6.4)
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7. Injectivity results

We prove some injectivity results for ordinary differential operators
and partial differential operators whose potential is defined using the
function u�.

7.1 Preliminary results

For all ζ ∈ R, we set

Lζ := − ∂2
t + ζ +

1
2
W ′′(u�).

All the injectivity results rely on the fact that, when ζ = 0, the function

w� := ∂tu�,

is a bounded positive solution of the homogeneous problem

L0w� = 0.

Furthermore w� decays exponentially at both +∞ and −∞. We intro-
duce, for ζ � 0, the indicial roots of the operator Lζ at ±∞ by

γ±(ζ) :=
√
ζ + γ2±,(7.1)

where γ± have been defined in (6.2). These indicial roots are related to
the asymptotic expansion near ±∞ of the solutions of the homogeneous
problem Lζ w = 0. For example, it follows from Cauchy’s existence
result for solutions of ordinary differential equations that there exist w
and w solutions of Lζw = 0, which satisfy

lim
t→+∞ e−γ+(ζ)tw(t) = 1, and lim

t→+∞ eγ+(ζ)tw(t) = 1.

Our first injectivity result reads:

Lemma 7.1. Assume that ζ � 0 and let w be a solution of Lζ w = 0
which is defined on (t1, t2). Further assume that w(ti) = 0, for i = 1, 2.
Then w ≡ 0.

Proof. We argue by contradiction. Given η ∈ R, observe that

Lζ(w� + η w) = ζ w�.(7.2)
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Now, since we have assumed that w is not identically equal to 0, one
can choose η ∈ R such that the infimum of the function W := w�+ η w,
over [t1, t2] is equal to 0. Observe that, since w(t1) = w(t2) = 0, the
infimum of W is achieved at some point t0 ∈ (t1, t2) and LζW � 0 at
this point. When ζ > 0, this last inequality clearly contradicts (7.2).
When ζ = 0, observe that W is a solution of some second order linear
ordinary differential equation and that W (t0) = ∂tW (t0) = 0, hence
W ≡ 0. This contradicts the fact that W (ti) �= 0 for i = 1, 2. q.e.d.

Our second injectivity result classifies the set of ζ for which there
exists a bounded solution of Lζw = 0, which is defined on R or on a
half line. Given δ± ∈ R, we define δ := (δ−, δ+) and the function

ϕδ(t) := (1 + et)δ+ (1 + e−t)δ− .(7.3)

In particular, ϕδ(t) ∼ eδ+t at +∞ and ϕδ(t) ∼ e−δ−t at −∞. This
definition being understood, we now prove the:

Lemma 7.2. Assume that ζ > 0. Let w be a solution of Lζ w = 0
which is defined on R (or on (−∞, t0) or (t0,+∞), in which case we
ask that w(t0) = 0). Further assume that |w| is bounded by a constant
times the function ϕδ for δ± < γ±(ζ). Then w ≡ 0.

Proof. The proof of this result is almost identical to the proof of the
previous one. The key observation is that, under the above assumptions,
any solution of Lζw = 0 defined on a half line decays faster than w� at
infinity. This follows at once from the fact that the indicial roots γ±(ζ)
of Lζ are larger than the indicial roots γ± of L0.

For example, assume that w is defined on (t0,+∞). Any solution
of the homogeneous problem Lζw = 0 is a linear combination of w, a
solution which blows up exponentially at +∞ like eγ+(ζ)t, and w, the
solution which decays exponentially at +∞ like e−γ+(ζ)t. Since |w| is
bounded by eδ+t for some δ+ < γ+(ζ), we conclude that w is collinear
to w. Now, γ+(ζ) > γ+ hence w decays faster than w� at +∞. Once
this is known, the proof of the result reduces to the proof of Lemma 7.1.

q.e.d.

The set of solutions of Lζw = 0 is two dimensional and there exists
a unique w−

ζ solution of Lζw−
ζ = 0 which is defined on all R and which

satisfies

lim
t→−∞ e−γ−(ζ) tw−

ζ (t) = 1.
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As already mentioned, this essentially follows from Cauchy’s existence
result for solutions of ordinary differential equations. When ζ > 0,
the previous Lemma implies that the function w−

ζ does not vanish and
furthermore blows up exponentially at +∞ like t → eγ+(ζ) t. Similarly,
there exists a unique w+

ζ solution of Lζw+
ζ = 0 on R which satisfies

lim
t→+∞ eγ+(ζ) tw+

ζ (t) = 1.

Again, when ζ > 0, this function does not vanish and blows up expo-
nentially at −∞ like t→ e−γ−(ζ) t.

7.2 Injectivity results

Assume that (N,h) is a compact n-dimensional Riemannian manifold
with or without boundary. Further assume that (N,h) is at least C1,α.
This means that one can choose local coordinate charts on N in which
the coefficients of the metric h are C1,α functions. We define on the
product space R×N the partial differential operator

Lh := −∂2
t −∆h +

1
2
W ′′(u�),(7.4)

where ∆h is the Laplace-Beltrami operator on (N,h). Using the result
of Lemma 7.1, we get the:

Corollary 7.3. Assume that w is a solution of Lhw = 0 which is
defined on (t1, t2) × N . Further assume that w = 0 on {ti} × N , for
i = 1, 2 and that w has 0 Neumann boundary data on (t1, t2) × ∂N if
∂N is not empty. Then w ≡ 0.

Proof. We denote by (φj , λj)j�0 the eigendata of ∆h (with Neumann
boundary conditions when the boundary of N is not empty). Namely

∆hφj = −λj φj ,
with λj � λj+1. We also assume that the eigenfunctions are normalized
so that their L2 norm on N is 1. We decompose the function w defined
on (t1, t2)×N as

w(t, y) =
∑
j∈N

wj(t)φj(y).

Then wj is a solution of Lλj
wj = 0 and the result of Lemma 7.1 implies

that wj ≡ 0. This completes the proof. q.e.d.

Using similar arguments together with Lemma 7.2, we also get the:
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Corollary 7.4. Assume that w is a solution of Lhw = 0 which
is defined on R × N . Further assume that w is bounded by a constant
times ϕδ for some δ± < γ±. Then w only depends on t and there exists
a constant c ∈ R such that w = cw�.

Before we proceed, let us observe that the above result holds under
a slightly more general assumption, namely that δ± < γ±(λ1), where
λ1 is the first nonzero eigenvalue of the Laplace-Beltrami operator ∆h.
Also the function ϕδ is the natural extension to R×N of the function
defined in (7.3).

Proof. Again, we decompose the function w defined on R×N as

w(t, y) =
∑
j∈N

wj(t)φj(y)

Then wj is a solution of Lλj
wj = 0 and the result of Lemma 7.2 implies

that wj ≡ 0, for all j �= 0. When j = 0, all bounded solutions of
L0w = 0 have to be collinear to w�. This completes the proof. q.e.d.

Let ∆ denote the Laplacian in Rn endowed with the Euclidean met-
ric. We define the elliptic operator

L := −∂2
t −∆ +

1
2
W ′′(u�).

The result of Lemma 7.2 also implies the:

Corollary 7.5. Assume that w ∈ L∞(R × Rn) is a solution of
Lw = 0. Then w only depends on t and there exists a constant c ∈ R

such that w = cw�.

This result seems to be standard and for example appeared (without
a proof) in [17]. We have not been able to find a precise reference for
it and since this is a key result for the forthcoming argument, we give
here a detailed proof.

Proof. We denote by S(Rk), the space of smooth rapidly decaying
functions which are defined on Rk. This space is endowed with the
family of semi-norms

[φ ]k,l := ‖(1 + |z|k)∇lφ‖L∞ ,

for all k, l ∈ N, where z denotes the variable in Rk. The dual space
S ′(Rk) is the space of tempered distributions [20].
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Let F denote the Fourier transform in Rn and F the inverse Fourier
transform. We define, for all φ ∈ S(R× Rn),

T : φ −→
∫

R

〈w(t, ·),F(φ(t, ·))〉S′,S dt.

This clearly defines a tempered distribution T ∈ S ′(R × Rn). Let us
denote by ξ ∈ Rn the dual variable of z ∈ Rn. Using the fact that w is
a solution of Lw = 0, we get

〈L|ξ|2 T,Ψ〉S′,S := 〈T,L|ξ|2Ψ〉S′,S = 0,(7.5)

for any smooth function Ψ ∈ S(R× Rn).
We claim that the support of T is included in R × {0}. Indeed,

choose any smooth function ψ : R×Rn −→ R with compact support in
R× (Rn − {0}). We define

Ψ(t, ξ) :=
1

α(ξ)

(
w−
|ξ|2(t)

∫ +∞

t
w+
|ξ|2(s)ψ(s, ξ)ds

+ w+
|ξ|2(t)

∫ t

−∞
w−
|ξ|2(s)ψ(s, ξ)ds

)
,

where

α(ξ) := w−
|ξ|2(t) ∂tw+

|ξ|2(t)− ∂tw
−
|ξ|2(t)w+

|ξ|2(t),

is the Wronskian of the two independent solutions w±
|ξ|2 of the homo-

geneous problem L|ξ|2w = 0 which have been defined at the end of
§7.1 (hence α does not vanish and does not depend on t !). We claim
that L|ξ|2Ψ = ψ and also that Ψ ∈ S(R × Rn). The first claim fol-
lows at once from the fact that w±

|ξ|2 are solutions of L|ξ|2w = 0. For
the second claim, observe that the function ψ has compact support in
R×(Rn−{0}), hence Ψ(t, ξ) ≡ 0 for all |ξ| large enough (say |ξ| � c) and
|ξ| small enough (say |ξ| � 1/c). To show that Ψ is rapidly decaying in
t when 1/c � |ξ| � c, we use the fact that, for ξ �= 0, the function w+

|ξ|2
is exponentially decaying at +∞ and the function w−

|ξ|2 is exponentially
decaying at −∞. This implies at once that Ψ ∈ S(R× Rn). Therefore,
we conclude that

〈T, ψ〉S′,S = 0,

for all ψ : R×Rn −→ R with compact support in R× (Rn −{0}). This
proves the claim.
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By a classical result in the theory of distributions [20], we know
that T is the linear combination of derivatives (of bounded order), with
respect to t and ξj , j = 1, . . . , n, of measures with support on R× {0}.
Performing the Fourier transform backward in the ξ variable, we see
that the function w(t, ·) depends polynomially on the coordinates zj of
z ∈ Rn. This, together with the fact that w is bounded in the z variable,
implies that the function w only depends on t and hence w = cw�. This
completes the proof of the result. q.e.d.

Given γ ∈ R, we define the elliptic operator

Lγ := −∂2
t −∆ + γ.

Following the proof of Lemma 7.5, we have:

Lemma 7.6. Assume that γ > 0 and that u ∈ L∞(R × Rn) is a
solution of Lγ w = 0. Then w ≡ 0.

8. Mapping properties of a model operator

In this section we study the mapping properties of the operator Lh,
given in (7.4), when this operator is defined between weighted Hölder
spaces.

8.1 Function spaces

Assume that (N,h) is a compact n-dimensional compact Riemannian
manifold with or without boundary. To begin with, let us define the
weighted spaces we will work with:

Definition 8.1. Given 7 ∈ N, α ∈ (0, 1) and δ := (δ−, δ+) ∈ R2, we
define the weighted space C�,αδ (R×N) to be the space of functions which
are 7 times differentiable, whose 7-th partial derivatives are Hölder of
exponent α and for which the weighted norm

‖u‖C�,α
δ (R×N)

:= ‖ϕ−δ u‖C�,α(R×N),

is finite. Here by definition

‖u‖C�,α(R×N) :=
�∑
j=0

‖∇ju‖L∞(R×N) + sup
p�=q ∈R×N

|∇�u(p)−∇�u(q)|
d(p, q)α

,

is the standard (unweighted) Hölder norm and d is the geodesic distance
in R×N , for the product metric.
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Roughly speaking, this is the space of functions which, together with
their partial derivatives, are bounded by eδ+t on (0,+∞) × N and are
bounded by e−δ−t on (−∞, 0)×N .

We finally define a 1-codimensional subspace of C�,αδ (R×N).

Definition 8.2. Given 7 ∈ N, α ∈ (0, 1) and δ := (δ−, δ+) ∈ R2

such that δ± < γ±. The space D�,αδ (R ×N) is defined to be the closed
subspace of functions u ∈ C�,αδ (R ×N) which are L2 orthogonal to w�,
i.e., ∫

R×N
u(t, y)w�(t) dt dah = 0.(8.1)

Naturally, this space is endowed with the induced norm.

The restriction δ± < γ± is needed to ensure the convergence of the
integral in (8.1), i.e., that uw� ∈ L1(R×N).

In the case where N has a boundary, we define[
D�,αδ (R×N)

]
0
,

to be the subspace of functions of D�,αδ (R×N) which have 0 Neumann
boundary condition on R × ∂N . In the subsequent sections, it will be
convenient to adopt the notation

[
D�,αδ (R×N)

]
0

for D�,αδ (R×N) even
when N has no boundary, being understood that the condition on the
boundary data is void in this latter case.

8.2 Mapping properties

Recall that we have defined on the product space R × N the partial
differential operator

Lh := −∂2
t −∆h +

1
2
W ′′(u�),(8.2)

where ∆h is the Laplace-Beltrami operator on (N,h). We now assume
that (N,h) is at least C1,α(N). This means that, for all y ∈ N , there
exists local coordinate (z1, . . . , zn) ∈ Rn (or in Rn+ := {(z1, . . . , zn) ∈
Rn : zn > 0} in the case where y ∈ ∂N) in some neighborhood of y for
which the coefficients hij of the metric

h :=
∑
i,j

hij dzi ⊗ dzj ,
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are C1,α functions. Clearly, the operator

Lh :
[
D2,α
δ (R×N)

]
0
−→ D0,α

δ (R×N),(8.3)

is well-defined and bounded, for any δ ∈ R2. It is well known that the
mapping properties of the above defined operator depends crucially on
the choice of the weight parameter δ. Indeed, the set of indicial roots
of Lh at +∞ (resp. −∞) is defined by I+ (resp. I−) where

I± := {γ±(λj) : j � 0},
and λj are the eigenvalues of ∆h on N . Now, if δ± /∈ I±, the operator
(8.3) can be shown to have closed range and to be Fredholm. While, if
δ− or δ+ is an indicial root, then the operator (8.3) does not have close
range, and hence is not Fredholm.

The result of Corollary 7.4 yields the injectivity of the operator
Lh when δ± < γ±. This, together with a ”duality argument” implies
that the operator (8.3) is surjective provided δ± > −γ± and δ± /∈ I±
(the duality argument does hold stricto sensu when the operator is de-
fined between weighted Lebesgue spaces and the corresponding result in
weighted Hölder spaces is then obtained through elliptic regularity the-
ory). In particular, the operator (8.3) is an isomorphism if the weight
δ± ∈ (−γ±, γ±). Most of these mapping properties of Lh will not be
needed. Indeed, we will only need the latter claim on the range of
weights for which the operator is an isomorphism. Therefore, in the
next Proposition, we concentrate on the proof of this fact.

In addition, we will also show that the inverse of Lh is bounded
independently of the choice of the metric h on N , provided an uniform
ellipticity condition is fulfilled. Hence, we now assume that there exists
Λ > 0 such that:

(i) For all y ∈ N , there exists a local chart

Yy : Bn(Λ) −→ N(8.4)

where Bn(Λ) denotes the ball or radius Λ centered at the origin in
Rn (resp. Yy is defined on Bn+(Λ) the half ball of radius Λ centered
at the origin in Rn+, if y ∈ ∂N).

(ii) For all z ∈ Bn(Λ) (or all z ∈ Bn+(Λ)), the metric h at the point of
coordinates z is given by

h :=
∑
i,j

hij(z) dzi ⊗ dzj ,(8.5)
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where the coefficients hij are of class C1,α and satisfy hij(0) = δji .

(iii) For all z ∈ Bn(Λ) (or all z ∈ Bn+(Λ)), the metric h satisfies∑
i,j

hij(z)ξi ξj � Λ |ξ|2,(8.6)

for all ξ ∈ Rn.

(iv) We have

‖h‖C1,α(N) � 1
Λ
.(8.7)

where the C1,α norm is the usual one, once a section of the sym-
metric 2 tensors, is fixed as in (8.5).

The second condition will ensure that the Laplace-Beltrami operator
on N is uniformly elliptic while the third condition will ensure uniform
Hölder estimates, independent of the choice of the metric.

We prove the following:

Proposition 8.3. Assume that h satisfies (8.6) and (8.7). Further
assume that δ± ∈ (−γ±, γ±). Then, the operator Lh defined in (8.3) is
an isomorphism and there exists a constant c > 0, only depending on
Λ, such that, for all w ∈ [D2,α

δ (R×N)]0 we have

‖w‖C2,α
δ (R×N)

� c ‖Lhw‖C0,α
δ (R×N)

.

Proof. As already mentioned, the injectivity of the operator Lh
follows at once from Corollary 7.4. Indeed, given the range in which we
have chosen δ±, any solution of Lhw = 0 which is bounded by ϕδ has
to be collinear to w�. Since functions in [D2,α

δ (R×N)]0 are orthogonal
to w� in L2(R×N), we conclude that w ≡ 0.

We now prove that the operator Lh defined in (8.3) is surjective. To
this aim, we decompose any function f ∈ D0,α

δ (R×N) as

f(t, y) = f0(t) + f̃(t, y),

where, for each t, the function f̃(t, ·) is orthogonal to the constant func-
tion 1 in L2(N). The proof is now decomposed into 5 steps.

Step 1. We define

w0(t) := w�(t)
(
α0 +

∫ t

0
w−2
� (s)

∫ s

−∞
w�(r) f0(r) dr ds

)
,
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where the constant α0 ∈ R is chosen so that∫
R

w0w� dt = 0.

Using the fact that w� ∼ eγ−t at −∞, together with −γ− < δ− < γ−,
we conclude that

sup
(−∞,0]

eδ−t |w0| � c0 sup
R

eδ−t |f0|.

Sincef ∈ D�−2,α
δ (R×N), we have∫

R

f0w� dt = 0.

Therefore, we have the alternative definition of w0 as

w0(t) := w�(t)
(
α0 −

∫ t

0
w−2
� (s)

∫ +∞

s
w�(r) f0(r) dr ds

)
,

and, using this time the fact that w� ∼ e−γ+t at +∞ together with
−γ+ < δ+ < γ+, we conclude that

sup
R

e−δ+t |w0| � c0 sup
R

e−δ+t |f0|,

for some constant c0 > 0 which does not depend on f0.

Step 2. Making use of the result of Corollary 7.3, we can solve, for
each T > 0

Lhw̃T = f̃ , in (−T, T )×N,

with w̃T = 0 on {±T}×N and 0 Neumann boundary data on (−T, T )×
∂N if N has a boundary. The superscript ∼ is meant to recall that we
are working with functions (t, y) → g̃(t, y) for which the function g̃(t, ·)
is for each t orthogonal to the constant function 1 in L2(N).

Step 3. Choose t0 > 0 large enough so that

p := min
(

inf
(−∞,−t0)

(
1
2
W ′′(u�)− δ2

−

)
, inf
(t0,+∞)

(
1
2
W ′′(u�)

)
− δ2

+

)
> 0,

then, the potential in the operator Lh is bounded from below by p in
(R− [−t0, t0])×N and hence Lh satisfies the maximum principle in this
set. Moreover, we have

Lh e
−δ−t =

(
1
2
W ′′(u�)− δ2

−

)
e−δ−t � p e−δ−t,
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in (−∞,−t0)×N and

Lh e
δ+t =

(
1
2
W ′′(u�)− δ2

+

)
eδ+t � p eδ+t,

in (t0,+∞)×N . Hence, the function t→ eδ+t (resp. t→ e−δ−t) can be
used as barrier in (t0,+∞)×N (resp. in (−∞, t0)×N) to prove, for all
T > t0, the inequality

‖ϕ−δw̃‖L∞((−T,T )×N)(8.8)

� c
(
‖ϕ−δw̃‖L∞([−t0,t0]×N) + ‖ϕ−δ f̃‖L∞((−T,T )×N)

)
,

for some constant c > 0 which only depends on δ and on p.

Step 4. We claim that

‖ϕ−δ w̃T ‖L∞((−T,T )×N) � c ‖ϕ−δ f̃‖L∞(R×N),

for some constant c > 0 which depends on Λ but neither depends on
T � 1 nor on f̃ . We argue by contradiction and assume that there exists
a sequence of metrics hk satisfying (8.6) and (8.7), a sequence Tk � 1,
a sequence of functions f̃k, and a sequence of solutions of Lhw̃k = f̃k in
(−Tk, Tk) ×N , with w̃k = 0 on {±Tk} ×N and 0 Neumann boundary
data on (−Tk, Tk)× ∂N if N has a boundary, such that

‖ϕ−δ w̃k‖L∞((−Tk,Tk)×N) = 1, and lim
k→∞

‖ϕ−δ f̃k‖L∞(R×N) = 0.

Furthermore, f̃(t, ·) and w̃(t, ·) are, for all t, orthogonal to 1 in L2(N).
Observe that the claim is certainly true when Tk remains bounded,

hence we may well assume that the sequence Tk � t0 tends to +∞. Since
both w̃k and f̃k are uniformly bounded on compact subsets, we deduce
from elliptic estimates that the sequence of functions w̃k is uniformly
bounded in C1,α topology on any compact of R × N . Now, Ascoli’s
Theorem together with a standard diagonal argument implies that, up
to a subsequence and for some α′ < α, the sequence of metrics hk
converges (in C1,α′(N) topology) to h∞, the sequence of functions w̃k
converges (in C1,α′(N) topology) to w̃∞. Passing to the limit in the
equation satisfied by w̃k, we conclude that w̃∞ is a weak solution of
Lh∞ w̃∞ = 0 in R × N , which is bounded by ϕδ. But Corollary 7.4
and the choice of the parameter δ± in (−γ±, γ±) imply that w̃∞ = cw�,
for some constant c ∈ R. Since the function w̃∞(t, ·) is by construction
orthogonal to 1 in L2(N), we conclude that c = 0, hence w̃∞ ≡ 0.
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Finally, (8.8) implies that, for each k ∈ N sufficiently large (so that
Tk � t0) we have

‖ϕ−δw̃k‖L∞([−Tk,Tk]×N)

= 1 � c
(
‖ϕ−δw̃k‖L∞([−t0,t0]×N) + ‖ϕ−δf̃k‖L∞(R×N)

)
.

Passing to the limit as k tends to ∞, we conclude that

1 � c ‖ϕ−δ w̃∞‖L∞([−t0,t0]×N),

which implies that w̃∞ is not identically equal to 0. A contradiction.
This ends the proof of the claim.

Step 5. Using the results of Steps 2 and 4, standard elliptic estimates
and Ascoli’s Theorem, we can pass to the limit as T tends to +∞ in the
sequence w̃T and obtain a function w̃ solution of Lh w̃ = f̃ in R × N .
Furthermore, the result of Step 4 implies that

‖ϕ−δw̃‖L∞(R×N) � c ‖ϕ−δf̃‖L∞(R×N),

for some constant c > 0 which only depends on Λ. Collecting this result
and the result of Step 1, we conclude that w = w0 + w̃ is a solution of
Lhw = f which satisfies (8.1). Furthermore, using Schauder’s estimates,
we also conclude that

‖w‖C2,α
δ (R×N)

� c ‖f‖C0,α
δ (R×N)

,

for some constant c > 0 which only depends on Λ. In particular w ∈
[D2,α
δ (R×N)]0. This completes the proof of the result. q.e.d.

Once Proposition 8.3 is proven, it is easy to see that:

Proposition 8.4. Assume that δ± < γ±. If w ∈ [D2,α
δ (R × N)]0

and f ∈ D0,α
δ (R×N) satisfy Lhw = f and if in addition∫

R

f(t, y)w�(t) dt = 0,

for all y ∈ N , then ∫
R

w(t, y)w�(t) dt = 0,

for all y ∈ N .
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Proof. Recall that (φj , λj)j�0 are the eigendata of ∆h (with 0 Neu-
mann boundary condition if ∂N is not empty). For all j � 1, we
multiply the equation Lhw = f by w� φj and integrate by parts over
R×N . We obtain

∫
R×N

wLh(φj w�) dt dah = 0.

Since Lh(w� φj) = λj w� φj , we conclude that

λj

∫
N
φj

(∫
R

ww� dt

)
dah = 0.

When j �= 0, λj �= 0, hence this implies that the function

Φ(y) :=
∫

R

w(t, y)w�(t) dt,

is orthogonal to φj in L2(N). By construction this function is also
orthogonal to φ0, which is the constant function, in L2(N). Since the
(φj)j�0 form a Hilbert basis of L2(N), we conclude that Φ ≡ 0. q.e.d.

Before we proceed further, let us comment on our choice of func-
tion spaces. Observe that, in (8.3), we could have replaced the spaces
D�,αδ (R×N) by the spaces C�,αδ (R×N) and we could have defined

L̃h :
[
C2,α
δ (R×N)

]
0
−→ C0,α

δ (R×N).

Then all the above results about the set of weights for which the operator
is Fredholm remain true. However, this time, the injectivity of L̃h only
holds provided δ± < −γ± and, using a “duality argument”, this implies
that the operator L̃h is now surjective when δ± > γ± are not indicial
roots. Hence, this choice of function spaces would force us to work in a
space of functions which blow up exponentially at ±∞ and this would
not be suitable for the forthcoming nonlinear analysis.
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9. Mapping properties of a singularly perturbed linear
operator

9.1 Function spaces

Assume that (N,h) is a n-dimensional compact Riemannian manifold,
with or without boundary and further assume that the metric h on N
satisfies (8.6) and (8.7), for some fixed constant Λ > 0. We now turn to
the study of the operator

Lε := −ε2 (
∂2
t + ∆h

)
+

1
2
W ′′(u�(·/ε)),(9.1)

where ε ∈ (0, 1) is a fixed parameter. This operator still depends on h
but, since we now focus our attention on its dependence with respect to
the parameter ε, we omit the subscript h. Taking the parameter ε into
account, we now define:

Definition 9.1. Given 7 ∈ N, α ∈ (0, 1), δ := (δ−, δ+) ∈ R2 and
ε ∈ (0, 1), we define the weighted space C�,αδ,ε (R×N) to be the space of
functions which are 7 times differentiable, whose 7-th partial derivaties
are Hölder of exponent α and for which the weighted norm

‖u‖C�,α
δ,ε (R×N)

:= ‖ϕ−δ(·/ε)u‖C�,α
ε (R×N)

,

is finite. Here, by definition

‖u‖C�,α
ε (R×N)

:=
�∑
j=0

εj ‖∇ju‖L∞(R×N) + ε�+α ‖∇�u‖C0,α(R×N).

When δ± < γ±, we also define the spaces D�,αδ,ε (R × N) as the 1-

codimensional subspace of functions u ∈ C�,αδ,ε (R × N) which are L2

orthogonal to the function w�(·/ε). For fixed ε the results of §8 hold
and this shows that

Lε :
[
D2,α
δ,ε (R×N)

]
0
−→ D0,α

δ,ε (R×N),

is an isomorphism, provided δ± ∈ (−γ±, γ±). Our aim is now to under-
stand the mapping properties of Lε as the scaling parameter ε tends to
0. Unfortunately, if we work with the function spaces D2,α

δ,ε (R×N), the
norm of the inverse of the above defined operator blows up as ε tends
to 0.
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To get a better understanding of the underlying phenomena, we
digress slightly and study the spectrum of the self-adjoint operator Lε
acting on functions which are defined on [−1, 1] × N , have 0 Dirichlet
boundary conditions on {±1}×N and 0 Neumann boundary conditions
on [−1, 1]×∂N if ∂N is not empty. Recall that there is an eigenfunction
decomposition of the functions w defined on [−1, 1]×N as

w(t, y) =
∞∑
j=0

wj(t)φj(y),

where (φj , λj) are the eigendata of ∆h. This splitting induces a splitting
of the operator Lε into a sequence of second order ordinary differential
operators

Lε,j := −ε2 ∂2
t + ε2 λj +

1
2
W ′(u�(·/ε)),

acting on functions defined on [−1, 1]. The spectrum of Lε is then the
union of the spectra of the operators Lε,j . Namely

Spec (Lε) =
⋃
j∈N

Spec (Lε,j).

Furthermore, the spectrum of Lε,j is equal to the spectrum of Lε,0
shifted by ε2 λj . Now, the spectrum of Lε,0 is given by

SpecLε,0 := {µ0,ε < µ1,ε < µ2,ε . . . }.

All the eigenvalues are simple since the operator is a second order
ordinary differential operator. Moreover, arguing as in the proof of
Lemma 7.1, one can show that µ0,ε > 0. The existence of the func-
tion w� also implies easily that µ0,ε decays exponentially fast to 0 as ε
tends to 0. Furthermore, if w0,ε denote the eigenfunctions associated to
µ0,ε, which are normalized so that w0,ε(0) = 1, the sequence of rescaled
functions (w0,ε(ε ·))ε>0 converges on compacts to w�, as ε tends to 0.
Concerning the second eigenvalue µ1,ε, one can show that

lim
ε→0

µ1,ε > 0.

To prove this fact, one can argue by contradiction as in the proof of
Proposition 8.3. Since these results are not needed in our analysis, we
leave the proofs to the reader.
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On a heuristic level, the above study shows that, as ε tends to 0,
the number of small eigenvalues of Lε which are close to 0 tends to
+∞. Moreover the corresponding eigenfunctions are of the form w0,ε φj ,
where w0,ε(ε·) tends to w� as ε tends to 0. Since we want to work
with an operator whose inverse is uniformly bounded as ε tends to 0,
we need to replace the spaces we work with by much smaller function
spaces. It is standard to work orthogonally to all the eigenfunctions
which correspond to small eigenvalues to recover an operator whose
inverse is uniformly bounded. Since the eigenfunctions corresponding
to small eigenvalues tend to w�(·/ε)φj , as ε tends to 0, it should be
enough to work orthogonally to all the functions of the form w�(·/ε)φj ,
in order to recover an operator whose inverse is uniformly bounded.

The above should be enough to justify why we replace the spaces
D�,αδ,ε (R×N) by the much smaller function spaces which we now describe.

Definition 9.2. Given, 7 ∈ N, α ∈ (0, 1), δ := (δ−, δ+) ∈ R2 and
ε ∈ (0, 1) such that δ± < γ±, we define the weighted space E�,αδ,ε (R×N)

to be the space of functions u ∈ C�,αδ,ε (R×N), which satisfy

∀ y ∈ N,

∫
R

u(t, y)w�(t/ε) dt = 0.(9.2)

This space is endowed with the induced norm.

Observe that we now impose infinitely many constraints on the func-
tions u, so E�,αδ,ε (R × N) has infinite codimension in C�,αδ,ε (R × N). The
restriction δ± < γ± is needed to ensure the convergence of the integrals
in (9.2).

In the case where N has a boundary, we define
[
E�,αδ,ε (R×N)

]
0
, to

be the subspace of functions of E�,αδ,ε (R × N) which have 0 Neumann
boundary condition on R× ∂N . Again, we keep the same notation for
this space whether N has a boundary or not.

9.2 Mapping properties

It will be interesting to take into account the parameter ε in order to
relax slightly the assumptions on the metric h. Indeed, we will still
consider that h satisfies (8.6) but instead of (8.7) we now assume that
7 � 2 is fixed and that h satisfies the weaker condition

‖h‖C�−1,α
ε (N)

� 1
Λ
,(9.3)
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where by definition

‖h‖C�,α
ε (N)

:= ‖hij‖L∞(N) +
�∑
j=1

εj−1 ‖∇jhij‖L∞(N)(9.4)

+ ε�−1+α ‖∇�hij‖C0,α(N).

To define these, we use the local charts defined in (8.4) and the sections
of the symmetric two tensors defined in (8.5).

Remark 9.3. At first glance, this condition does not seem very
natural since, paralleling the definition of the spaces C�,αε (R × N), it
would have been more natural to require that

|h|C�,α
ε (N)

� 1
Λ
,(9.5)

where

|h|C�,α
ε (N)

:=
�∑
j=0

εj ‖∇jhij‖L∞(N) + ε�+α ‖∇�hij‖C0,α(N).

However, as we will see in the proof of the next Proposition, we will
need a control on the C1 norm of h which is slightly better then the one
which is provided by (9.5).

Indeed, if Λ is assumed to be fixed, ε∇hij converges uniformly to
0 as ε tends to 0 when h is assumed to satisfy (9.3), while this fact is
not guaranteed by (9.5). Now the fact that ε∇hij converges uniformly
to 0 as ε tends to 0 will be used in the proof of the next Proposition
and this will allow us to use the result of Corollary 7.5. It is possible
to use (9.5) instead of (9.3) and this simplifies some of the forthcoming
statements. However, we would have to pay a price, namely we would
have to prove a result similar to Corollary 7.5 when ∆ is replaced by a
more general elliptic operator on Rn.

Observe that, granted the above definitions, the operator

Lε : [E2,α
δ,ε (R×N)]0 −→ E0,α

δ,ε (R×N),(9.6)
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is well-defined. Indeed, given w ∈ E2,α
δ,ε (R×N) we have∫

R

Lεww�(·/ε) dt(9.7)

=
∫

R

(
−ε2(∂2

t + ∆h) +
1
2
W ′′(w�(·/ε))

)
ww�(·/ε) dt

=
∫

R

(
−ε2∂2

t +
1
2
W ′′(w�(·/ε))

)
ww�(·/ε) dt

− ε2 ∆h

(∫
R

ww�(·/ε) dt
)

=
∫

R

(
−ε2∂2

t +
1
2
W ′′(w�(·/ε))

)
w�(·/ε)w dt

= 0.

Hence, Lεw ∈ E0,α
ε (R×N). Recall that we have assumed that the metric

h satisfies (8.6) and (8.7). This implies that Lε is uniformly bounded as
ε varies in (0, 1). Applying the results of §8, we see that Lε, defined in
(9.6) is an isomorphism, provided δ± ∈ (−γ±, γ±). In the next result,
we show that the inverse of Lε is also uniformly bounded as ε varies in
(0, 1).

Proposition 9.4. Assume that h satisfies (8.6), (9.3) and further
assume that δ± ∈ (−γ±, 0]. There exists a constant c > 0 (only depend-
ing on Λ), such that, for all ε ∈ (0, 1) and for all w ∈ [E2,α

δ,ε (R × N)]0,
we have

‖w‖C2,α
δ,ε (R×N)

� c ‖Lεw‖C0,α
δ,ε (R×N)

.

The restriction δ± � 0 will be needed to apply the result of Corol-
lary 7.5.

Proof. We claim that, there exists a constant c > 0, such that if
w and Lεw are functions bounded by ϕδ(·/ε) (and w has 0 Neumann
boundary condition on R× ∂N if N has a boundary) and if w satisfies
(9.2), then

‖ϕ−δ(·/ε)w‖L∞(R×N) � c ‖ϕ−δ(·/ε) Lεw‖L∞(R×N).

As in the proof of Proposition 8.3, the proof of the claim relies on
the observation that there exists t0 > 0 and c > 0 such that, if w and
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Lεw are functions bounded by ϕδ(·/ε) (and w has 0 Neumann boundary
condition on R× ∂N if N has a boundary), then

‖ϕ−δ(·/ε)w‖L∞(R×N)(9.8)

� c
(‖w‖L∞([−t0ε,t0ε]×N) + ‖ϕ−δ(·/ε) Lεw‖L∞(R×N)

)
.

see (8.8). In order to prove the claim, we argue by contradiction. If
the claim were not true, there would exist a sequence εk tending to 0, a
sequence of metrics hk satisfying (8.6) and (9.3), a sequence of functions
wk satisfying (9.2) such that

‖ϕ−δ(·/εk)wk‖L∞(R×N) = 1, and

lim
k→∞

‖ϕ−δ(·/εk) Lεk wk‖L∞(R×N) = 0.

Moreover, the functions wk have 0 Neumann boundary condition on
R× ∂N if N has a boundary.

Observe that (9.8) implies that, for each k ∈ N

1 � c
(‖ϕ−δ(·/εk)wk‖L∞([−t0εk,t0εk]×N) + ‖ϕ−δ(·/εk) Lεk wk‖L∞(R×N)

)
.

Furthermore, since the functions y −→ sup[−t0εk,t0εk] ϕ−δ(t/εk)|wk(t, y)|
are continuous, for each k � 0, one can choose a point yk ∈ N such that

1 � c
(
‖ϕ−δ(·/εk)wk(·, yk)‖L∞([−t0εk,t0εk])(9.9)

+ ‖ϕ−δ(·/εk) Lεk wk‖L∞(R×N)

)
.

The hypersurface N being compact, we can assume without loss of
generality that the sequence yk converges in N .

We define, for all s ∈ R and for all z ∈ Rn (or Rn+) close enough to
the origin

w̃k(s, z̃) := wk(εk s, Yyk(εk z̃)).

In the case where N has a boundary, we define

ρk := d(yk, ∂N)/εk,

where d denotes the geodesic distance on N for the metric hk. We now
distinguish a few cases according to the behavior of the sequence (ρk)k,
which can be assumed to converge to ρ∞ ∈ [0,∞].
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Case 1. Assume that either N has no boundary or N has a boundary
and ρ∞ = +∞. Since both wk and Lεk wk are uniformly bounded on
compact sets, we deduce from elliptic estimates that the sequence of
functions w̃k is bounded in C1,α topology on any compact of R × Rn.
Now, Ascoli’s Theorem together with a standard diagonal argument
implies that, up to a subsequence and for some α′ < α the sequence of
functions w̃k converge (in C1,α′ topology) to w̃∞. Furthermore, w∞ is
bounded by ϕδ. Passing to the limit in the equation satisfied by w̃k, we
claim that the function w̃∞ is a weak solution of(

∂2
t + ∆− 1

2
W ′′(u�)

)
w̃∞ = 0,

in R×Rn. This is precisely at this point that we use the full strength of
(9.3) which guarantees that the C1 norm of the coefficients of the met-
rics hk are uniformly bounded, hence the sequence of dilated metrics
converges to the flat metric. While the weaker more natural condition
given in Remark 9.3 would only have ensured that the sequence of di-
lated metrics converges to some metric on Rn. Indeed, observe that,
in order to define the functions w̃k, we have chosen normal coordinates
εk z to parameterize N in some neighborhood of the point yk. In these
coordinates the metric hk = ε2k h̃k where

h̃k :=
∑
ij

h̃k,ij(z̃) dz̃i ⊗ dz̃j ,

satisfies h̃k,ij(0) = δji and

‖∇mh̃k,ij‖L∞ � c εk,

for m = 1, . . . , 2, thanks to (9.3). Here all norms are evaluated on a fixed
compact, c > 0 only depends on Λ and the partial derivatives are taken
with respect to the z̃i. This in turn implies that the Laplace-Beltrami
operator ε2k∆hk

can be expanded as

ε2k∆hk
= ∆ +O(εk |z̃| ∂z̃i ∂z̃j ) +O(εk ∂z̃i).

This explains why the equation satisfied by w̃∞ involves the operator
∆.

Case 2. Assume that N has a boundary and that ρ∞ < +∞.
Applying the above argument, we can assume that, up to a subsequence,
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the sequence of functions w̃k converges to w̃∞. Furthermore, w̃∞ is a
weak solution of (

∂2
t + ∆− 1

2
W ′′(u�)

)
w̃∞ = 0,

in R × Rn+ which is bounded by ϕδ. In addition, w has 0 Neumann
boundary data and we can then extend w̃∞ to R × Rn by reflection
across the hyperplane zn = 0 to reduce to Case 1.

In either case, Lebesgue’s convergence Theorem implies that w̃∞
satisfies ∫

R×Rn

w̃∞w� dt dz = 0.(9.10)

We give the proof of this fact when ρ∞ = +∞, obvious modifications
are needed to handle the case where ρ∞ < +∞. Given a function
η : Rn −→ R, with compact support we use the fact that, for all z in
Rn and all k large enough∫

R

w̃k(s, z)w�(s) ds = 0.

Provided k is chosen large enough so that the domain of definition of
z → w̃k(s, z) includes the support of η, we multiply this identity by η
and integrate over z to get∫

R×Rn

η(z) w̃k(s, z)w�(s) ds dahk
= 0.

Passing to the limit as k tends to ∞, we conclude that∫
R×Rn

η(z) w̃∞(s, z)w�(s) ds dz = 0.

This identity being valid for all η, we finally obtain, for all z ∈ Rn∫
R

w̃∞(s, z)w�(s) ds = 0.

By construction, the function w̃∞ is bounded by ϕδ and since we have
assumed that δ± � 0, this implies that w̃∞ is bounded. We now apply
the result of Corollary 7.5 which shows that w̃∞ only depends on t.
Since all bounded solutions of L0w = 0 are collinear to w�, we can
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write w̃∞(s, z) = cw�(s) for some constant c ∈ R, and (9.10) implies
that c = 0. Therefore, we have shown that w̃∞ ≡ 0.

Finally, (9.9) implies that, for each k ∈ N

1 � c
(‖ϕ−δ w̃k(·, 0)‖L∞([−t0,t0]×N) + ‖ϕ−δ(·/εk) Lεk wk‖L∞(R×N)

)
,

passing to the limit as k tends to ∞ in this inequality, we conclude that

1 � c ‖ϕ−δ w̃∞(·, 0)‖L∞([−t0,t0]×N),

which implies that w̃∞ is not identically equal to 0. Since we have
reached a contradiction, the proof of the claim is complete.

The claim being proved the result of the Proposition follows imme-
diately from Schauder’s estimates which are applied in geodesic balls of
radius ε in R×N . q.e.d.

Obviously, this result could have been obtained directly without
any reference to the result of Proposition 8.3. However, we feel that
the decomposition of the proof into two different steps sheds light on
the choice of the function spaces and in particular explains where the
conditions (8.1) and (9.2) enter into play.

10. Fermi coordinates

Assume that N ⊂M is an admissible hypersurface. To begin with,
let us assume that N has no boundary. We will explain in the last
paragraph of this section the modifications which are needed to handle
the case where the boundary of N is not empty.

For any p ∈ M we define dN (p) to be the signed geodesic distance
from p to N . This means that dN (p) is the geodesic distance from p to
N if p ∈M+(N) and that dN (p) is equal to minus the geodesic distance
from p to N if p ∈M−(N). We define

Vτ (N) := {p ∈M : dN (p) ∈ (−τ, τ)}.(10.1)

It is well-known that for all τ small enough, the set Vτ (N) is a tubular
neighborhood of N in M , provided N is at least C2. In order to measure
the regularity of a function u which is defined in Vτ (N), we define for
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7 � 0, α ∈ (0, 1) and ε ∈ (0, 1)

‖u‖C�,α
ε (Vτ (N))

:=
�∑
j=0

εj ‖∇ju‖L∞(Vτ (N))

+ ε�+α sup
p�=q ∈Vτ (N)

|∇�u(p)−∇�u(q)|
d(p, q)α

,

where d is the geodesic distance in M .
In the previous sections, we have asked that the metrics h we con-

sider on the manifold N satisfy (8.6) and (8.7) or (9.3). This was needed
to guarantee that the results we have obtained are independent of the
choice of h, but might depend on Λ. We now restrict our attention to
admissible hypersurfaces N which are embedded in M and which are
close to some reference smooth admissible hypersurface N0. To make
things precise, we consider a smooth admissible hypersurfaces N0 and
assume that any admissible hypersurface N we consider can be written
as a geodesic normal graph over N0 for some function ψN ∈ C�,α(N0).

Definition 10.1. The C�,αε norm of the hypersurface N , with re-
spect to the hypersurface N0, is defined to be

‖N‖C�,α
ε (N0)

:= ‖ψN‖C�,α
ε (N0)

,

where

‖ψ‖C�,α
ε (N0)

:= ‖ψ‖L∞(N0) + ‖∇ψ‖L∞(N0)

+
�∑
j=2

εj−2‖∇jψ‖L∞(N0) + ε�−2+α‖∇�ψ‖C0,α(N0),

(10.2)

and where ψN is the function whose normal geodesic graph over N0 is
N .

Since the hypersurface N is assumed to be embedded in M , the
metric h we consider on N is just the metric induced by the metric g of
M . Now, given Λ > 0 and 7 � 2, one can find Λ′ > 0 such that : If the
C�,αε (N0) norm of ψN is bounded by Λ′, then conditions (8.6) and (9.3)
are fulfilled and N is embedded.

Remark 10.2. As in (9.4) the definition of the weighted norm of a
hypersurface is not the natural one, namely

|N |C�,α
ε (N0)

:= |ψN |C�,α
ε (N0)

,
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where

|ψ|C�,α
ε (N0)

:=
�∑
j=0

εj ‖∇jψ‖L∞(N0) + ε�+α ‖∇�ψ‖C0,α(N0).(10.3)

In order to justify this choice, observe that, as already mentioned, Def-
inition 10.1 is consistent with the definition of the norm of the induced
metric which is used in §9.2, while the above definition is consistent
with the definition used in Remark 9.3.

In order to define Fermi coordinates in some neighborhood of N we
set for all t ∈ [−τ, τ ] and all y ∈ N

ZN (t, y) := expy(t νy),

where νy is the normal to N at the point y, which is assumed to point
towards M+(N). The parameter τ is chosen small enough so that ZN
is a diffeomorphism onto its image.

Definition 10.3. The coordinates (t, y), defined in Vτ (N), are
called Fermi coordinates relative to the hypersurface N .

We will need the following classical result which states that the dis-
tance function to N is well-defined and as smooth as N in some tubular
neighborhood of N whose width is bounded from below. The proof of
this result can be found in [10] or in [9].

Lemma 10.4. Assume that 7 � 2 and that Λ′ > 0 is fixed small
enough. Then, there exists τ0 > 0 only depending on Λ′ such that if N
is a hypersurface whose C�,αε (N0) norm is bounded by Λ′, then ZN is a
C�−1,α diffeomorphism from (−τ0, τ0)×N onto its image. Moreover the
norm of ∇dN in C�−1,α

ε (Vτ0(N)) is bounded by a constant which only
depends on Λ′.

Proof. The existence of the constant τ0 follows from the fact that
the hypersurfaces we consider are uniformly bounded in C2 topology.
This implies that the principal curvatures of N are bounded from above
by some constant only depending on Λ′ and, in turn, this shows that
the size of the tubular neighborhood over which ZN is a diffeomorphism
is bounded from below.

The fact that dN is as regular as N follows from standard arguments.
Indeed, the gradient of dN at the point of coordinates (t, y) is given by
the tangent vector to the geodesic starting from y with vector speed νy.
Hence the gradient of dN is as regular as the Gauss map of N , which in
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turn is as regular as ∇ψN . Hence ∇dN is bounded in C�−1,α
ε (Vτ0) by Λ′

(we even know that ∇2dN is bounded in C�−2,α
ε (Vτ0) by some constant

only depending on Λ′, which is a slightly stronger statement). q.e.d.

Let us recall that

|∇ dN |g = 1,(10.4)

a.e. in M .
From now on, we assume that τ0 is chosen as in Lemma 10.4. For all

t ∈ [−τ0, τ0], we define the hypersurface Nt to be the hypersurface which
is parallel to N , at distance t. This means that Nt is the normal geodesic
graph over N for the constant function ψ(y) ≡ t. This definition being
understood, we recall the expression of the Laplace-Beltrami operator
in Fermi coordinates.

Lemma 10.5. Denote by (t, y) the Fermi coordinates relative to N ,
which are defined in Vτ0(N). Then, at any point of ZN (t, y) ∈ Nt we
have

∆g = ∂2
t + ∆ht − nHNt ∂t.

where ht is the metric induced by g on Nt and where HNt(t, y) denotes
the mean curvature of the hypersurface Nt at the point ZN (t, y).

Proof. We provide the proof of the formula when t = 0. The general
case can be treated similarly, up to notation changes. Let e1, . . . , en be
an orthonormal frame field on N and ν be the normal vector field.

The Laplace-Beltrami operator on M is defined by

∆g =
n∑
i=1

(ei ei −Deiei) + ν ν −Dνν,

where D is the Levi-Civita connection on M . Let DN denote the Levi-
Civita connection on N , by construction, we have

Deiei = DNei ei + g(Deiei, ν) ν.

Therefore

∆g =
n∑
i=1

(
ei ei −DNei ei

)
+

n∑
i=1

g(ei, Deiν) ν + ν ν −Dνν.
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By definition ν ν = ∂2
t and ν = ∂t. Furthermore Dνν = 0 and

n∑
i=1

g(ei, Deiν) = −nHN ,

where HN is the mean curvature of N . Hence we conclude that

∆g = ∂2
t + ∆h − nHN ∂t.

Which is the desired expression. q.e.d.

Applying the expansion given in the previous Lemma to the function
dN (t, y) = t, we obtain the important formula

∆g dN (t, y) = −nHNt(t, y).(10.5)

When t = 0 we recover the well-known fact that the Laplacian of the
distance function to the hypersurface N , computed at a point of N , is
equal to (minus) the sum of the principal curvatures of the hypersurface
at this point [9].

We will also need the expansion of the Laplace-Beltrami operator
∆g in Fermi coordinates. To do so, we need slightly better control on
the regularity of the hypersurfaces N which should be at least bounded
in C3,α

ε (N0).

Proposition 10.6. Assume that Λ′ > 0 is fixed small enough. If
N is a hypersurface whose C3,α

ε (N0) norm is bounded by Λ′, then there
exists a second order operator in ∂zj

L2 := tOC1,α
ε

(Λ′)∇2,

without any first or zero-th order term, and a first order operator in ∂t
and ∂zj

L1 := OC0,α
ε

(Λ′)∇+ t ε−1OC0,α
ε

(Λ′)∇,

without zero-th order term, such that

∆g = ∂2
t + ∆h + L1 + L2,

where h is the metric on N , induced by the metric g onM . The notation
OCk,α

ε
(Λ′) refers to the fact that the coefficients of the operators are

bounded in Ck,αε (Vτ0(N)) by a constant which only depends on Λ′.
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Proof. This result follows from the expansion of the metric in Fermi
coordinates (t, y) relative to N . Indeed, if we write the metric g as

g = gtt dt⊗ dt +
n∑
j=1

gtj dt⊗ dzj +
n∑

j,j′=1

gjj′ dzj ⊗ dzj′ ,

the coefficients of the metric can be expanded as

gtt = 1, gtj = 0 and gij = hij + tOC�−1,α
ε

(Λ′),

where hij are the coefficients of the induced metric on N . This is pre-
cisely at this point that we use the definition (10.2). Indeed, the regu-
larity of the coefficients of the metric g in Fermi coordinates is the same
as the regularity of the gradient of the Gauss map of N , which in turn
can be estimated by the second derivatives of the function whose graph
is N . Hence, the C1,α

ε (Vτ0(N)) norm of the coefficients of the metric is
bounded by the C�+1,α

ε (N0) norm of N .
Similar expansions hold for gαβ , the coefficients of g−1. This implies

that √
det g =

√
det h + tOC1,α

ε
(Λ′).

With these expansions, we get

1√
det g

∂t

(√
det g gtt ∂t

)
= ∂2

t +
(
OC1,α

ε
(Λ′) + t ε−1OC0,α

ε
(Λ′)

)
∂t,

and

1√
det g

∂zi

(√
det g gij ∂zj

)
=

1√
det h

∂zi

(√
dethhij ∂zj

)
+ t ε−1OC0,α

ε
(Λ′) ∂zj + tOC1,α

ε
(Λ′) ∂zi ∂zj .

The result now follows at once. q.e.d.

As promised, we now explain the modifications needed when ∂N �=
∅. Observe that, when ∂N = ∅, the geodesics starting from a point
y ∈ N with initial velocity νN (y) induce a fibration of a tubular neigh-
borhood of N . In the case where N has a boundary this property is
not true anymore. To overcome this problem, we define what we call
”twisted” Fermi coordinates. Recall that we have assumed in the intro-
duction that M is a smooth domain of a Riemannian manifold M̃ . An
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admissible hypersurface N in M can be extended to a hypersurface Ñ
whose C�,αε norm is bounded by a constant (independent of ε) times the
C2,α
ε norm of N .

Observe that, provided τ0 is chosen small enough, we can define
Fermi coordinates in

Vτ0(Ñ) := {Z
Ñ

(t, y) ∈ M̃ : y ∈ Ñ , t ∈ (−τ0, τ0)}.

Let X1 be the vector field ∂t, which is defined in Vτ0(Ñ). Reducing τ0
if this is necessary, we can assume that ν∂M , the inner normal to ∂M ,
does not coincide with X1 in Vτ0(Ñ) (recall that N is assumed to meet
∂M in an orthogonal way).

We set X2 to be the extension of ν∂M which is given by the unit
normal vector fields to the family of parallel hypersurfaces to ∂M . This
vector field is well-defined in a fixed tubular neighborhood of radius
ε0 > 0 of ∂M . Finally, we consider a smooth cut-off function η which is
identically equal to 1 in (−∞, ε0/2) and equal to 0 in (ε0,∞), and let

χ̃ := η(d∂M ),

where d∂M is the distance function to ∂M . We define the vector field

X :=
X1 − 〈X1, χ̃X2〉g χ̃X2

1− 〈X1, χ̃X2〉2g
.

It is straightforward to check the following properties of X:

(i) X is tangent to ∂M .

(ii) X = X1 at a point p whenever d∂M (p) � ε0.

(iii) 〈X,X1〉g ≡ 1.

We now define {Ft}t to be the flow associated to X. It follows from
(i) that Ft(N) is contained in M . Also, (i) and (iii) imply that (t, y) →
Ft(y) is in fact a diffeomorphism from (−τ0, τ0)×N onto Vτ0(Ñ) ∩M .

The “twisted” Fermi coordinates (t, y) relative to N are defined by:

YN (t, y) := Ft(y).

Observe that (ii) implies that YN (t, y) = ZN (t, y) away from a tubular
neighborhood of radius ε0 around ∂M . Moreover, (iii) together with the
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fact that, N being an admissible hypersurface, N meets ∂M orthogo-
nally, imply that in a neighborhood of radius ε0 of ∂M , if (t, y) are the
“twisted” Fermi coordinates of a point p (relative to N) and if (t̃, ỹ) are
the Fermi coordinates of the same point p (relative to Ñ), we have

t = t̃, and d(ỹ, y) = O(t2).

Using these properties, one checks that all the results we have obtained
in this section do hold when Fermi coordinates are replaced by “twisted”
Fermi coordinates.

One last comment about the modifications which are needed when
∂N is not empty. In the case where ∂N is empty, one can parameterize
any hypersurface Ñ close enough to N as a normal geodesic graph, that
is, using the flow ZN . In turn, when ∂N is not empty, we agree that we
will parameterize any hypersurface Ñ close enough to N using the flow
YN . With slight abuse of terminology we will say that Ñ is a “normal
graph” over N .

11. The linear problem

Assume that (M, g) is a smooth (n + 1)-dimensional Riemannian
manifold, with or without boundary and that N0 ⊂M is a fixed admis-
sible, nondegenerate minimal hypersurface or a volume-nondegenerate
constant mean curvature hypersurface.

11.1 Preliminary assumptions and definitions

From now on, we assume that 7 � 2 and that Λ′ > 0 is fixed small
enough. We also agree that any admissible hypersurface N we consider
satisfies:

(H(7,Λ′)) The C�,αε (N0) norm of the function ψN , whose normal
graph is the hypersurface N , is bounded by Λ′.

We assume that Λ′ is chosen so that whenever N satisfies the above
conditions, then N is embedded and (8.6) and (9.3) are fulfilled. Fur-
thermore, reducing Λ′ if this is necessary, we can assume that N ⊂
Vτ0/4(N0) where τ0 is chosen as in Lemma 10.4.

We choose a cutoff function χ which is identically equal to 1 in
(−τ0/2, τ0/2) and identically equal to 0 outside [−τ0, τ0]. We define

uε,N := χ(dN )
dN
|dN | + (1− χ(dN ))u�(dN/ε).(11.1)



cmc and gradient theory 401

11.2 Function spaces

Paralleling what we have done in §9, we define weighted Hölder spaces
adapted to our problem. We first give the definition of the Hölder spaces
which take into account the scaling parameter ε.

Definition 11.1. Given 7 ∈ N, α ∈ (0, 1) and ε ∈ (0, 1), we define
the space C�,αε (M) to be the space of functions which are 7 times dif-
ferentiable and whose 7-th partial derivatives are Hölder of exponent α.
This space is endowed with the norm

‖u‖C�,α
ε (M)

:=
�′∑
j=0

εj ‖∇ju‖L∞(M) + ε�+α sup
p�=q ∈M

|∇�u(p)−∇�u(q)|
d(p, q)α

,

where d is the geodesic distance in M .

This definition being understood, we define a projection operator:

Definition 11.2. Denote by (t, y) the (twisted) Fermi coordinates
relative to N . For all u ∈ C�,α(M), we define the function Πε,N (u) by

Πε,N (u)(t, y) := u(t, y)−

∫
R

χ(s)u(s, y)w�(s/ε) ds∫
R

χ2(s)w2
�(s/ε) ds

χ(t)w�(t/ε),

(11.2)

in Vτ0(N) and Πε,N (u) = u in M − Vτ0(N).

Observe that Πε,N is an involution since, by construction Πε,N ◦
Πε,N = Πε,N . It is straightforward to check the:

Lemma 11.3. Assume that (H(3,Λ′)) holds. Then, for all 7 =
0, . . . , 2

Πε,N : C�,αε (M) −→ C�,αε (M),

is well-defined and uniformly bounded for ε ∈ (0, 1).

Proof. The fact that this operator is well-defined follows from the
fact that Fermi coordinates induce a local C2,α diffeomorphism D when
N is a C3,α hypersurface.

The fact that Πε,N is bounded uniformly between the weighted
spaces follows at once from the definition of the C3,α

ε (N0) norm of N
which ensures that the diffeomorphism D is uniformly bounded
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in L∞(Vτ0(N)) and has a differential which is uniformly bounded in
C1
ε (Vτ0(N)). q.e.d.

We now define weighted function spaces on M which parallel the
spaces E�,αδ,ε (R×N), when the weights δ± are chosen to be equal to 0.

Definition 11.4. Assume that (H(7+ 1,Λ′)) holds for some 7 � 2.
Given 0 � 7′ � 7, α ∈ (0, 1) and ε ∈ (0, 1), we define the space E�′,αε,N (M)

to be the space of functions u ∈ C�′,αε (M) which satisfy

Πε,N (u) = u.

This space is endowed with the induced norm.

As usual, we also define [C�′,αε (M)]0 (resp. [E�′,αε,N (M)]0) to be the sub-

space of functions of C�′,αε (M) (resp. E�′,αε,N (M)) which have 0 Neumann
boundary condition on ∂M , if this boundary is not empty.

11.3 The linear problem

Assume that N is an admissible hypersurface which satisfies (H(2,Λ′)).
Let uε,N be defined as in (11.1), the linearized operator we are interested
in reads

Lε,N := −ε2 ∆g +
1
2
W ′′(uε,N ).

In this section, we would like to construct a right inverse for this oper-
ator. To do so, we first define and study the auxiliary operator

L0 := −ε2 ∆g +
1
2

Γ,

where the potential Γ is chosen to interpolate smoothly between 2 γ2− =
W ′′(−1) in M−(N) and 2 γ2

+ = W ′′(1) in M+(N). More precisely, let
ξ denote a smooth cutoff function equal to 1 on (1,+∞) and equal to
0 on (−∞,−1), with ξ � 0. If (t, y) are (twisted) Fermi coordinates
relative to N , we define

Γ(t, y) := 2
(
(1− ξ(t/ε)) γ2

− + ξ(t/ε) γ2
+

)
,

in Vτ0(N) and

Γ := 2 γ2
±,

in M±(N)− Vτ0(N). We have:
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Lemma 11.5. There exists ε0 > 0 only depending on Λ′ such that,
for all ε ∈ (0, ε0), the operator

L0 : [C0,α
ε (M)]0 −→ C2,α

ε (M),

is an isomorphism the norm of whose inverse is bounded by some con-
stant which depends on Λ′ but does not depend on ε nor on N satisfying
(H(2,Λ′)).

Proof. The fact that L0 is an isomorphism, clearly follows from the
fact that the potential Γ is bounded from below by a positive constant
independent of ε. In particular, the constant function 1 can be used as
a barrier to show that

‖w‖L∞(M) � c ‖L0w‖L∞(M),

for some constant c > 0 which does not depend on ε. Then, the esti-
mates for the derivatives of w are consequences of Schauder’s estimates
on geodesic balls of radius ε. q.e.d.

Collecting the results of the previous sections we construct for the
operator Lε,N a right inverse whose norm is uniformly bounded as ε
tends to 0. The construction of the right inverse relies on all our former
analysis. To be more precise, we glue together local parametrizes given
by Proposition 9.4 and Lemma 11.5 and obtain the right inverse for Lε,N
by applying a perturbation argument together with Proposition 10.6. As
will become clear in the proof and in the statement of the next result,
we need to assume that the submanifold N has one degree of regularity
higher than would be expected. Indeed, a natural guess would be that,
in order to solve the equation Lε,Nw = f ∈ Ck−2,α in some Hölder space
Ck,α, one would need to assume that the hypersurface N is itself Ck,α.
However, our construction relies on the use of Proposition 10.6 together
with the use of the projection operator Πε,N which both require N to
be a Ck+1,α hypersurface. We now state the main technical result of our
paper:

Proposition 11.6. Assume N satisfies (H(3,Λ′)). Then, there
exists ε0 > 0 only depending on Λ′ such that, for all ε ∈ (0, ε0), there
exists an operator

Gε,N : E0,α
ε,N (M) −→ [E2,α

ε,N (M)]0,

satisfying

Πε,N ◦ Lε,N ◦Gε,N = I.
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Furthermore the norm of Gε,N is bounded by some constant which de-
pends on Λ′, but does not depend on ε ∈ (0, ε0) nor on N .

Proof. The construction of Gε,N is decomposed in 4 steps. As al-
ready mentioned we “glue” together different parametrizes which have
been defined in the previous sections. In the first step, we use the result
of Lemma 11.5 to reduce the solvability of Πε,N ◦Lε,Nw = f to the case
where f is supported in Vτ0(N). This allows us to use, in Step 2 the re-
sult of Proposition 9.4 where a right inverse for the operator Lε has been
constructed. In Step 3, we use the expansion of the Laplace-Beltrami
operator in Fermi coordinates which is provided by Proposition 10.6 to
estimate the difference between the operators Lε,N and the operator Lε.
At this point we have produced a bounded operator G which is almost
a right inverse. In Step 4, we apply a standard perturbation argument
to find a right inverse for Πε,N ◦ Lε,N .

In the proof, the constant c > 0, which may vary from line to line,
may depend on Λ′, but does not depend on ε (provided this parameter
is chosen small enough), does not depend on f , nor on N chosen to
satisfy (H(3,Λ′)).

Step 1. Thanks to the result of Lemma 11.5, we find w1 ∈ [C2,α
ε (M)]0

solution of L0w1 = f . Furthermore, we know that

‖w1‖C2,α
ε (M)

� c ‖f‖C0,α
ε (M)

.

Now, the result of Lemma 11.3 implies that we also have

‖Πε,N w1‖C2,α
ε (M)

� c ‖f‖C0,α
ε (M)

.(11.3)

Observe that, as mentioned, we already need to assume that the hyper-
surface N has bounded norm in C3,α

ε (N0).
We define the function

g := f − Lε,N ◦Πε,N w1.

Since, away from Vτ0(N), we have Πε,Nu = u and L0 = Lε,N , we con-
clude that, the function g is supported in Vτ0(N). If we identify Vτ0(N)
with (−τ0, τ0) ×N via (twisted) Fermi coordinates, we can extend the
function g by 0 to all R×N . We claim that

‖g‖C0,α
−γ,ε(R×N)

� c ‖f‖C0,α
ε (M)

,(11.4)
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where γ := (γ−, γ+) are the indicial roots defined in (6.2). Indeed, using
(6.3) and (6.4), we see that u� converges exponentially to ±1 at a rate
which is dictated by the indicial roots γ±. This in turn shows that the
difference between the potential of the operators Lε,N and L0 converges
exponentially to 0 at a rate which is dictated by the indicial roots 2 γ±.
Namely

‖Γ−W ′′(u�(·/ε))‖C0,α
−2γ,ε(R×N)

� c.

This inequality already implies that

‖Lε,N w1 − f‖C0,α
−2γ,ε(R×N)

� c ‖f‖C0,α
ε (M)

.

Furthermore, using the definition of Πε,N together with the fact that

‖χw�(·/ε)‖C2,α
−γ,ε(R×N)

� c,(11.5)

we get

‖Lε,N (w1 −Πε,Nw1)‖C0,α
−γ,ε(R×N)

� c ‖f‖C0,α
ε (M)

.

This completes the proof of the claim.

Step 2. We define the projection operator

Π0
ε,N (u)(t, y) := u(t, y)−

∫
R

u(s, y)w�(s/ε) ds∫
R

w2
�(s/ε) ds

w�(t/ε).

Clearly,

Π0
ε,N : C0,α

−γ,ε(R×N) −→ E0,α
−γ,ε(R×N),

is bounded uniformly in ε. Hence, using (11.4), we conclude that

‖Π0
ε,N g‖C0,α

−γ,ε(R×N)
� c ‖f‖C0,α

ε (M)
.(11.6)

We use the result of Proposition 9.4, with some fixed weights δ :=
(δ−, δ+) satisfying −γ± < δ± < 0, to define w2 ∈ [E2,α

δ,ε (R×N)]0 solution
of

Lεw2 = Π0
ε,N g,
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where we recall that

Lε := −ε2(∂2
t + ∆N ) +

1
2
W ′′(u�(·/ε)).

Since the inverse of Lε has been shown to be uniformly bounded, we get
the estimate

‖w2‖C2,α
δ,ε (R×N)

� c ‖Π0
ε,N g‖C0,α

δ,ε (R×N)
� c ‖Π0

ε,N g‖C0,α
−γ,ε(R×N)

,

which, together with (11.6) implies that

‖w2‖C2,α
δ,ε (R×N)

� c ‖f‖C0,α
ε (M)

.(11.7)

Step 3. We claim that

‖Πε,N (Lε,N ◦Πε,N (χw2)− g) ‖C0,α
ε (M)

� c ε ‖f‖C0,α
ε (M)

.(11.8)

Since w2 and g are exponentially decaying in terms of |t|/ε, we read-
ily have

‖(1− χ) Πε,N (Lε,N ◦Πε,N (χw2)− g) ‖C0,α
ε (M)

� c e−κ1/ε ‖f‖C0,α
ε (M)

,

for some fixed κ1 > 0 only depending on γ, δ and τ0. Hence, identifying
Vτ0(N) with [−τ0, τ0]×N as above, we only need to show that

‖χΠε,N (Lε,N ◦Πε,N (χw2)− g) ‖C0,α
ε (R×N)

� c ε ‖f‖C0,α
ε (M)

.(11.9)

The proof of this inequality essentially follows from the result of Propo-
sition 10.6 which gives the expansion of ∆g in Fermi coordinates relative
to N . Observe that, again, we need to assume that the hypersurface N
has bounded norm in C3,α

ε (N0) in order to apply the result of Proposi-
tion 10.6 with the correct regularity.

To begin with we replace Πε,N by Π0
ε,N in the left-hand side of (11.9).

This introduce a discrepancy which we now estimate. We set

D1 := Πε,N ◦ Lε,N ◦Πε,N (χw2)−Π0
ε,N ◦ Lε,N ◦Π0

ε,N (χw2),

and

D2 := Π0
ε,N g −Πε,N g.
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Using the fact that w�(·/ε) is exponentially decaying in terms of |t|/ε,
we see that the same is true for D1 and D2, so

‖χ (D1 + D2) ‖C0,α
ε (R×N)

� c e−κ2/ε ‖f‖C0,α
ε (M)

,

for some fixed positive κ2 which only depends on γ, δ and τ0.
Having replaced Πε,N by Π0

ε,N , we now replace χw2 by w2 in (11.9).
This introduces yet another discrepancy which we now estimate. We
set

D3 := Π0
ε,N ◦ Lε,N ◦Π0

ε,N ((1− χ)w2).

Since w2 is exponentially decaying in terms of |t|/ε, we also have

‖χD3‖C0,α
ε (R×N)

� c e−κ3/ε ‖f‖C0,α
ε (M)

,

for some fixed positive κ3 which only depends on γ, δ and τ0.
Having done the above modifications, we are left with the estimate

of

D4 := Π0
ε,N ◦ Lε,N ◦Π0

ε,N w2 −Π0
ε,N g

= Π0
ε,N ◦ Lε,N w2 − Lεw2

= Π0
ε,N (Lε,N w2 − Lεw2) .

We have used the fact that Π0
ε,N w2 = w2 since w2 ∈ E2,α

δ,ε (R × N) and
Lεw2 = Π0

ε g to obtain the first identity. In order to obtain the second
identity, we have used the fact that Lεw2 = Π0

ε,N Lεw2, by construction
of the inverse of Lε. At this point, we refer to the result of Proposi-
tion 10.6 which gives the expansion of ∆g in Fermi coordinates about
N to get

Lε,N − Lε = L1 + L2,

where the properties of the operators L1 and L2 are stated in Proposi-
tion 10.6. These properties, together with (11.7), imply that

‖χD4‖C0,α
ε (R×N)

� c ε ‖f‖C0,α
ε (M)

.

This completes the proof of the claim.

Step 4. Collecting (11.8) together with the definition of g, we con-
clude that

‖Πε,N ◦ Lε,N ◦Πε,N (w1 + χw2)− f‖C0,α
ε (M)

� c ε ‖f‖C0,α
ε (M)

.
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Now, collecting (11.3) and (11.7) together with Lemma 11.3), we obtain

‖Πε,N (w1 + χw2)‖C2,α
ε (M)

� c ‖f‖C0,α
ε (M)

.

At this point, the existence of Gε,N easily follows from a classical per-
turbation argument. q.e.d.

Our next proposition gives an estimate of the norm of the operator

(I −Πε,N ) ◦ Lε,N ◦Gε,N ,

which, in some sense, measures the distance between the operator Lε,N ◦
Gε,N and the identity in E�−2,α

ε (M). We define the operator Sε,N by

Sε,N (u)(y) :=
∫

R

χ(s)u(t, y)w�(t/ε) dt,(11.10)

where (t, y) are (twisted) Fermi coordinates relative to N and u is a
function defined in M . Since N is assumed to be a normal graph over
N0, any function on N can be identified with a function on N0 and its
norm can be evaluated using the norms defined in (10.2) or in (10.3),
provided N is regular enough. This being understood, we have:

Proposition 11.7. Assume N satisfies (H(3,Λ′)). Then, there
exists c > 0 only depending on Λ′ such that, for all w ∈ [E2,α

ε,N (M)]0

|Sε,N ◦ Lε,N w|C0,α
ε (N0)

� c ε2 ‖w‖C2,α
ε (M)

,(11.11)

where the norm | · |C�,α
ε (N0)

is the one defined in (10.3).

Proof. We have to estimate

y −→
∫

R

χ(t)w�(t/ε)Lε,N w(t, y) dt.

We set

E1 :=
∫

R

χ(t)w�(t/ε)(Lε,N − Lε)w(t, y) dt,

where Lε is defined as in Step 2 of the previous proof. Using once more
the result of Proposition 10.6, we obtain as in Step 3 of the previous
proof

|E1|C0,α
ε (N0)

� c ε2 ‖w‖C2,α
ε (M)

.
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We set

E2 :=
∫

R

w�(t/ε) [χ,Lε]w(t, y) dt,

where [A,B] is the commutator of the operators A and B. Using the fact
that w� decays exponentially fast at ±∞, we conclude that E2 decays
exponentially fast in terms of |t|/ε. In particular

|E2|C0,α
ε (N0)

� c e−κ4/ε ‖w‖C2,α
ε (M)

,

for some fixed κ4 > 0 which only depends on γ and τ0.
Having estimated E1 and E2, it remains to estimate

y −→
∫

R

w�(t/ε) Lε(χw)(t, y) dt.

We set

E3 :=
∫

R

w�(t/ε) Lε ◦ (Πε,N −Π0
ε,N )(χw)(t, y) dt,

and

E4 :=
∫

R

w�(t/ε) Lε ◦ (I −Πε,N )(χw)(t, y) dt.

Using the fact that w�(·/ε) is exponentially decaying in terms of |t|/ε,
we get

|E3|C0,α
ε (N0)

� c e−κ5/ε ‖u‖C2,α
ε (M)

,

and, using in addition the fact that (I −Πε,N )w = 0, we also have

|E4|C0,α
ε (N0)

� c e−κ5/ε ‖u‖C2,α
ε (M)

,

for some fixed κ5 > 0 which only depends on γ and τ0.
Having estimated E1 through E4, it finally remains to estimate

y −→
∫

R

w�(t/ε) Lε ◦Π0
ε,N (χu)(t, y) dt.

But, as we have already done in (9.7), one checks that this quantity is
identically equal to 0. This completes the proof of (11.11). q.e.d.

We would like to obtain similar results when N is less regular than
what is required in the last two results. To do so we introduce smoothing
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operators which will alow us to find N�, smooth enough so that we can
apply the previous results, and close enough to N so that a perturbation
argument can be applied.

We recall from [1], page 97, that there exists a one parameter family
of smoothing operators (Rθ)θ�1 and C > 0 such that

‖Rθ u‖Ck,α � C ‖u‖Ck′,α′ for k + α � k′ + α′

‖Rθ u‖Ck,α � C θk+α−k′−α′ ‖u‖Ck′,α′ for k + α � k′ + α′

‖u−Rθ u‖Ck,α � C θk+α−k′−α′ ‖u‖Ck′,α′ for k + α � k′ + α′.

(11.12)

These operators act on functions defined in Rn but they can be localized
and extended to functions defined on smooth manifolds using a partition
of unity. We use Rθ to improve the regularity of a given hypersurface
N which is assumed to be a normal graph over N0. We further assume
that (H(7,Λ′′)) is satisfied with Λ′′ smaller than the usual constant Λ′.
Hence, N is the normal graph over N0 for some function ψ which satisfies

‖ψ‖C�,α
ε (N0)

� Λ′′,

for some 7 � 2. We define the function ψ� := R1/ε ψ, and we define the
hypersurface N� to be the graph of the function ψ� over N0. We will
write

N� = R1/εN.

We claim that,

|ψ� − ψ|C�,α
ε (N0)

� c ε2 ‖ψ‖C�,α
ε (N0)

,(11.13)

and, for all 7′ � 7

‖ψ�‖C�′,α
ε (N0)

� c ‖ψ‖C�,α
ε (N0)

,(11.14)

where the constant c depends on 7′ and 7 but does not depend on Λ′.
Indeed, using the first property of Rθ in (11.12), we get ‖ψ�‖C2(N0) �

c ‖ψ‖C2(N0) and, for all 2 � k � 7, we have

‖∇kψ�‖L∞(N0) � c ‖ψ‖Ck,0(N0) � c ε2−k ‖ψ‖C�,α
ε (N0)

,
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Now, for all 7 � k � 7+ α, we use the second property of Rθ in (11.12)
to get

‖∇kψ�‖L∞(N0) � c ε�+α−k ‖ψ‖C�,α(N0) � c ε2−k ‖ψ‖C�,α
ε (N0)

,

which implies the second estimate (11.13). Finally, for all 7′ � 7, we use
the third property of Rθ in (11.12) to show that

‖∇k(ψ� − ψ)‖L∞(N0) � c ε�+α−k ‖ψ‖C�,α(N0) � c ε2−k ‖ψ‖C�,α
ε (N0)

,

which proves (11.14). The proof of the claim is therefore complete.
In the case where N has a nonempty boundary, this construction

can be modified so that we can assume that N� is an admissible hy-
persurface. Thanks to (11.13) and (11.14), we can apply all the above
results to N�, provided Λ′′ is chosen small enough. This yields the:

Proposition 11.8. Assume that N satisfies (H(2,Λ′′)) and let
N� = R1/εN . Then, there exists ε0 > 0 such that, for all ε ∈ (0, ε0),
there exists an operator

Gε,N : E0,α
ε,N�

(M) −→ [E2,α
ε,N�

(M)]0,

satisfying

Πε,N� ◦ Lε,N ◦Gε,N = I.

Furthermore,

‖Gε,N w‖C2,α
ε (M)

� c ‖w‖C0,α
ε (M)

,

and

|Sε,N� ◦ Lε,N ◦Gε,N w|C0,α
ε (N0)

� c ε2 ‖w‖C0,α
ε (M)

,(11.15)

for some constant c > 0 which depends on Λ′′ but does not depend on ε
nor on N .

Proof. We claim that

‖(Lε,N� − Lε,N )w‖C0,α
ε (M)

� c ε ‖w‖C0,α
ε (M)

.(11.16)

This follows from the fact that the difference of these two operators is
equal to the difference of their potentials which involve functions de-
pending on the distance to N and N�. The result is then a consequence
of the fact that difference ψ� − ψ satisfies the estimate (11.13).
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Now, we apply the results of Proposition 11.6 to get for all f ∈
E0,α
ε,N�

(M) a solution w ∈ [E2,α
ε,N�

(M)]0 of

Πε,N� ◦ Lε,N� w = f,

with

‖w‖C2,α
ε (M)

� c ‖f‖C0,α
ε (M)

.

The existence of Gε,N then follows from (11.16) together with a simple
perturbation argument. It remains to check (11.15). But this follows at
once from (11.16) together with the result of Proposition 11.7. q.e.d.

Observe that the mapping Gε,N depends continuously on N . This
essentially follows from the fact that, each step of the construction of
this operator depends continuously on N .

12. Moving the nodal set

Assume that we are given an admissible hypersurface N0. We define
for convenience

Qε(N) := −ε2 ∆uε,N +
1
2
W ′(uε,N ),(12.1)

where N is an admissible hypersurface which can be written as a normal
graph over N0. If N� is the regularized hypersurface defined at the end
of the previous section, we define, as in (11.10), the operator Sε,N� by

Sε,N�(u)(y) :=
∫

R

χ(t)u(t, y)w�(t/ε) dt,(12.2)

where (t, y) are (twisted) Fermi coordinates relative to N� and u is a
function defined in Vτ0(N). Since N� is assumed to be a normal graph
over N0, any function on N� can be identified with a function on N0 and
its norm can be evaluated using the norms defined in (10.2) or (10.3).

In this section we exploit the notion of nondegeneracy which have
been defined in Definition 3.2 and Definition 3.3. There are two results
which correspond to the two different notions of nondegeneracy. To start
with let us assume that we are dealing with an admissible nondegenerate
minimal hypersurface N0. We have:
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Lemma 12.1. Assume that N0 is an admissible nondegenerate min-
imal hypersurface and that c > 0 is fixed. Then, there exists ε0 ∈ (0, 1)
such that, for all f ∈ C0,α(N0) satisfying

|f |C0,α
ε (N0)

� c ε2,

one can find an admissible hypersurface N satisfying

Sε,N� Qε(N) = ε2 f

where N� = R1/εN . Moreover, if ψN is the function whose graph is N ,
we have

‖ψN‖C2,α
ε (N0)

� c ε−α (ε2 + |f |C0,α
ε (N0)

),

for some constant c > 0 which does not depend on f nor on ε.

Proof. The proof of this result follows from the implicit function
theorem. Granted the definition of Sε,N� , we have to find and admissible
hypersurface N such that∫

R

χ(t)
(
−ε2 ∆uε,N +

1
2
W ′(uε,N )

)
w�(t/ε) dt = ε2 f,

where (t, y) are Fermi coordinates relative to N�. Using (10.5) we com-
pute

−ε2 ∆uε,N +
1
2
W ′(uε,N ) = ε nHNs(t,y)

w�(t/ε)

where s(t, y) denotes the distance to of the point (t, y) to N and Ns
is the hypersurface parallel to N at distance s. We now write N as a
graph over N0 for some function ψ and hence N� is the normal graph
over N0 for the function ψ� = R1/ε ψ. We define

Aε(ψ) := n

∫
R

χ(ε t)HNs(εt,y)
w2
�(t) dt.

so that the equation we have to solve reads

Aε(ψ) = f.

We claim that

Aε(ψ) = c� LN0 ψ +Q(ε, ψ),
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where LN0 is the Jacobi operator about N0, where

c� =
∫

R

w2
� dt,

and where Q satisfies

|Q(ε, 0)|C0,α
ε (N0)

� c ε2,(12.3)

and

|Q(ε, ψ′)−Q(ε, ψ)|C0,α
ε (N0)

(12.4)

� c (ε2 + ‖ψ‖C2,α
ε (N0)

+ ‖ψ′‖C2,α
ε (N0)

) ‖ψ′ − ψ‖C2,α
ε (N0)

,

for some constant c > 0 which depends on c but does not depend on ε
nor on ψ,ψ′ satisfying

‖ψ‖C2,α
ε (N0)

+ ‖ψ′‖C2,α
ε (N0)

� 1.

To obtain this expansion, we first use the second estimate in (11.13)
to reduce to the case where N� is replaced by N , i.e., Aε(ψ) is replaced
by

Ãε(ψ) := n

∫
R

χ(ε s)HNεs w
2
�(s) ds.

If Dε(ψ) := Ãε(ψ) − Aε(ψ), we have Dε(0) = 0 and it follows from
(11.13) that

|Dε(ψ′)−Dε(ψ)|C0,α
ε (N0)

� c ε2 ‖ψ′ − ψ‖C2,α
ε (N0)

,

We now use the expansion

HNt = HN + tQ1(ψ; y) + t2Q2(ψ; t, y),

where Q1(ψ; y) does not depend on t. In particular

n

∫
R

χ(ε s) ε sQ1(ψ; y)w2
�(s) ds ≡ 0,

and, if we define

Eε(ψ) := n ε2
∫

R

χ(ε s) s2Q2(ψ; εs, y)w2
�(s) ds,
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we obtain |Eε(0)|C0,α
ε (N0)

� c and the estimate

|Eε(ψ′)− Eε(ψ)|C0,α
ε (N0)

� c ε2 ‖ψ′ − ψ‖C2,α
ε (N0)

,

Finally, we use the fact that

nHN = nHN0 + LN0ψ + Q(ψ),

and we check that

Fε(ψ) := nQ(ψ)
∫

R

χ(ε s)w2
�(s) ds,

satisfies Q(0) = 0 and

|Fε(ψ′)− Fε(ψ)|C0,α
ε (N0)

� c (‖ψ‖C2,α
ε (N0)

+ ‖ψ′‖C2,α
ε (N0)

) ‖ψ′ − ψ‖C2,α
ε (N0)

,

We have assumed that the operator

LN0 : [C2,α(N0)]0 −→ C0,α(N0),

is an isomorphism. Here the subscript 0 means that we are considering
functions which satisfy BN0(ψ) = 0 on ∂N0, if this boundary is not
empty. This also implies that

LN0 : [C2,α
ε (N0)]0 −→ C0,α

ε (N0),

is an isomorphism, the norm of whose inverse is bounded by a constant
times ε−α when the space C2,α

ε (N0) is endowed with the norm ‖·‖C2,α
ε (N0)

defined in (10.2) and the space C0,α
ε (N0) is endowed with the norm

| · |C0,α
ε (N0)

defined in (10.3). Indeed, if LN0 v = g and if |g|C0,α
ε (N0)

� 1,
then ‖g‖C0,α(N0) � ε−α and hence ‖v‖C2,α(N0) is bounded by a constant
times ε−α. In particular, ‖v‖C2,α

ε (N0)
is also bounded by a constant times

ε−α.
The proof of the result is now a corollary of the fixed point theorem

for contraction mappings, provided ε is chosen small enough. q.e.d.

We now state the corresponding result for volume-nondegenerate
constant mean curvature hypersurfaces.
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Lemma 12.2. Assume that N0 is an admissible constant mean cur-
vature hypersurface which is volume-nondegenerate. We define

λ� :=
1
2
c� nHN0

where

c� :=
∫ 1

−1

√
W (s) ds.

Then, there exists ε0 ∈ (0, 1) and c > 0 such that for all f ∈ C0,α(N0)
and all µ ∈ R, satisfying

|f |C0,α
ε (N0)

+ |µ| � c ε,

one can find an admissible hypersurface N and a constant λ such that

Sε,N� (Qε(N)− ε λ) = ε2 f,

and ∫
M
uε,N dvg = c0 |M |+ µ.

Moreover, if ψN is the function whose graph is N , we have

‖ψN‖C2,α
ε (N0)

� c (|f |C0,α
ε (N0)

+ |µ|),

for some constant c > 0 which does not depend on the data f , µ nor on
ε.

Proof. We now define

Aε(ψ) := n

∫
R

χ(ε t)HNs(εt,y)
w2
�(t) dt− λ

∫
R

χ(ε t)w�(t) dt,

which can be expanded as

Aε(ψ) = nHN0

∫
R

w2
�(t) dt− ε λ

∫
R

w�(t) dt + c� LN0 ψ +Q(ε, ψ),

where Q(ε, ψ) satisfies (12.3) and (12.4). Now, observe that∫
R

w� dt = 2,
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and also that∫
R

w2
� dt =

∫
R

√
W ′(u�) ∂tu� dt =

∫ 1

−1

√
W ′(s) ds = c�.

Granted the definition of λ�, we can write

Aε(ψ) = c� LN0 ψ − 2 (λ− λ�) +Q(ε, ψ).

We now expand∫
M
uε,N dvg = c0 |M | − 2

∫
N0

ψ dag + O(ε, ψ),

where the operator O satisfies

|O(ε, 0)| � c ε2, and |O(ε, ψ′)−O(ε, ψ)| � c ε2 ‖ψ′ − ψ‖C2,α
ε (N0)

,

for some constant c > 0 which depends on c but does not depend on ε
nor on ψ,ψ′ satisfying

‖ψ‖C2,α
ε (N0)

+ ‖ψ′‖C2,α
ε (N0)

� 1.

The proof now follows exactly the proof of the previous Lemma when
volume-nondegeneracy replaces nondegeneracy. We omit the details.

q.e.d.

13. The nonlinear problem

13.1 The proof of Theorem 4.1

Assume that we are given a volume-nondegenerate admissible minimal
hypersurface N0 in M . We would like to solve the nonlinear problem

−ε2 ∆g(uε,N + v) +
1
2
W ′(uε,N + v) = 0,(13.1)

in M . In addition, we want uε,N + v to have 0 Neumann boundary
data on ∂M if this later is not empty. This means that, for all ε small
enough, we would like to find an admissible hypersurface N close to N0

and a function v close to 0 satisfying (13.1).
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Recall that we have defined the nonlinear operator

Qε(N) := −ε2 ∆guε,N +
1
2
W ′(uε,N ),(13.2)

which corresponds to the error we produce when we consider uε,N as a
solution of (13.1). We define

Q̃ε(N, v) :=
1
2

(
W ′(uε,N + v)−W ′(uε,N )−W ′′(uε,N ) v

)
,(13.3)

which is nothing but the Taylor expansion of the nonlinearity W ′ at
uε,N .

These definitions being understood, the equation we have to solve
reads

Qε(N) + Lε,N v + Q̃ε(N, v) = 0.

Using the projection Πε,N� defined in (11.2) and the operator Sε,N�

defined in (12.2), we conclude that (13.1) is equivalent to the system
Πε,N� ◦ Lε,N v = −Πε,N�

(
Qε(N) + Q̃ε(N, v)

)
Sε,N� Qε(N) = −Sε,N�

(
Lε,N v + Q̃ε(N, v)

)
,

(13.4)

where N� = R1/εN is the hypersurface obtained at the end of §11 from
N .

This system will be solved using a fixed point argument. The key
result which allows one to apply a fixed point theorem is the following
estimate:

Lemma 13.1. There exists a constant c0 > 0 such that, for all
ε ∈ (0, 1)

‖Qε(N0)‖C0,α
ε (M)

� c0
2
ε2,(13.5)

and, given c2 > 0, there exists ε0 > 0 such that, for all ε ∈ (0, ε0) and
all admissible hypersurface N satisfying

‖N‖C2,α
ε (N0)

� c2 ε
2−α,

we have

‖Qε(N)‖C0,α
ε (M)

� c0 ε
2.(13.6)
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Proof. It follows from (10.5) that

Qε(N) := −ε2 ∆guε,N +
1
2
W ′(uε,N ) = n εHNt w�(t/ε),

in Vτ0/2(N), where Nt is the hypersurface parallel to N at distance
t. Moreover Qε(N) ≡ 0 in M − Vτ0(N). Since N0 is minimal and
‖N‖C2,α

ε (N0)
� c2 ε

2−α, we estimate

|HNt | � c (|t|+ c2 ε
2−α),

Vτ0(N)− Vτ0/2(N) and this already implies that

‖HNt w�(t/ε)‖L∞(M) � c (ε + c2 ε
2−α).

(The estimate in Vτ0(N) − Vτ0/2(N) is easy to get since Qε(N) is ex-
ponentially small in this set). The estimates for the Hölder derivative
follows similarly.

It now suffices to apply this estimate to N0 itself to obtain (13.5),
while (13.6) follows at once by taking ε to be small enough. q.e.d.

Assume that we are given v ∈ C0,α
ε (M) and N an admissible hyper-

surface close to N0. To make things quantitatively precise, we assume
that

‖v‖C0,α
ε (M)

� c1 ε
2, and ‖N‖C2,α

ε (M)
� c2 ε

2−α.(13.7)

For some constant c1 and c2 which will be fixed shortly. We apply the
result of Proposition 11.8 and Lemma 12.1 to find ṽ and Ñ solutions of

Πε,N� ◦ Lε,N ṽ = −Πε,N�

(
Qε(N) + Q̃ε(N, v)

)
S
ε,Ñ�

Qε(Ñ) = −Sε,N�

(
Lε,N v + Q̃ε(N, v)

)
.

(13.8)

Using the fact that Q̃ε is quadratic in v together with Lemma 13.1, we
easily get the estimates

‖ṽ‖C2,α
ε (M)

� c (c0 ε2 + Cc1 ε
4), and

‖Ñ‖C2,α
ε (M)

� c ε−α (c1 ε2 + Cc1 ε
3).

provided ε is chosen small enough. Here the constant c > 0 neither
depends on c1 nor on c2 and the constant Cc1 depends on c1.
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It follows at once that, if

c1 = 2 c c0 and c2 = 2 c c1,

and if ε is chosen small enough, this produces a continuous mapping
from the set of (v,N) ∈ C2,α

ε (M)×C2,α
ε (N0) satisfying (13.7) into itself.

If this mapping were compact, we would obtain a fixed point through
Schauder’s fixed point theorem. However, in our case the mapping just
fails to be compact since no regularity is gained through the iteration
process. To overcome this problem, we use once more the smoothing op-
erators Rθ which have been introduced in the proof of Proposition 11.8.
We define instead ṽ and Ñ to be the solutions of

Πε,N� ◦ Lε,N ṽ = −Πε,N� ◦Rθ
(
Qε(N) + Q̃ε(N, v)

)
S
ε,Ñ�

Qε(Ñ) = −Rθ ◦ Sε,N�

(
Lε,N v + Q̃ε(N, v)

)
.

(13.9)

We fix α′ > α and choose θ so that C θα
′−α = 2, where C is the

constant which appears in the estimate of the smoothing operator Rθ.
If c1 = 4 c c0 and c2 = 4 c c1, this produces, for all ε small enough,
a continuous mapping from the set of (v,N) ∈ C2,α

ε (M) × C2,α
ε (N0)

satisfying (13.7) into itself, but this time the mapping is compact. We
conclude that there exists a fixed point (vθ, Nθ). Finally, we pass to the
limit as θ tends to +∞ (i.e., as α′ tends to α). The solutions (vθ, Nθ) of
(13.9) being uniformly bounded in C2,α

ε (M)×C2,α
ε (N0), we can extract a

subsequence which converges to (v,N) in C2,β
ε (M)×C2,β

ε (N0), for some
fixed β < α. The limit (v,N) is then a solution of our problem.

13.2 The proof of Theorem 4.2

Assume that we are given a volume-nondegenerate admissible constant
mean curvature hypersurface N0 in M . We would like to solve the
nonlinear problem

−ε2 ∆(uε,N + v) +
1
2
W ′(uε,N + v) = ε λ,(13.10)

in M , with uε,N + v having 0 Neumann boundary data if ∂M is not
empty. This equation has to be complimented with the constraint∫

M
(uε,N + v) dvg = c0 |M |,(13.11)



cmc and gradient theory 421

where the constant c0 ∈ (−1, 1) is fixed so that

c0 |M | = |M+(N0)| − |M−(N0)|.

Again, in order to solve (13.10), we write the equation as a fixed
point problem



Πε,N� ◦ Lε,N v = −Πε,N� (Qε(N)− ε λ + Qε(N, v))

Sε,N� (Qε(N)− ε λ) = −Sε,N�

(
Lε,N v + Q̃ε(N, v)

)
∫
M
uε,N dvg = c0 |M | −

∫
M

v dvg.

(13.12)

The proof of the existence of a fixed point is identical to the proof of
the previous result, with Lemma 12.1 replaced by Lemma 12.2. The
only difference being that the hypersurface N0 does not have 0 mean
curvature anymore and this implies that Lemma 13.1 has to be replaced
by

Lemma 13.2. There exists a constant c0 > 0 such that, for all
ε ∈ (0, 1)

‖Qε(N0)‖C0,α
ε (M)

� c0
2
ε,

and, given c2 > 0, there exists ε0 > 0 such that, for all ε ∈ (0, ε0) and
all admissible hypersurface N satisfying

‖N‖C2,α
ε (N0)

� c2 ε
1−α,

we have

‖Qε(N)‖C0,α
ε (M)

� c0 ε.

The fact that we do not get an estimate as good as the one obtained
in Lemma 13.1 is a consequence of the fact that the mean curvature of
N0 is not necessarily equal to 0.

This implies that the condition (13.7) has to be replaced by

‖v‖C0,α
ε (M)

� c1 ε, and ‖N‖C2,α
ε (M)

� c2 ε
1−α.

Details are left to the reader.
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