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Abstract. Let K be a global field, V a proper subset of the set of all
primes of K, S a finite subset of V, and K̃ (resp. Ksep) a fixed algebraic
(resp. separable algebraic) closure of K. Let Gal(K) = Gal(Ksep/K) be
the absolute Galois group of K. For each p ∈ V we choose a Henselian
(respectively, a real or algebraic) closure Kp of K at p in K̃ if p is
nonarchimedean (respectively, archimedean). Then,

Ktot,S =
⋂
p∈S

⋂
τ∈Gal(K)

Kτ
p

is the maximal Galois extension of K in Ksep in which each p ∈ S totally
splits. For each p ∈ V we choose a p-adic absolute value | |p of Kp and

extend it in the unique possible way to K̃.
For σ = (σ1, . . . , σe) ∈ Gal(K)e let Ktot,S [σ] be the maximal Galois

extension of K in Ktot,S fixed by σ1, . . . , σe. Then, for almost all σ ∈
Gal(K)e (with respect to the Haar measure), the field Ktot,S [σ] satisfies
the following local-global principle:

Let V be an absolutely integral affine variety in AnK . Suppose that
for each p ∈ S there exists zp ∈ Vsimp(Kp) and for each p ∈ V rS there

exists zp ∈ V (K̃) such that in both cases |zp|p ≤ 1 if p is nonarchimedean
and |zp|p < 1 if p is archimedean. Then, there exists z ∈ V (Ktot,S [σ])
such that for all p ∈ V and for all τ ∈ Gal(K) we have: |zτ |p ≤ 1 if p is
archimedean and |zτ |p < 1 if p is nonarchimedean.
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Introduction

The strong approximation theorem for a global field K gives an x ∈ K
that lies in given p-adically open discs for finitely many given primes p of K
such that the absolute p-adic value of x is at most 1 for all other primes p
except possibly one [CaF67, p. 67]. A possible generalization of that theorem
to an arbitrary absolutely integral affine variety V over K fails, because in
general, V (K) is a small set. For example, if V is a curve of genus at least
2, then V (K) is finite (by Faltings). This obstruction disappears as soon
as we switch to “large Galois extensions” of K. We prove in this work a
strong approximation theorem for absolutely integral affine varieties over
each “large Galois extension” of K.

To be more precise, let K̃ be an algebraic closure of K, Ksep the separable

closure of K in K̃, Gal(K) = Gal(Ksep/K) the absolute Galois group of
K, and e a nonnegative integer. We equip Gal(K)e with the normalized
Haar measure [FrJ08, Section 18.5] and use the expression “for almost all
σ ∈ Gal(K)e” to mean “for all σ in Gal(K)e outside a set of measure zero”.
For each σ = (σ1, . . . , σe) ∈ Gal(K)e let

Ksep(σ) = {x ∈ Ksep | xσi = x, for i = 1, . . . , e}

and let Ksep[σ] be the maximal Galois extension of K in Ksep(σ).
Let PK be the set of all primes of K, PK,fin the set of all finite (i.e.,

nonarchimedean) primes and PK,inf the set of all infinite (i.e., archimedean)
primes. We fix a proper subset V of PK , a finite subset T of V, and a subset
S of T such that V r T ⊆ PK,fin. For each p ∈ V we fix a completion K̂p of

K at p and embed K̃ in an algebraic closure
˜̂
Kp of K̂p. Then, we extend the

normalized absolute value | |p of K̂p to
˜̂
Kp in the unique possible way. In

particular, this defines |x|p for each x ∈ K̃. As usual, if x = (x1, . . . , xn) ∈
K̃n, we write |x|p = max(|x1|p, . . . , |xn|p).
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We set Kp = K̃ ∩ K̂p and note that Kp is a Henselian closure of K at p if
p ∈ PK,fin and a real or the algebraic closure of K at p if p ∈ PK,inf . Thus,

Ktot,S =
⋂
p∈S

⋂
τ∈Gal(K)

Kτ
p

is the maximal Galois extension of K in which each p ∈ S totally splits. For
each σ ∈ Gal(K)e we set

Ktot,S(σ) = Ksep(σ) ∩Ktot,S and Ktot,S [σ] = Ksep[σ] ∩Ktot,S .

For each extension M of K in K̃ and every p ∈ Pfin ∩ V we consider the
valuation ring OM,p = {x ∈ M | |x|p ≤ 1} of M at p. For each U ⊆ V we
define OM,U to be the set of all x ∈ M such that |xτ |p ≤ 1 for all p ∈ U
and τ ∈ Gal(K). Note that if U ⊆ PK,fin, then OM,U is an intersection of
valuation rings, hence it is an integrally closed domain. Note however that
OM,{p} is different from OM,p.

In this notation the following proposition is a reformulation of [JaR08,
Thm. 2.2]. Throughout this paper, for each positive integer n, by an affine
variety in AnK we mean a closed subscheme of AnK (Subsection 4.2).

Proposition A. For almost all σ ∈ Gal(K)e the field M = Ktot,S(σ)
satisfies the following strong approximation theorem: Let V be an affine
absolutely integral variety in AnK for some positive integer n. For each p ∈ S
let zp ∈ Vsimp(Kp), for each p ∈ T rS let zp ∈ V (K̃), and for each p ∈ V r T
let zp ∈ V (OK̃,p). Then, for every ε > 0 there exists z ∈ V (M) such that

|z− zτp |p < ε for all p ∈ T and τ ∈ Gal(K) and |zτ |p ≤ 1 for all p ∈ V r T
and τ ∈ Gal(K).

When e = 0, we have Ktot,S(σ) = Ktot,S and we retrieve [MoB89,
Thm. 1.3]. For arbitrary e ≥ 0, Proposition A implies the following analog
of Rumely’s local-global principle for almost all fields Ktot,S(σ):

Proposition B. For almost all σ ∈ Gal(K)e the field M = Ktot,S(σ)
satisfies the following local-global principle: Let V be an affine absolutely
integral variety in AnK for some positive integer n. Suppose for each p ∈ S
there exists zp ∈ Vsimp(Kp) and for each p ∈ V rS there exists zp ∈ V (K̃)
such that in each case the following holds: |zp|p ≤ 1 if p ∈ PK,fin and
|zp|p < 1 if p ∈ PK,inf .

Then, there exists z ∈ V (M) such that for all τ ∈ Gal(K) we have:
|zτ |p ≤ 1 for each p ∈ V ∩PK,fin and |zτ |p < 1 for each p ∈ V ∩PK,inf .

For K = Q, e = 0 and V = Pfin, Proposition B specializes to Rumely’s
local-global principle for the ring Z̃ of all algebraic integers [Rum86]. That

principle yields an affirmative answer to Hilbert’s 10th problem for Z̃
[Rum86, p. 130, Thm. 2], answering a question of Julia Robinson from the
1970’ties. L. v. d. Dries applies the local-global principle to prove that the
elementary theory of Z̃ is decidable [Dri88, p. 190, Cor.].
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The proof of Proposition A is carried out along the lines of the proof of
the local-global principle for Ktot,S of [GPR95]. In addition it uses that
for almost all σ ∈ Gal(K)e the field Ksep(σ) is PAC over OK,V . This
means that for every absolutely irreducible polynomial f ∈ K[X,Y ] which
is separable in Y there exist infinitely many points (a, b) ∈ OK,V ×Ksep(σ)
such that f(a, b) = 0. This implies that Ksep(σ) is also PAC over OL,V for
every extension L of K in Ksep(σ).

Unfortunately, as [BaJ08, Thm. B] proves, no Galois extension of K ex-
cept Ksep is PAC over K, let alone over OK,V . In particular, if σ 6= 1, then
Ksep[σ] is not PAC over OK,V . Thus, the proof of Proposition A breaks
down for the fields Ksep[σ]. However, almost all of the fields M = Ksep[σ]
have a weaker property than being PAC over OK,V , namely they are “weakly
K-stably PAC over OK,V” (Definition 12.1 for S = ∅). This would almost
help to adjust the proof of Proposition A given in [JaR08] to a proof of
the analogous theorem for almost all of the fields Ktot,S [σ]. However, as in
[JaR08], we would need to replace K somewhere along the proof by a finite
extension L that lies in Ktot,S [σ] and then proceed with Ltot,SL [σ], where
SL is the set of all primes of L lying over S. Although it is still true that
Lsep(σ) = Ksep(σ) and Ksep(σ) is weakly L-stably PAC over OL,V (for al-
most all σ ∈ Gal(L)e), the field Lsep[σ] may properly contain Ksep[σ] even
if we choose L to be Galois over K, so nothing that we prove on Ltot,SL [σ]
would apply to Ktot,S [σ].

Fortunately, the proof of [MoB89, Thm. 1.3] does not enlargeK as [JaR08]
does. We combine the method of that proof with the method of the proof of
the main result of [GeJ02]. In our case the latter result says that Ktot,S [σ] is
PSC for almost all σ ∈ Gal(K)e. This means that if V is an absolutely inte-
gral affine variety in AnKtot,S [σ] for some positive integer n and Vsimp(Kτ

p ) 6= ∅
for every p ∈ S and τ ∈ Gal(K), then V (Ktot,S [σ]) 6= ∅. One of the main
ingredients of the proof of that theorem is the main result of [GJR17] which
produces a “symmetrically stabilizing” element t for a given function field
F of one variable over K with zeros and poles in given S-adically open
neighborhoods in V (Ktot,S).

The construction of t in the present work has to be done with extra care.
We prove the following analog of Proposition A (see Theorem 13.7):

Theorem C (Strong approximation theorem). Let K,S, T ,V, e,PK,fin be
as above. In particular, K is a global field and V r T ⊆ PK,fin. Then,
for almost all σ ∈ Gal(K)e the field M = Ktot,S [σ] satisfies the strong
approximation theorem, that is M has the following property:

Let V be an absolutely integral affine variety in AnK for some positive
integer n. For each p ∈ S let Ωp be a nonempty p-open subset of Vsimp(Kp).

For each p ∈ T rS let Ωp be a nonempty p-open subset of V (K̃), invariant
under the action of Gal(Kp). Finally, for each p ∈ V r T we assume that
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V (OK̃,p) 6= ∅. Then,

(1) V (O
M,Vr T ) ∩

⋂
p∈T

⋂
τ∈Gal(K)

Ωτ
p 6= ∅.

The first three sections of this work introduce necessary prerequisites.
Section 4 reduces the proof of the strong approximation theorem for an
intermediate field M of Ktot,S/K from absolutely integral affine varieties
over the given global field K to absolutely integral affine curves over K. In
particular it allows us to increase T within V and replace V by a nonempty
Zariski-open subset, if necessary. Given an absolutely integral affine curve
C over K, we use this flexibility in Section 5 to construct a principal ideal
domain R = O

K,Vr T with quotient field K and a smooth affine curve X

over R such that XK = C. Then, following [MoB89], we embed X as a
Zariski-open subset of a projective regular curve X̄ = Proj(R[t0, . . . , tr]),
where R[t0, . . . , tr] =

∑∞
k=0R[t0 . . . , tr]k is a graded integral domain over R

such that R[t0, . . . , tr]0 = R and R[t0, . . . , tr]1 =
∑r

i=0Rti (Lemma 5.6).
The main result of [MoB89] produces for every large positive integer k a

section s0 ∈ Γ(X̄,OX̄(k)) such that each of the irreducible components of
the effective divisor div(s0) yields distinct points of X(Ktot,S) that belong
to the left hand side of (1) with C replacing V and Ktot,S replacing M . In
particular, s0 does not vanish on Z = X̄ rX (essentially Proposition 7.6
and Lemma 7.8).

In order to find such points in C(O
M,Vr T ), we construct a surjective mor-

phism ϕ from X̄K onto a projective curve Y = Proj(K[s0, . . . , sl]), where
s0, s1, . . . , sl are elements of R[t0, . . . , tr]k for an appropriately chosen large
k and s0 is as in the preceding paragraph. Moreover, s1, . . . , sl vanish on
Z. Changing the base from R to K̃, the curve YK̃ has some special proper-
ties. It is a nonstrange curve with only finitely many inflection points and
finitely many double tangents, and it has cusps with a given large multi-
plicity q such that the multiplicities of all other points of YK̃ are at most q
(Proposition 10.5).

Choosing q as a large prime number, the main result of [GJR17] and
Proposition 11.2 give an element

t =
s0 + a1s1 + . . .+ alsl
s0 + b1s1 + · · ·+ blsl

of the function field F of X̄K such that F/K(t) is a finite separable extension

and the Galois closure F̂ of F/K(t) is a regular extension of K (we call t
a “stabilizing element” of F/K). Moreover, a1, . . . , al, b1, . . . , bl ∈ R, b1 =
1 +a1, and (a1, . . . , al, b2, . . . , bl) can be chosen in a T -open subset of R2l−1.

By a result of [GJR00] (quoted here as Lemma 13.6), for almost all σ ∈
Gal(K)e, every extension M of Ktot,S [σ] in Ktot,S is “weakly K-stably PSC
over OK,V” (Definition 12.1). If we take a1, . . . , al in R sufficiently close to
0 in the T -adic topology and b2, . . . , bl ∈ R, then that property yields an
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M -rational place of FM with residue field M such that, with

s′ = s0 + a1s1 + · · ·+ alsl,

the zero of div(s′) that corresponds to this place belongs to

C(O
M,Vr T ) ∩

⋂
p∈T

⋂
τ∈Gal(K)

Ωτ
p 6= ∅

(Proposition 12.3). Thus, M satisfies the strong approximation theorem.
Finally, we denote the compositum of all finite Galois extensions of K

with symmetric Galois groups by Ksymm. In a forthcoming work we prove
the following result:

Theorem D. In the notation of Theorem C, the field Ktot,S ∩Ksymm sat-
isfies the strong approximation theorem.

Acknowledgement. The authors are indebted to Laurent Moret-Bailly
for crucial contributions to Sections 7 and 9 and other helpful suggestions.
They also thank Sebastian Petersen for technical help. Finally, they thank
the anonymous referee for important comments.

1. Twisted sheaves

Recall that a ring A (commutative with 1) is graded if A =
⊕∞

k=0Ak,
where each summand Ak is a commutative group under the addition of A
and AkAl ⊆ Ak+l for all k, l ≥ 0. In particular, A0 is a subring of A and
each Ak is an A0-module. We then say that A is a graded ring over A0. Each
nonzero s ∈ A has a unique presentation s =

∑∞
k=0 sk, where sk ∈ Ak for

each k ≥ 0 and sk = 0 for all large k. The elements of
⋃∞
k=0Ak are said to be

homogeneous and the elements sk above are the homogeneous components
of s.

If a homogeneous element s of A belongs to Ak, we say that the A-degree
of s is k and write degA(s) = k. If s′ is an additional homogeneous element
of A, then degA(ss′) = degA(s) + degA(s′).

If s0, . . . , sl are elements of Ak for some k ≥ 0, then T = A0[s0, . . . , sl] is
a graded ring over A0 with Tm being the A0-module generated by all of the
monomials in s0, . . . , sl whose A-degree is km. In particular, T0 = A0 and

T1 =
∑l

i=0A0si.
An A-module M is graded if M =

⊕∞
k=0Mk, where each Mk is an additive

subgroup of M and AkMl ⊆Mk+l for all k, l.
An ideal a of A is homogeneous if a is homogeneous as a graded A-module;

alternatively, if a =
⊕∞

k=0(a∩Ak); alternatively, if each of the homogeneous
components of every a ∈ a belongs to a; alternatively, if a is generated by
homogeneous elements. An example of a homogeneous ideal is

A+ =
∞⊕
k=1

Ak.
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The homogeneous prime ideals of A not containing A+ form a set Proj(A)
that has a natural sheaf structure [Liu06, p. 52, Prop. 2.3.38].

If (ai)i∈I is a family of homogeneous ideals of A, then each of the following
ideals is homogeneous:

∑
i∈I ai,

∏
i∈I ai (= the set of all finite sums of

finite products ai1 · · · ain with ai1 ∈ ai1 , . . . , ain ∈ ain and i1, . . . , in distinct
elements of I), and

⋂
i∈I ai.

Setup 1.1. Let A =
⊕∞

k=0Ak be a Noetherian graded ring. Then, the
ideal A+ of A is finitely generated, so A1 =

∑r
i=0A0ti is a finitely generated

A0-module. We assume that A = A0[t0, . . . , tr]. Then, we set V = Proj(A)
and consider for each k the twisted sheaf OV (k) [Har77, pp. 116–117] and
the abelian group Γ(V,OV (k)) of its global sections. Each t ∈ Γ(V,OV (k))
can be viewed as an element of the direct product

∏
P∈V AP which is locally

a fraction of degree k. This means that each P0 ∈ V has a Zariski-open
neighborhood V0 and there exist homogeneous elements f and g of A such
that degA(f) − degA(g) = k, g /∈ P , and tP = f

g in AP for each P ∈ V0.

If a ∈ Aj , then at is an element of Γ(V,OV (j + k)), which is defined in

the latter notation by (at)P = af
g for each P ∈ V0. This definition makes⊕∞

k=0 Γ(V,OV (k)) into a graded A-module. It also gives a natural homo-
morphism β = βV : A →

⊕∞
k=0 Γ(V,OV (k)) of graded A-modules mapping

each s ∈ Ak onto the element of
∏
P∈V AP whose P th coordinate is s

1 . Let
βk = βV,k : Ak → Γ(V,OV (k)) be the kth homogeneous component of β. �

For the convenience of the reader we supply a proof to a special case of
[Gro61III, p. 446, Thm. 2.3.1]. It says that βk is an isomorphism for all
large k.

Lemma 1.2. The following statements hold under Setup 1.1:

(a) Let I be an ideal of A such that A1 ⊆
√
I. Then, Am ⊆ I for all

large m.
(b) Let s be a homogeneous element of A whose annihilator

I = {a ∈ A | as = 0}
is contained in no P ∈ Proj(A). Then, Am ⊆ I for all large m.

Proof. (a) For each 0 ≤ i ≤ r there exists ei such that teii ∈ I. Let
e =

∑r
i=0(ei − 1) and let m > e. If

∏r
i=0 t

mi
i ∈ Am, then

r∑
i=0

mi = m >

r∑
i=0

(ei − 1),

so there exists 0 ≤ i ≤ r with mi ≥ ei, hence
∏r
i=0 t

mi
i ∈ I. Since Am is

generated as an A-module by the monomials of degree m in t0, . . . , tr, we
conclude that Am ⊆ I.

(b) First note that I = 0:As = {a ∈ A | as = 0} is a homogeneous ideal

of A [ZaS75II, p. 152, Thm. 8]. Therefore, by the same theorem,
√
I is

also homogeneous. By [Bou89, p. 283, Prop. 1],
√
I is an intersection of
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homogeneous prime ideals P of A. By assumption, none of those P is in
Proj(A), so all of them contain A+, hence also A1. It follows that A1 ⊆

√
I.

By Part (a), Am ⊆ I for all large m. �

Lemma 1.3. Under Setup 1.1, the natural homomorphism

βk : Ak → Γ(V,OV (k))

is an isomorphism for all large k.

Proof. We break up the proof into two parts.

Part A. For all large k, the map βk is injective. Indeed, since

β : A→
∞⊕
k=0

Γ(V,OV (k))

is a homomorphism of graded A-modules, I = Ker(β) is a homogeneous
ideal of A. Since A is Noetherian, I =

∑n
i=1Abi with bi ∈ Aki for some

distinct nonnegative integers ki, i = 1, . . . , n. By the convention in Setup 1.1,(
bi
1

)
P∈V = βki(bi) = 0, where for each P ∈ V , the quotient bi

1 is taken in the

local ring AP . Thus, there exists b ∈ ArP with bbi = 0. It follows that
Ni = {a ∈ A | abi = 0} 6⊆ P . Lemma 1.2(b) gives an li such that Ak ⊆ Ni

for all k > li. Let l0 = max(k1 + l1, . . . , kn + ln). For each l > l0 and for
each 1 ≤ i ≤ n we have l − ki > li, so Al−ki ⊆ Ni, hence Al−kibi = 0.
Using the presentation I =

∑n
i=1Abi and the homogeneity of I, we get

Il =
∑n

i=1Al−kibi. Therefore, Il = 0 for each l > l0. This means that βl is
injective for all l > l0.

Part B. For all large k, the map βk is surjective. Let

X = PrA0
= Proj(R), with R = A0[T0, . . . , Tr]

be the projective space of dimension r over Spec(A0). Let J be the kernel
of the A0-epimorphism R → A that maps each Ti onto ti, i = 0, . . . , r. Let
J be the sheaf of ideals associated with J , that is the sheaf appearing in
the following exact sequence of sheafs:

(1) 0 // J // OX
j#
// j∗OV //// 0,

where j : V → X is the inclusion map [Har77, p. 115, Definition]. Since
OX(k) is an invertible sheaf on X [Har77, p. 117, Prop. II.5.12(a)], the tensor
product of (1) with OX(k) remains exact. In other words, the sequence
0 → J (k) → OX(k) → j∗OV (k) → 0 is exact. Indeed, one may check the
exactness locally at each P ∈ X [GoW10, p. 172] using that OX(k)P is a
free OX,P -module. This yields an exact sequence of cohomology groups:

(2) 0→ Γ(X,J (k))→ Γ(X,OX(k))→ Γ(X, (j∗OV )(k))→ H1(X,J (k))

[Har77, p. 208, Prop. III.2.6] or [Liu06, p. 184, Prop. 5.2.15]. Since J (k)
is a coherent sheaf on X [Har77, p. 116, Prop. II.5.9], a theorem of Serre
[Har77, p. 228, Thm. III.5.2(b)] or [Liu06, p. 195, Thm. 5.3.2(b)] asserts
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that H1(X,J (k)) = 0 for all large k. By [Har77, p. 117, Prop. II.5.12(c)]
applied to the A0-epimorphism R → A that maps Ti onto ti, i = 0, . . . , r,
we have j∗(OV (k)) ∼= (j∗OV )(k). It follows from the definition of the direct
image [Har77, p. 65, Def.] that Γ(X, (j∗OV )(k)) ∼= Γ(V,OV (k)). Thus, (2)
becomes:

(3) 0→ Γ(X,J (k))→ Γ(X,OX(k))→ Γ(V,OV (k))→ 0.

Adding the maps βX,k and βV,k of Setup 1.1 to (3), we get the following
commutative diagram:

(4) 0 // Γ(X,J (k)) // Γ(X,OX(k)) // Γ(V,OV (k)) // 0

Rk //

βX,k

OO

Ak

βV,k

OO

By [Har77, p. 118, Prop. II.5.13], βX,k is an isomorphism for all k. Since the
two horizontal maps of the commutative square of (4) are surjective, βV,k is
surjective for all large k. �

Remark 1.4. Under Setup 1.1, let V ′ be a closed subscheme of V and let
I be a homogeneous ideal of A such that V ′ = Proj(A/I) [Liu06, p. 168,
Prop. 5.1.30]. Then, A′ = A/I =

⊕∞
k=0(Ak/Ak ∩ I) is a graded ring over

A′0 = A0/A0 ∩ I. Moreover, A′1 =
∑r

i=0A
′
0t
′
i with t′i = ti + I, and A′ =

A′0[t′0, . . . , t
′
r].

For each integer k ≥ 0 let π
(k)
V,V ′ : Ak → A′k be the epimorphism of

abelian groups induced by the epimorphism A → A/I of rings and let

ρ
(k)
V,V ′ : Γ(V,OV (k)) → Γ(V ′,OV ′(k)) be the restriction homomorphism in-

duced by the closed immersion V ′ ⊆ V . We set βk = βV,k and β′k = βV ′,k
(Setup 1.1). By Lemma 1.3, we have for each large k that βk and β′k are

isomorphisms. Since βV,k is natural in V , we have ρ
(k)
V,V ′ ◦ βk = β′k ◦ π

(k)
V,V ′ .

It follows that βk maps the kernel Ak ∩ I of π
(k)
V,V ′ onto Ker(ρ

(k)
V,V ′). Also,

since π
(k)
V,V ′ is surjective, so is ρ

(k)
V,V ′ . This gives the following commutative

diagram with two short exact sequences:

(5) 0 // Ak ∩ I //

βk
��

Ak
π

(k)

V,V ′
//

βk

��

A′k

β′k
��

// 0

0 // Ker(ρ
(k)
V,V ′)

// Γ(V,OV (k))
ρ

(k)

V,V ′
// Γ(V ′,OV ′(k)) // 0
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The maps π
(k)
V,V ′ and ρ

(k)
V,V ′ combine to epimorphisms of A-modules

πV,V ′ : A→ A′,

ρV,V ′ :
∞⊕
k=0

Γ(V,OV (k))→
∞⊕
k=0

Γ(V ′,OV ′(k)),

that satisfy ρV,V ′ ◦ βV = βV ′ ◦ πV,V ′ .
Following this observation, we categorically identify Ak with Γ(V,OV (k))

via βV,k and identify Ak ∩ I with Ker(ρ
(k)
V,V ′) for all large k. �

Lemma 1.5. In the notation of Setup 1.1, let V1, . . . , Vm be closed pairwise
disjoint subschemes of the projective scheme V and let k be a sufficiently
large positive integer. For each 1 ≤ i ≤ m let si ∈ Γ(Vi,OVi(k)). Then,
there exists an s ∈ Γ(V,OV (k)) such that s|Vi = si for i = 1, . . . ,m.

Proof. We consider the closed subscheme V ′ =
⋃m
i=1 Vi of V . The sets

V1, . . . , Vm are closed and disjoint in V ′. Hence, they are also open in V ′. If
i 6= j, then the restrictions of both si and sj to Γ(∅,OV ′(k)) is the unique
element 0 of the latter module. By the basic property of sheaves, there exists
s′ ∈ Γ(V ′,OV ′(k)) such that s′|Vi = si for i = 1, . . . ,m. Since V ′ is a closed

subscheme of V , the surjectivity of ρ
(k)
V,V ′ in (5) gives an s ∈ Γ(V,OV (k))

such that s|V ′ = s′, hence s|Vi = si for i = 1, . . . ,m. �

Example 1.6. Let K be a field and t0, . . . , tr nonzero elements of a field
extension of K. We set t = (t0, . . . , tr) and assume that K[t] is a graded
ring over K such that K[t]1 =

∑r
i=0Kti. Then, for all distinct integers i, j

between 0 and r the element ti is transcendental over K
(
t0
tj
, . . . , trtj

)
[ZaS75II,

p. 168, Lemma]. Also, for each k ≥ 0, K[t]k is the vector space over K
generated by all monomials in t0, . . . , tr of degree k with coefficients in K.

A homogeneous element of the quotient field K(t) of K[t] is a quotient f
g

of homogeneous elements of K[t] with g 6= 0. We set

degK[t]

(
f

g

)
= degK[t](f)− degK[t](g)

and observe that degK[t] is a well defined homomorphism from the multi-

plicative group of homogeneous elements of K(t)× onto Z.
We consider the integral projective variety V = Proj(K[t]) over K. Then,

for each 0 ≤ i ≤ r, F = K
(
t0
ti
, . . . , trti

)
is the function field of V . It can

also be described as the set of all homogeneous elements of K(t) of K[t]-
degree 0. Indeed, if f(t), g(t) are homogeneous elements of K[t] of the same

K[t]-degree k with g 6= 0, then f(t)
g(t) = f(t0/ti,...,tr/ti)

g(t0/ti,...,tr/ti)
∈ F.

Recall that the local ring of V at a point P is the ring OV,P of all quotients
f
g , where f and g are homogeneous elements of K[t] of the same K[t]-degree

and g /∈ P . Likewise for each k ≥ 0 the stalk OV (k)P is the K-vector-space
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that consists of all quotients f
g , where f and g are homogeneous elements of

K[t] such that degK[t](f)− degK[t](g) = k and g /∈ P . By Lemma 1.3:

(a) For every large positive integer k an element x of K(t) belongs to
K[t]k if and only if x ∈ OV (k)P for all P ∈ V .

Next we assume that V is an integral normal projective curve over K.
Then:

(b) For each closed point P of V , the local ring OV,P is a valuation ring of
F [Lan58, p. 151, Thm. 1]. We denote the corresponding normalized
discrete valuation of F by ordP . By definition, OV,P is the subring
of F that consists of all quotients s

u , where s, u are homogeneous
elements of K[t] of the same K[t]-degree with u /∈ P . Thus, each
of them satisfies ordP

(
s
u

)
≥ 0. Since OV,P is the valuation ring of

ordP , each x ∈ F with ordP (x) ≥ 0 can be written as s
u with s, u as

above. In particular, if both s and u as above do not belong to P ,
then ordP

(
s
u

)
= 0.

(c) If π ∈ F satisfies ordP (π) ≥ 1 and we write π = p
v with p and v

homogeneous elements of K[t] of the same K[t]-degree with v /∈ P ,
then p ∈ P (otherwise π−1 = v

p ∈ OV,P , so ordP (π) = 0, in contrast

to our assumption).
Conversely, if f and u are homogeneous elements of K[t] of the

sameK[t]-degree, f ∈ P , and u /∈ P , then f
u ∈ OV,P , hence ordP

(f
u

)
≥

0. If ordP
(f
u

)
= 0, then u

f ∈ OV,P . This gives homogeneous elements

g, v in K[t] of the same K[t]-degree such that v /∈ P and u
f = g

v ,

hence uv = fg ∈ P in contrast to the assumption that P is a prime
ideal. It follows that ordP

(f
u

)
≥ 1.

(d) If x is a homogeneous element of K(t) of K[t]-degree k,

h ∈ K[t]krP,

and ordP
(
x
h

)
≥ 0, then by (b), xh = f

g , where f and g are homogeneous

elements of K[t] of the same K[t]-degree with g /∈ P . Thus,

x =
fh

g
∈ OV (k)P .

(e) Let x and u be homogeneous elements of K[t] of the same K[t]-
degree such that u /∈ P and x ∈ P q for some positive integer q.
Since P is a homogeneous ideal of K[t], there exist a positive integer
l and homogeneous elements ti1, . . . , tiq ∈ K[t] that belong to P ,

i = 1, . . . , l, such that x =
∑l

i=1

∏q
j=1 tij , and under the setting

d = degK[t](x) and dij = degK[t](tij) we have
∑q

j=1 dij = d for all i.

We choose a homogeneous element v ∈ K[t]1 with v /∈ P (e.g., one
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of the ti’s), divide x by vd and obtain

x

vd
=

l∑
i=1

q∏
j=1

tij

vdij
.

By (c), ordP
( tij
vdij

)
≥ 1 for all i, j. Hence, ordP

(
x
vd

)
≥ q. It follows

that ordP
(
x
u

)
= ordP

(
x
vd

)
+ ordP

(
vd

u

)
≥ q. �

2. Global sections of invertible sheaves and Cartier divisors

Following [Liu06, p. 266, Exer. 7.1.13], we associate effective Cartier divi-
sors to global sections of invertible sheaves on integral schemes and introduce
their degrees.

2.1 Divisors on curves over a field. We consider a curve C over a field
L. Thus, C is a separated scheme of finite type over L, each of its irreducible
components is of dimension 1. We assume that C is integral and projective
and let F be the function field of C. For each closed point p of C and
each nonzero f ∈ OC,p we write ordp(f) for the length of the OC,p-module
OC,p/OC,pf [AtM69, p. 77]. This function satisfies

(1) ordp(fg) = ordp(f) + ordp(g),

hence it extends to a function ordp on F× satisfying (1) for all f, g ∈ F×
[BLR90, p. 237]. If p is a closed normal point of C, then ordp coincides
with the normalized valuation attached to the discrete valuation ring OC,p
as introduced in Example 1.6(b).

If (Ui, fi)i∈I is data that represent a Cartier divisor D on C, we define
ordp(D) as ordp(fi) for each i ∈ I such that p ∈ Ui. Then, the Weil divisor
that corresponds to D is DWeil =

∑
ordp(D)p, where p ranges over all

closed points of C. The degree of D (and of DWeil) is then

(2) deg(D) =
∑
p

ordp(D)[L(p) : L].

Here, L(p) is the residue fieldOC,p/mC,p of C at p. If an affine neighborhood

of p in C is embedded in AnL and one views p as an n-tuple of elements of L̃,
then the field obtained from L by adjoining those elements is L-isomorphic
to L(p).

By (1), deg(D1 +D2) = deg(D1) + deg(D2) for any two Cartier (or Weil)
divisors D1 and D2 on C. A Cartier divisor on C that can be represented by
a pair (C, f) with f ∈ F× is said to be principal and is denoted by div(f).
By [GoW10, p. 498, Thm. 15.32], deg(div(f)) = 0.

Recall that a Cartier divisor D on C represented by data (Ui, fi)i∈I nat-
urally corresponds to an invertible sheaf L on C such that

Γ(Ui,L) = Γ(Ui,OC)f−1
i
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for each i ∈ I. Two Cartier divisors that correspond to isomorphic invertible
sheaves on C differ by a principal divisor [GoW10, p. 303, Prop. 11.26]. By
the preceding paragraph, they have the same degree. Hence, one defines
deg(L) = deg(D) for each Cartier divisor D on C that corresponds to L.
Since addition of divisors corresponds to tensor products of the correspond-
ing invertible sheaves, we have deg(L ⊗OC L′) = deg(L) + deg(L′).

By [GoW10, p. 498, Remark 15.30(2)], the degree of divisors (hence of
invertible sheaves) on C is invariant under a change of the base field.

2.2 Curves over schemes. Let f : C → S be an S-curve, i.e., f is
a morphism of schemes of finite presentation with one dimensional fibers.
Under the assumption that f is flat and proper and that both S and C are
integral, [BLR90, p. 238, Prop. 2] generalizes the definition of the degree
to invertible sheaves on C (hence the definition of the degree of divisors on
C). We restrict ourselves to the only case we use in this work, where for
each s ∈ S, the fiber Cs = Spec(k(s)) ×S C is an integral curve over the
residue field k(s) = OS,s/mS,s of S at s. Let is : Cs → C be the canonical
morphism. We consider an invertible sheaf L on C and for each s ∈ S let Ls
be the pull-back i∗sL. It is an invertible sheaf on the fiber Cs [BLR90, p. 238,
last paragraph before Prop. 2]. Since S is integral, [BLR90, p. 238, Prop. 2]
implies that deg(Ls) (defined in Subsection 2.1) has a unique value on S,
which we define as deg(L). It follows from Subsection 2.1 that the degree
is additive and invariant under base change. In particular, if S = Spec(R)
for some integral domain R with quotient field K, and we take s to be the
generic point of S, we get that deg(D) = deg(DK) for each Cartier divisor
D on C.

Finally, we note that the assumptions on f : C → S to be flat and proper
are satisfied if S = Spec(R) (resp. S = Spec(L)), where R is a Dedekind
domain (resp. L is a field), and f is projective and surjective (or at least
dominating). See for example [Liu06, p. 137, Prop. 3.9] and [Liu06, p. 108,
Thm. 3.30]. These are the cases we consider in this work.

2.3 Subschemes attached to divisors. As in Subsection 2.2, let

f : C → S

be an S-curve. Recall that a Cartier divisor D on C represented by data
(Ui, fi)i∈I is said to be effective if fi ∈ Γ(Ui,OC) for each i ∈ I. In this case,
D gives rise to a closed subscheme C(D) of C such that

Γ(Ui,OC(D)) = Γ(Ui,OC)/fiΓ(Ui,OC)

for each i ∈ I. We say that D is flat (resp. finite) over S if C(D) is flat
(resp. finite) over S. We say that a subset C0 of C is disjoint from D, if
C0 ∩ C(D) = ∅. Finally, note that if S = Spec(L) for some field L, then
deg(D) = dimL Γ(C(D),OC(D)) [GoW10, p. 497, (15.9.1)].

2.4 Divisors of global sections. Let C be an integral scheme with
function field F . We consider an invertible sheaf L on C and a nonzero
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global section s ∈ Γ(C,L), and elaborate on [Liu06, p. 266, Exer. 7.1.13] to
associate an effective Cartier divisor div(s) to s.

By definition, C can be covered by open subsets Ui, i ∈ I, such that L|Ui is
a free OC |Ui-module of rank 1. Thus, for each i ∈ I there exists ei ∈ Γ(Ui,L)
such that for each Zariski-open subset U of Ui, the element ei|U is a free
generator of the Γ(U,OC)-module Γ(U,L). In particular, there exists a
unique fi ∈ Γ(Ui,OC) such that s|Ui = fiei. Moreover, for each additional
j ∈ I there exists uij ∈ Γ(Ui ∩ Uj ,OC)× such that ei|Ui∩Uj = uij · ej |Ui∩Uj ,
hence uij · fi|Ui∩Uj = fj |Ui∩Uj . Thus, the data (Ui, fi)i∈I define an effective
Cartier divisor div(s) on C.

For later use we say that ei is a free OC |Ui-generator of L|Ui .
By [Har77, p. 144, Def.], the invertible sheaf L(div(s)) associated with

div(s) satisfies L(div(s))|Ui = (OC |Ui)f
−1
i for each i ∈ I. It follows from the

construction made in the preceding paragraph that the Γ(Ui,OC)-isomor-
phisms ϕi : Γ(Ui,L(div(s)))→ Γ(Ui,L) defined by ϕi(s

′f−1
i ) = s′ei for each

s′ ∈ Γ(Ui,OC) combine to an isomorphism ϕ : L(div(s)) → L of invertible
sheaves on C.

Now we assume that C is an integral locally factorial proper curve over a
Noetherian domain R (possibly a field). As in [Har77, p. 141, first part of
the proof of Prop. 6.11] or [GoW10, p. 307, (11.13.4) and Thm. 11.38(2)],
the Weil divisor that corresponds to div(s) is

(3) divWeil(s) =
∑
P

ordP (div(s))P,

where P ranges over all prime divisors of C such that P ∩ Ui 6= ∅ and
ordP (div(s)) = ordP (fi) for each i ∈ I. Here, in analogy to the notation
introduced in Example 1.6(b), ordP is the normalized discrete valuation of F
that corresponds to the valuation ring OC,P . Thus, ordP (fi) is nonnegative
and independent of the i that satisfies P ∩Ui 6= ∅, so divWeil(s) is an effective
Weil divisor. The finitely many prime divisors P of C with ordP (div(s)) > 0
are called the zeros of s. In the notation of Subsection 2.3, the set of zeros
of s is the underlying topological set of C(div(s)). Hence, div(s) is disjoint
to a subset C0 of C if each of the zeros of s is disjoint to C0. We say that
div(s) is flat and finite over an integral domain R if C(div(s)) is flat and
finite over R.

In addition to the assumptions made on C above, we now assume that Cp

is integral over k(p) = Quot(R/p) for each p ∈ Spec(R) (this is the only case
we use in this work). The degree of div(s) is defined as in Subsection 2.1
if C is a curve over a field. If C is a curve over R, then by Subsection 2.2,
deg(div(s)) = deg(div(s)K), where K = Quot(R). Since L(div(s)) ∼= L, we
deduce that deg(div(s)) = deg(L). It follows that deg(div(s′)) = deg(div(s))
for each nonzero s′ ∈ Γ(C,L).

If the zeros of s belong to a Zariski-open subscheme C0 of C, we may
consider div(s) also as a divisor on C0.
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2.5 The section 1D. Let C be an integral scheme with function field F .
Let D be a Cartier divisor on C with representing data (Ui, fi)i∈I . One
attaches an invertible sheaf L(D) on C such that L(D)|Ui = OC |Uif

−1
i ,

hence Γ(Ui,L(D)) = Γ(Ui,OC)f−1
i for every i ∈ I [Har77, p. 144, Def.]. If

D is an effective divisor, then fi ∈ Γ(Ui,OC), so the unit of F , 1 = fif
−1
i

belongs to Γ(Ui,L(D)) for each i ∈ I. Hence, there exists a global section
1D ∈ Γ(C,L(D)) such that 1D|Ui = 1 for each i ∈ I.

In the notation of Subsection 2.4, the Cartier divisor on C that corre-
sponds to 1D has (Ui, fi)i∈I as representing data. Hence, div(1D) = D.

2.6 The ample sheaves OC(k). Let A0 be a Noetherian integral domain
and let A =

⊕∞
k=0Ak be a graded integral domain over A0 such that

A1 =

r∑
i=0

A0ti and A = A0[t]

with t = (t0, . . . , tr). Then, C = Proj(A) is isomorphic to a closed sub-
scheme of PrA0

[Liu06, p. 53, Lemma 2.3.41], so C is projective over A0.
Hence, C is proper over A0 [Liu06, p. 108, Thm. 3.3.30]. We assume that C
is a regular curve over A0, in particular C is locally factorial [Liu06, p. 130,
Thm. 4.2.16(b)]. As above, we also assume that Cp is integral for each
p ∈ Spec(A0). Let F be the function field of C. Following Subsection 2.4,
we attach to each nonzero s ∈ Ak with k large an effective Weil divisor
divWeil(s) as follows:

We set U = A1 r{0} and consider u ∈ U . Recall that

D+(u) = {p ∈ C | u /∈ p}
and the ring Γ(D+(u),OC) consists of all the quotients s

ul
, where s is a

homogeneous element of A and degA(s) = l. The Γ(D+(u),OC)-module

Γ(D+(u),OC(k))

consists of all quotients s
uj

, where s is a homogeneous element of A and
degA(s)− j = k (see the proof of [Har77, p. 117, Prop. II.5.12(a)]). Writing
s
uj

= s
uj+k

uk, we see that uk is a free OC |D+(u)-generator of OC(k)|D+(u). In
particular, OC(k) is an invertible sheaf on C [Har77, p. 117, Prop. II.5.12(a)].

For large k, Lemma 1.3 identifies Γ(C,OC(k)) with Ak. Following Subsec-
tion 2.4, the Cartier divisor that corresponds to an element s ∈ Ak (which
we write as s

uk
uk) is (D+(u), s

uk
)u∈U . By our assumptions on A, for each

prime divisor P of C and, with p the homogeneous prime ideal of A under-
lying P , there exists u ∈ U rp, so ordP

(
s
uk

)
is a nonnegative integer that

does not depend on u. Hence, divWeil(s) =
∑

ordP
(
s
uk

)
P , where P ranges

over all prime divisors of C.
It follows from this definition that if s′ is another homogeneous element

of A of large A-degree, then divWeil(ss
′) = divWeil(s) + divWeil(s

′).

2.7 Divisors of function fields. We assume in this subsection that the
ring A0 introduced in Subsection 2.6 is a field L. Then, the scheme C
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introduced in that section is a projective normal curve over L. We identify
the prime divisors P of F/L with the closed points of C such that the
valuation ring of P , considered as a prime divisor, coincides with the local
ring of C at P , considered as a point of C. In particular, the degree of P
over L as a prime divisor coincides with its degree over L as a point of C.
Then, a divisor of F/L is a formal sum D =

∑
kPP , where P ranges over all

prime divisors of F/L and all but finitely many of the integral coefficients
kP are zero [FrJ08, Section 3.1]. As in (2), deg(D) =

∑
P kP [L(P ) : L].

If f ∈ F×, we write div(f) =
∑

P ordP (f)P (in accordance with Subsec-
tion 2.1). We also write

div0(f) =
∑

ordP (f)>0

ordP (f)P and div∞(f) = −
∑

ordP (f)<0

ordP (f)P

for the zero divisor and the pole divisor, respectively, of f . Since

div(f) = div0(f)− deg∞(f) and deg(div(f)) = 0

[Che51, p. 18, Thm. 5], we have deg(div0(f)) = deg(div∞(f)). Note that if
s and s′ are nonzero homogeneous elements of A of the same A-degree, then
f = s′

s ∈ F
×, so s′ = fs. For each divisor P of C we choose u ∈ U rP .

Then, by Section 2.6,

ordP (divWeil(s
′)) = ordP

(
s′

uk

)
= ordP (f) + ordP

(
s

uk

)
= ordP (divWeil(f)) + ordP (divWeil(s)).

Hence,

(4) divWeil(s
′) = divWeil(f) + divWeil(s).

Therefore, deg(divWeil(s
′)) = deg(divWeil(s)).

In the sequel we omit the subscript “Weil” from Weil divisors. However,
occasionally we add a subscript L for the divisors of elements of F× to
indicate the field of constants of F .

3. Continuity of divisors

We apply the identification of global sections of high degrees of twisted
sheaves on a projective scheme with homogeneous polynomials to the case
of a curve over a local field and prove a theorem about continuity of divisors
of functions.

Throughout this section we consider a field L and a graded ring A =⊕∞
k=0Ak over L = A0 such that A1 =

∑r
i=0 Lti and A = L[t0, . . . , tr], with

t0, . . . , tr 6= 0. We assume that C = Proj(A) is an absolutely integral normal
projective curve over L with function field F . In particular, F is a regular
extension of L [FrJ08, p. 175, Cor. 10.2.2(b)].

3.1 Continuity. We assume in this section that L is a field equipped with
an absolute value | | which is either nonarchimedean and Henselian or | | is
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archimedean and L is either real closed or algebraically closed with C as the
| |-completion. Note that, if L is separably closed, then L is Henselian with
respect to every nonarchimedean absolute value [Jar91, Cor. 11.3].

We consider a normal absolutely integral projective curve C over L with
function field F . We extend | | to the algebraic closure L̃ of L in the unique
possible way and prove that for each large k the map s 7→ div(s) from
Γ(C,OC(k)) to the set of divisors on C is | |-continuous in a sense that will
become clear in Lemma 3.4.

Following Subsection 2.7, we identify the set of L-rational points C(L) of
C with the set of prime divisors of F/L of degree 1. The absolute value | |
of L induces a topology on C(L) (see [Mum88, p. 57, Sec. I.10] or [GPR95,
p. 68, Sec. 7]), so we may speak of an | |-open neighborhood U of a point p
in C(L). The set U is defined by inequalities involving | | and elements of
L. If L′ is an algebraic extension of L, then the same inequalities define a
neighborhood U(L′) of the unique point pL′ of C(L′) that lies over p. To
simplify notation, we also write p rather than pL′ .

Here are some useful remarks about the interaction of the | |-topology
with the Zariski-topology.

(a) Let V be an absolutely integral affine variety in AnL for some positive
integer n. If U is a Zariski-open subset of V , then U(L) is | |-open
in V (L) [Mum88, p. 57, (i)]. On the other hand, if U(L) is a | |-open
subset of V (L) that contains a simple point (= nonsingular point) of
V , then U(L) is Zariski-dense in V [GeJ02, Prop. 8.2(b)].

(b) If L is algebraically closed, and U is a nonempty Zariski-open subset
of V , then U(L) is | |-dense in V (L) [GeJ75, Lemma 2.2].

(c) If L is separably closed and U is a nonempty Zariski-open subset of
V , then U(L) contains a simple point of V [Lan58, p. 76, Prop. 9].
Hence, by (a), U(L) is | |-dense in V (L).

3.2 Total splitting. Let D be an effective divisor of F/L and N a finite
separable extension of L. We say that D totally splits in FN if the extension
DN of D to N is the sum

∑m
i=1 Pi of distinct prime divisors of degree 1 of

FN/N . In this case we also say that DN =
∑m

i=1 Pi is a total splitting
of D in FN . Note that Pi has in this case a unique extension to a prime
divisor Pi,N ′ of N ′ for every separable algebraic extension N ′ of N [Deu73,
p. 128, Thm.]. Hence, if L′ is a separable algebraic extension of L and we
set N ′ = NL′, then DN ′ =

∑m
i=1 Pi,N ′ is a total splitting of D in FN ′.

Given a divisor D of F/L, we consider the vector space

L(D) = {f ∈ F× | div(f) +D ≥ 0} ∪ {0}

over L.
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Lemma 3.3. In the above notation, let f be an element of F× with a total
splitting div0(f)N =

∑m
i=1 Pi of div0(f) in FN . For each i let Ui be an | |-

open neighborhood of Pi in C(N). Let u1, . . . , ul be elements of L(div∞(f))

and let b1, . . . , bl be elements of L satisfying f =
∑l

λ=1 bλuλ.
Then, there exists a real number γ > 0 such that every separable algebraic

extension L′ of L has the following property: if b′1, . . . , b
′
l ∈ L′ satisfy

|b′λ − bλ| < γ

for 1 ≤ λ ≤ l and we set f ′ =
∑l

λ=1 b
′
λuλ and N ′ = NL′, then

div∞(f ′)N ′ = div∞(f)N ′

and div0(f ′)N ′ =
∑m

i=1 P
′
i is a total splitting of div0(f ′)L′ in FN ′ with

P ′i ∈ Ui(N ′) for all i.

Proof. We may assume that L′ = L and N ′ = N . Then, we choose an

L-basis v1, . . . , vd for L(div∞(f)) and set uλ =
∑d

δ=1 aλδvδ for some aλδ ∈ L
and λ = 1 . . . , l. This gives

f =

d∑
δ=1

(
l∑

λ=1

bλaλδ

)
vδ and f ′ =

d∑
δ=1

(
l∑

λ=1

b′λaλδ

)
vδ.

Since the map

(b′1, . . . , b
′
l) 7→

(
l∑

λ=1

b′λaλ1, . . . ,
l∑

λ=1

b′λaλd

)
is | |-continuous, we may replace u1, . . . , ul by v1, . . . , vd, if necessary, to
assume that u1, . . . , ul form a basis of L(div∞(f)). Now we may apply
[JaR08, Prop. 4.3] to conclude the existence of γ > 0 that has the properties
of the conclusion of the lemma. �

Lemma 3.4. As above we consider an absolute valued field (L, | |) which
is Henselian, real closed, or algebraically closed. We also consider the nor-
mal absolutely integral projective curve C = Proj(L[t0, . . . , tr]) over L with
function field F introduced at the beginning of this section.

Next we consider a finite Galois extension N of L, sections s, s1, . . . , se ∈
Γ(C,OC(k)) with k large as in Remark 1.4, and elements a1, . . . , ae ∈ L
such that s =

∑e
ε=1 aεsε and div(s)N =

∑m
i=1 Pi is a total splitting of div(s)

in FN . For each i let Ui be an | |-open neighborhood of Pi in C(N).
Then, there exists a real number γ > 0 such that if L′ is a separable

algebraic extension of L and a′1, . . . , a
′
e ∈ L′ satisfy |a′ε − aε| < γ for ε =

1, . . . , e and we set s′ =
∑e

ε=1 a
′
εsε and N ′ = NL′, then div(s′)N ′ =

∑m
i=1 P

′
i

is a total splitting of div(s′)L′ in FN ′ with P ′i ∈ Ui(N ′) for all i. Moreover,
deg(div(s′)L′) = deg(div(s)L).

Proof. Again, we may assume that L′ = L and hence that N ′ = N . Since
t0 is nonzero, it vanishes at only finitely many points of C. Applying an
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invertible linear transformation over L on the coordinates t0, . . . , tr, we may
assume that

(1) t0(Pi) 6= 0 for all i.

Under this assumption we set t = s
tk0

=
∑e

ε=1 aε
sε
tk0

.

Claim. div0(t) = div(s). By (4) in Subsection 2.7,

(2) k · div(t0) + div(t) = div(s).

Consider a point p ∈ C(N). Since C is normal and N is a separable exten-
sion, CN is also normal [Lan58, p. 146, Thm. 7], so the notation ordp makes
sense. By (2),

(3) k · ordp(div(t0)N ) + ordp(t) = ordp(div(s)N ).

By Subsection 2.4, div(t0) ≥ 0. If ordp(div(t0)N ) > 0, then t0(p) = 0, so
by (1), p 6= P1, . . . , Pm. Hence, s(p) 6= 0, that is ordp(div(s)N ) = 0. Hence,
by (3), ordp(t) < 0. Therefore, ordp(div0(t)N ) = 0. If ordp(div(t0)N ) = 0,
then by (3), ordp(t) = ordp(div(s)N ) ≥ 0, so

ordp(div0(t)N ) = ordp(div(s)N ).

Thus, the latter equality holds for all p ∈ C(N). This implies that

div0(t)N = div(s)N .

Since the map of the group of divisors of C into the group of divisors of
CN given by D 7→ DN is injective, we conclude that div0(t) = div(s), as
claimed.

Returning to the proof of the lemma, Lemma 3.3 gives a real number
γ > 0 such that if a′1, . . . , a

′
e ∈ L satisfy |a′ε − aε| < γ for ε = 1, . . . , e, and

we set t′ =
∑e

ε=1 a
′
ε
sε
tk0

, then:

(4a) div0(t′)N =
∑m

i=1 P
′
i is a total splitting of div0(t′) in FN and P ′i ∈

Ui(N) for i = 1, . . . ,m.
(4b) div∞(t′)N = div∞(t)N .

Finally, we observe that s′ =
∑e

ε=1 a
′
εsε satisfies t′ = s′

tk0
. As in (2),

k · div(t0)N + div(t′)N = div(s′)N . Hence, by (2),

div(s′)N − div(t′)N = div(s)N − div(t)N ,

so div(s′)N − div0(t′)N + div∞(t′)N = div(s)N − div0(t)N + div∞(t)N . It
follows from the claim and from (4b) that div(s′)N = div0(t′)N . We con-
clude from (4a) that div(s′)N =

∑m
i=1 P

′
i is a total splitting of div(s′) in

FN . Moreover, since F/L is regular, the degree of divisors is preserved
under the extension of the base field from L to N [Deu73, p. 126, Thm.].
Hence, deg(div(s′)) = deg(div(s′)N ) = m = deg(div(s)N ) = deg(div(s)), as
claimed. �
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4. Reduction steps

We set up the arithmetical objects that appear in the proof of Theorem C
and prove two reduction lemmas. They allow us to replace V by an open
subvariety and T by a larger finite subset of V. Finally we reduce Theorem C
to the case where V is a curve.

4.1 A global field. LetK be a global field, that isK is either a number field
or an algebraic function field of one variable over a finite field. Following
Weil’s Foundation [Wei62], we choose an algebraically closed field f that
contains K and has a sufficiently large transcendence degree to contain all
of the field extensions of K that appear in this work. If F is a subfield
of f, then Fsep and F̃ denote the unique separable closure and the unique
algebraic closure of F , respectively, in f. In particular, if F ′ is an extension

of F in f, then F̃ ⊆ F̃ ′. We denote the absolute Galois group Gal(Fsep/F )
of F by Gal(F ).

4.2 Convention for affine varieties. We follow [Liu06, p. 55, Def. 3.47]
to define an affine variety over K as an affine scheme associated to a finitely
generated algebra over K.

Let V be an absolutely integral affine variety over K which we assume to
be a closed K-subscheme of AnK for some n (in which case we also say that V
is an absolutely integral affine variety in AnK). Thus, V = Spec(K[x]), where
K[x] = K[X]/I with X = (X1, . . . , Xn), I is a prime ideal of K[X] such

that K̃[X]/K̃I is an integral domain, and x = (x1, . . . , xn) with xi = Xi+ I
for i = 1, . . . , n. In the classical algebraic geometry V is said to be (or more
accurately, closely related to) the absolutely irreducible affine variety defined
over K by I. Thus, in the classical language, V is just the set of all a ∈ fn
such that f(a) = 0 for all f ∈ I. This is the language used in our previ-
ous papers [FrJ08], [GeJ75], [GeJ89], [GeJ02], [GJR00], [JaR94], [JaR95],
[JaR98], and [JaR08] that we use in this work. Following that convention,
for each subset A of f we set V (A) = {a ∈ An | f(a) = 0 for all f ∈ I}.
Each a in V (A) is an A-rational point of V . Embedding F = K(x) in f,
the n-tuple x is then a generic point of V and F = K(x) is a function field
of V . It is a regular extension of K [FrJ08, p. 175,Cor. 10.2.2(a)]. As usual,
if dim(V ) = 1, we speak about a “curve” rather than a “variety”.

We also write Vsimp for the Zariski-open subset of V that consists of all
simple (= nonsingular) points of V .

4.3 Convention for projective varieties. By an absolutely integral pro-
jective variety in PrK we mean a closed absolutely integral subscheme W
of PrK . Thus, W = Proj(K[T]/I), where T = (T0, . . . , Tr), I is a homo-
geneous prime ideal of the graded ring K[T] that does not contain every

Ti, and K̃[T]/K̃I is an integral domain. For each extension L of K, we
use the classical notation and identify W (L) = MorK(Spec(L),W ) with the
set of all equivalence classes a = (a0: · · · :ar) of (r + 1)-tuples of elements
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of L with respect to multiplication by an element of L× such that there
exists 0 ≤ j ≤ r with aj 6= 0 and (a0, . . . , ar) is a zero of I. In this case
K(a) = K

(
a0
aj
, . . . , araj

)
is the residue field of a.

In particular, a point t = (t0: · · · :tr) of W (f) is generic if the map
(T0, . . . , Tr) 7→ (t0, . . . , tr) induces a K-isomorphism

K[T0, . . . , Tr]/I → K[t0, . . . , tr].

Equivalently, for each a ∈W (f) the map (t0, . . . , tr) 7→ (a0, . . . , ar) uniquely
extends to a K-homomorphism

K[t0, . . . , tr]→ K[a0, . . . , ar].

In this case F = K(t) is the function field of W . This notation is inde-
pendent of the representative (t0, . . . , tr) of t. However, K[t0, . . . , tr] does
depend on that representative of t. Nevertheless, we abuse our notation and
abbreviate K[t0, . . . , tr] by K[t] whenever t0, . . . , tr are given.

The points of W are the homogeneous prime ideals of K[t] that do not
contain K[t]+, i.e., do not contain the set {t0, . . . , tr}. If P ∈ W , then
K(P ) = OW,P /mW,P is the residue field of P . In particular, if K(P ) = K,
then P is a K-rational point of K that corresponds to a point a ∈ W (K)
such that the map t→ a defines a K-isomorphism K[t]/P ∼= K.

For a field extension L of K, a point Q of WL = W ×Spec(K) Spec(L) lies
over P (equivalently, over a) if Q ∩K[t] = P .

4.4 Local fields. We denote the set of all primes of K by PK . For each
p ∈ PK we fix a completion K̂p of K at p in f and an absolute p-adic

value | |p of K̂p. Then, we extend | |p to
˜̂
Kp in the unique possible way. In

particular, | |p is now also defined on K̃.
Let V be an absolutely integral affine variety in AnK (Subsection 4.2). The

p-adic topology on
˜̂
Kp defines a p-adic topology on V (

˜̂
Kp) (Subsection 3.1).

For each extension L of K in
˜̂
Kp we refer to a p-adically open (resp. closed)

subsets of V (L) as p-open (resp. p-closed). Each p-open subset Ω of V (L) is
a union of open p-balls defined by parameters from L. If L′ is an extension

of L in
˜̂
Kp, then the same parameters define open p-balls in V (L′). Their

union is a p-open subset of V (L′) that we denote by Ω(L′). Note that a
change in the parameters that define Ω does not effect the set Ω(L′). In
particular, Ω(L′) ∩ V (L) = Ω(L).

Next we consider the field Kp = Ksep ∩ K̂p and call it a p-closure of K at
p. It is a Henselian closure of K at p if p ∈ PK is nonarchimedean, a real
closure of K if p is archimedean and real, and K̃ if p is archimedean and
complex.

If K is a number field, then char(K) = 0, so Ksep = K̃, hence

Kp = K̃ ∩ K̂p.



1468 WULF-DIETER GEYER, MOSHE JARDEN AND AHARON RAZON

If K is a function field of one variable over a finite field, then K̂p is a regular

extension of Kp [Jar94, Lemma 2.2], in particular Kp = K̃ ∩ K̂p. Thus, the
latter relation holds in both cases.

4.5 Holomorphy domains. For each p ∈ PK and a subfield M of
˜̂
Kp we

consider the closed disc

OM,p = {x ∈M | |x|p ≤ 1}

of M at p. We omit p from OM,p if K̂p ⊆M ⊆ ˜̂Kp. If p is nonarchimedean,
then OM,p is a valuation ring of rank 1 of M .

Next we consider a subset U of PK and a field K ⊆M ⊆ K̃. Let UM be
the set of all primes of M that lie over U . If q ∈ UM lies over p ∈ U , then we
denote the unique absolute value of M that extends | |p to M and represents
q by | |q. In this case there exists τ ∈ Gal(K) such that |x|q = |xτ |p for each
x ∈M . Conversely, the latter condition defines q. We set

OM,U =
⋂

q∈UM

{x ∈M | |x|q ≤ 1}

for the U-holomorphy domain of M . (Note that in general OM,{p} 6= OM,p.)
If U consists of nonarchimedean primes, then OM,U is the integral closure of
OK,U in M [Lan58, p. 12, Prop. 4]. If U is arbitrary but M is Galois over
K, then

OM,U =
⋂
p∈U

⋂
τ∈Gal(K)

OτM,p .

Note that

(1) if U ⊆ U ′ ⊆ PK , then OM,U ′ ⊆ OM,U .

4.6 Basic objects. In the number field case (i.e., char(K) = 0), we denote
the set of all nonarchimedean primes of K by PK,fin. In the function field
case, where p = char(K) > 0, we fix a separating transcendence element tK
for K/Fp and let PK,fin = {p ∈ PK | |tK |p ≤ 1}. In both cases PK,fin is
cofinite in PK and we set

OK = OK,PK,fin
= {x ∈ K | |x|p ≤ 1 for all p ∈ PK,fin}.

If K is a number field, then OK is the integral closure of Z in K. In the
function field case OK is the integral closure of Fp[tK ] in K. In both cases
OK is a Dedekind domain [CaF67, p. 13, Prop. 1]. Following the convention
in algebraic number theory, we call OK the ring of integers of K.

Next we choose a finite (possibly empty) subset S of PK , set

Ktot,S =
⋂
p∈S

⋂
τ∈Gal(K)

Kτ
p ,

and observe that Ktot,S is the maximal Galois extension of K in which each
p ∈ S totally splits.

We also choose a nonempty proper subset V of PK that contains S.
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4.7 Strong approximation. Let T be a finite subset of V that contains S
such that V r T ⊆ PK,fin. Thus, by (1), OK ⊆ OK,Vr T .

Given an absolutely integral affine variety V in AnK for some positive
integer n, we consider for each p ∈ T :

(3a) a finite Galois extension Lp of Kp, such that Lp = Kp if p ∈ S, and
(3b) a nonempty p-open subset Ωp of Vsimp(Lp), invariant under the action

of Gal(Lp/Kp).

Assuming that

(3c) V (OK̃,p) 6= ∅, equivalently that V (OKsep,p) 6= ∅ [GeJ75, Lemma 2.4],

for each p ∈ V r T ,

we say that (Lp,Ωp)p∈T is approximation data for K,S, T ,V, V .
Given a field K ⊆M ⊆ Ktot,S , we write

(M,K,S,V, V, T , (Lp,Ωp)p∈T ) |= SAT

if

(4) there exists z ∈ V (O
M,Vr T ) such that zτ ∈ Ωp for all p ∈ T and all

τ ∈ Gal(K).

We write (M,K,S,V, V ) |= SAT if

(5) (M,K,S,V, V, T , (Lp,Ωp)p∈T ) |= SAT for all finite subsets T of V
that contain S such that V r T ⊆ PK,fin and for all approximation
data (Lp,Ωp)p∈T for K,S, T ,V, V .

Finally, we write (M,K,S,V) |= SAT and say that M satisfies the strong
approximation theorem for K,S,V if

(6) (M,K,S,V, V ) |= SAT for every absolutely integral affine variety V
in AnK for some positive integer n.

Note that all p-closures of K at a given p ∈ PK are K-isomorphic. Hence,
Conditions (3a)–(3c), (4), (5), and (6) are independent of the choices of the
closures.

4.8 Fixing K, S, and V. For the rest of the work we fix the global field K,
the proper subset V of PK , and the finite subset S of V, as in Subsection 4.6.
Let T be a finite subset of V that contains S and satisfies V r T ⊆ PK,fin.
Let V be an absolutely integral affine variety over K in AnK for some positive
integer n and let (Lp,Ωp)p∈T be approximation data for K,S, T ,V, V .

Remark 4.9. Conditions (3a)–(3c) can be reformulated in terms of com-
pletions instead of closures at primes of K. Indeed, suppose that for each
p ∈ T we are given a finite Galois extension L̂p of K̂p, such that L̂p = K̂p

if p ∈ S, and a nonempty p-open subset Ω̂p of Vsimp(L̂p), invariant under

the action of Gal(L̂p/K̂p). Then, with Lp = L̂p ∩ Ksep, the p-open subset

Ωp = Ω̂p ∩ V (Lp) of V (Lp) is nonempty.
Indeed, if p ∈ PK,fin, then by [JaR98, Remark 1.6], V (Lp) is p-dense in

V (L̂p). If p ∈ PK,inf is real, then Lp and L̂p are real closed, so L̂p is an
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elementary extension of Lp as ordered fields [Pre84, p. 51, Cor. 5.2]. In

particular, V (Lp) is p-dense in V (L̂p). Finally, if p ∈ PK,inf is complex, then

Lp = Q̃, L̂p is isomorphic to C and there exists a real closed field Lp,0 such

that Lp = Lp,0(
√
−1), and the pair (L̂p, L̂p,0), with L̂p,0 being the p-closure

of Lp,0 in L̂p, is isomorphic to (C,R). The p-density of V (Lp) in V (L̂p)

follows in this case from the fact that L̂p,0 is an elementary extension of Lp,0

as ordered fields.
Now we choose ẑ ∈ Ω̂p and ε > 0 such that

{z ∈ V (L̂p) | |z− ẑ|p < ε} ⊆ Ω̂p.

Since Lp is p-dense in L̂p, there exists a ∈ Lnp that satisfies |a−ẑ|p < ε
2 . Since

L̂p is an elementary extension of Lp as ordered fields, there exists z ∈ V (Lp)

such that |z− a|p < ε
2 . Then, |z− ẑ|p < ε, so z ∈ Ω̂p ∩ V (Lp), as desired.

Conversely, given Lp and Ωp as in (3b), we may consider L̂p = K̂pLp and

let Ω̂p = Ωp(L̂p). Then, Ω̂p is a nonempty p-open subset of Vsimp(L̂p).
By Abraham Robinson, the theory of algebraically closed valued fields

(with nontrivial valuation) is model complete [Pre86, p. 240, Kor. 4.18].
Hence, we could have replaced Condition (3c) by the condition: V (O ˜̂

Kp
) 6= ∅

for each p ∈ V r T . �

In proving the strong approximation theorem for K,S,V, we may choose
T , V, (Lp,Ωp) with some extra properties. This is proved in the following
lemma.

Lemma 4.10. Let T be a finite subset of V that contains S such that
V r T ⊆ PK,fin, V an absolutely integral affine variety in AnK for some
positive integer n, and (Lp,Ωp)p∈T approximation data for K,S, T ,V, V .
We consider a field extension M of K in Ktot,S . Then, in order to prove
that

(M,K,S,V, V, T , (Lp,Ωp)p∈T ) |= SAT,

we may

(a) replace Ωp, for each p ∈ T , by Ωp ∩ U(Lp), where U is a given
nonempty Zariski-open affine subset of V defined by polynomial in-
equalities with coefficients in K,

(b) replace T by any larger finite subset T ′ of V and extend (Lp,Ωp)p∈T
to any approximation data (Lp,Ωp)p∈T ′ for K,S, T ′,V, V ,

(c) replace V by any absolutely integral affine variety V ′ in An′K , for some
positive integer n′, which is birationally equivalent to V , and

(d) replace V by any nonempty Zariski-open affine subvariety V0 of V
defined by polynomial inequalities with coefficients in K, considered
as an affine variety in An+1

K ; in other words, if V = Spec(B) is an
affine variety over K, replace V by the Zariski-open subset

D(f) = {p ∈ B | f /∈ p},
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for some nonzero f ∈ B, and identify D(f) with Spec(B[f−1]).

Proof. (a) Since U(Lp) is p-open in V (Lp) (Statement (a) of Subsection 3.1),
Ω′p = Ωp ∩ U(Lp) is also p-open in V (Lp). Since Ωp contains a simple point
of V (by (3b)), Ωp is Zariski-dense in V (Statement (a) of Subsection 3.1),
hence Ω′p 6= ∅. Moreover, since Ωp is invariant under Gal(Lp/Kp), so is Ω′p.
Finally, if z ∈ U(O

M,Vr T ) and zτ ∈ Ω′p for all p ∈ T and τ ∈ Gal(K), then

z ∈ V (O
M,Vr T ) and zτ ∈ Ωp for all p ∈ T and τ ∈ Gal(K), as desired.

(b) Consider p ∈ T ′r T . By assumption, p is finite. V (OKsep,p) 6= ∅
by (3c). Since Vsimp is nonempty and Zariski-open in V and V (OKsep,p) is
p-open in V (Ksep), we have by Subsection 3.1(c), that Vsimp(OKsep,p) 6= ∅.
Hence, we may choose a finite Galois extension Lp of Kp such that

Ωp = Vsimp(OLp,p) 6= ∅.
Since Vsimp is Zariski-open in V and V (OLp,p) is p-open in V (Lp), the set Ωp

is p-open in V (Lp) (Subsection 3.1(a)). Since Vsimp is defined over K, the
set Ωp is invariant under the action of Gal(Lp/Kp).

Thus, (Lp,Ωp)p∈T ′ is approximation data for K,S, T ′,V, V . If

z ∈ V (O
M,Vr T ′)

and zτ ∈ Ωp for all p ∈ T ′ and τ ∈ Gal(K), then zτ ∈ Ωp for all p ∈ T and
τ ∈ Gal(K), and zτ ∈ Ωp ⊆ V (OLp,p) for all p ∈ T ′r T and τ ∈ Gal(K). It
follows that z ∈ V (O

M,Vr T ), as desired.

(c) Since V and V ′ are birationally equivalent over K, there exists a
K-isomorphism ϕ of a nonempty Zariski-open affine subset V0 of V onto a
nonempty Zariski-open affine subset V ′0 of V ′. Both V0 and V ′0 are absolutely
integral affine varieties over K. Hence, ϕ corresponds to an isomorphism
from the coordinate ring of V ′0 onto the coordinate ring of V0 [Liu06, p. 48,
Lemma 2.3.23]. Thus, both ϕ and ϕ−1 are defined by polynomials with
coefficients in K. We choose a finite subset T ′ of V that contains T such
that all of those coefficients belong to O

K,Vr T ′ .
Next we choose z0 ∈ V ′(K̃) and extend T ′ within V to assume that z0 ∈

V ′(O
K̃,Vr T ′). By (3b), for each p ∈ T , Ωp is a nonempty p-open subset of

Vsimp(Lp) which is invariant under Gal(Lp/Kp). Hence, by Subsection 3.1(a),
Ωp∩V0,simp(Lp) is a nonempty p-open subset of V0,simp(Lp) which is invariant
under Gal(Lp/Kp). Moreover, ϕ maps V0,simp(Lp) p-homeomorphically onto
V ′0,simp(Lp), so Ω′p = ϕ(Ωp ∩ V0,simp(Lp)) is a nonempty p-open subset of

V ′0,simp(Lp), hence also of V ′simp(Lp), which is invariant under Gal(Lp/Kp).

By Condition (3c), for each p ∈ T ′r T , V (OKsep,p) 6= ∅. By Subsec-
tion 3.1(c), there exists zp ∈ V0,simp(OKsep,p). Let Lp be a finite Galois
extension of Kp with zp ∈ V0,simp(OLp,p). Then, Ω′p = ϕ(V0,simp(OLp,p)) is
a nonempty p-open subset of V ′0,simp(Lp), hence also of V ′simp(Lp), which is

invariant under the action of Gal(Lp/Kp). Thus, (Lp,Ω
′
p)p∈T ′ is approxima-

tion data for K,S, T ′,V, V ′.
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We assume that there exists z′ ∈ V ′(O
M,Vr T ′) such that (z′)τ ∈ Ω′p for

all p ∈ T ′ and τ ∈ Gal(K). Since T ′ is nonempty and Ω′p ⊆ V ′0,simp(Lp) for

p ∈ T ′, we have z′ ∈ V ′0(K̃). Moreover, since the coordinates of z′ belong to
O
M,Vr T ′ , we have z′ ∈ V ′0(O

M,Vr T ′). By the choice of T ′,

z = ϕ−1(z′)

∈ V0(O
M,Vr T ′) ∩

⋂
p∈T ′r T

⋂
τ∈Gal(K)

V0,simp(OτLp,p) ∩
⋂
p∈T

⋂
τ∈Gal(K)

Ωτ
p .

Hence, z ∈ V (O
M,Vr T ) and zτ ∈ Ωp for all p ∈ T and τ ∈ Gal(K), as

desired.
(d) V0 is birationally equivalent over K to V , so we may use rule (c). �

Remark 4.11 (Units). Let c be a nonzero element of Ksep, let T be a finite
subset of V that contains S such that V r T ⊆ PK,fin, and let M be an
extension of K in Ktot,S . Consider the finite subset

T ′ = T ∪ {p ∈ V | |cτ |p 6= 1 for at least one τ ∈ Gal(K)}
of V. Thus, |cτ |p = 1 for all p ∈ V r T ′ and all τ ∈ Gal(K). Hence, c is
a unit of O

K(c),Vr T ′ . It follows from Lemma 4.10 that in order to prove

that (M,K,S,V, V, T , (Lp,Ωp)p∈T ) |= SAT for a given absolutely integral
affine variety V in AnK for some positive integer n and approximation data
(Lp,Ωp)p∈T for K,S, T ,V, V , we may assume that c is a unit of O

K(c),Vr T .

�

We apply Lemma 4.10 to reduce the strong approximation theorem to the
case of curves.

Lemma 4.12. Let M be an extension of K in Ktot,S . Suppose

(M,K,S,V, C) |= SAT

for every positive integer m and every absolutely integral affine curve C in
AmK . Then, (M,K,S,V) |= SAT.

Proof. Let V be an absolutely integral affine variety in AnK for some positive
integer n. Let T be a finite subset of V that contains S such that

V r T ⊆ PK,fin.

Let (Lp,Ωp)p∈T be approximation data for K,S, T ,V, V . We choose a finite
separable extension K ′ of K and a point z0 ∈ V (K ′). Then, we choose a
finite subset T ′ of V that contains T such that z0 ∈ V (O

K′,Vr T ′), hence

also z0 ∈ V (OKsep,p), for each p ∈ V r T ′. By Lemma 4.10, we may replace
T by T ′ to assume that z0 ∈ V (OKsep,p) for each p ∈ V r T .

Now we choose for each p ∈ T a point zp ∈ Ωp ⊆ V (Lp). Then we apply
[JaR98, Lemma 10.1] to find an absolutely integral affine curve C on V over
K that goes through z0 and zp for every p ∈ T . Moreover, since by (3b) each
of the points zp with p ∈ T is simple on V , that lemma allows us to choose
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C such that each of those zp is also simple on C. Thus, z0 ∈ C(OKsep,p) for
each p ∈ V r T and zp ∈ Ωp ∩ Csimp(Lp) ⊆ Csimp(Lp) for each p ∈ T .

It follows that (Lp,Ωp ∩ Csimp(Lp))p∈T is approximation data for K,S,
T ,V, C. By assumption, there exists z ∈ C(O

M,Vr T ) such that

zτ ∈ Ωp ∩ Csimp(Lp)

for all p ∈ T and τ ∈ Gal(K). Therefore, z ∈ V (O
M,Vr T ) and zτ ∈ Ωp for

all p ∈ T and τ ∈ Gal(K). We conclude that (M,K,S,V, V ) |= SAT. It
follows that (M,K,S,V) |= SAT, as claimed. �

5. Curves

Following Lemma 4.12, we now concentrate on curves. We extend a given
affine curve C over K to an affine curve X over a subring R of K and com-
plete X to an integral projective curve X̄ over R. We apply Lemma 4.10
several times to make convenient assumptions on the associated data. These
assumptions are used in the sequel to prove the strong approximation the-
orem.

5.1 An affine curve. Let K,PK ,Kp, K̂p,f,S, T ,V,M,O
M,Vr T be as in

Section 4. In particular, V r T ⊆ PK,fin. Let C be an absolutely integral
affine curve in AnK . We choose a generic point x = (x1, . . . , xn) for C over
K with x1, . . . , xn ∈ f (Subsection 4.2). Moreover, enlarging f if necessary,

we choose x1, . . . , xn such that trans.deg(K(x)/K) = trans.deg(K̂p(x)/K̂p)
for each p ∈ PK . Then, K(x)/K is a regular extension of transcendence
degree 1, F = K(x) is the function field of C over K. Moreover, for each

p ∈ PK , the field F is linearly disjoint from K̂p over K, so K̂p(x)/K̂p is also
a regular extension [FrJ08, Lemma 2.6.7].

We apply Lemma 4.10 to replace C by a Zariski-open subset of simple
points and assume that:

(1) C is smooth.

For each p ∈ T let Lp be a finite Galois extension of Kp such that Lp = Kp

if p ∈ S. Then, let Ωp be a nonempty p-open subset of C(Lp), invariant under
the action of Gal(Lp/Kp). We also assume that:

(2) C(OK̃,p) 6= ∅ for each p ∈ V r T .

Thus, (Lp,Ωp)p∈T is approximation data for K,S, T ,V, C.

5.2 Principal ideal domain. Recall that the class group of the ring of
integers OK = OK,Pfin

of K is finite (see [CaF67, p. 71] for the number field
case and [Ros02, p. 243, Prop. 14.2] for the function field case). Let a1, . . . , ah
be ideals of OK that represent the group of fractional ideals of OK modulo
principal fractional ideals. Denote the union of T with the set of all prime
divisors of a1, . . . , ah that belong to V by T ′. Then, aiOK,Vr T ′ = O

K,Vr T ′
for i = 1, . . . , h. Each ideal a of OK can be represented as a = b·ai for some i
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between 1 and h and b ∈ K×, so aO
K,Vr T ′ = b ·O

K,Vr T ′ . Thus, O
K,Vr T ′

is a principal ideal domain (see also [IsR05, p. 211, Prop. 8.9.7]).
Using Lemma 4.10, we replace T by T ′, if necessary, to assume:

(3) R = O
K,Vr T is a principal ideal domain. In particular, R is inte-

grally closed, hence a Dedekind domain. Therefore, Rp is a regular
local ring for each p ∈ Spec(R).

Note that whenever we replace T by a larger finite subset T ′ of V, we also
replace R by its quotient ring R′ = O

K,Vr T ′ , which is still a principal ideal

domain.
In the case where V = T , the ring R is an intersection of an empty set of

local subrings of K, so R = K. In this case our results overlap with those
of [GeJ02].

5.3 Nagata rings. A Noetherian ring A (commutative with 1) is called a
Nagata ring if for every prime ideal P of A and every finite extension L of
Quot(A/P ) the integral closure of A/P in L is a finitely generated A/P -
module [Mat80, p. 231]. In particular, every field is a Nagata ring. The main
theorem in this area, due to Nagata, says that each finitely generated ring
extension of a Nagata ring is again a Nagata ring [Mat80, p. 240, Thm. 72].

Lemma 5.4. The following statements hold.

(a) Every Dedekind ring A of characteristic 0 is a Nagata ring.
(b) Suppose that A is a Dedekind ring and a Nagata ring. Then, every

subring B of Quot(A) that contains A is also a Dedekind ring and a
Nagata ring.

(c) R is a Nagata ring.

Proof. (a) See [Liu06, p. 340, Example 8.2.28(b)].
(b) (Moret-Bailly) That B is a Dedekind ring is a classical theorem of

Noether–Grell [FrJ08, p. 32, Prop. 2.4.7]. We prove that B is also a Nagata
ring.

We consider a prime ideal q of B. If q is maximal, then B/q is a field.
Hence, if F is a finite extension of B/q, then F is the integral closure of B/q
in F and F is a finitely generated B/q-module.

Otherwise, q = 0 (because B is a Dedekind ring). Let L be a finite
extension of Quot(A) and consider the integral closures AL and BL of A
and B, respectively, in L.

We consider a maximal ideal Q of B and set P = A ∩Q. Since Quot(A)
is the quotient field of both A and B, we have P 6= 0. Hence, AP is a proper
subring of Quot(A). Moreover, AP ⊆ BQ ⊂ Quot(A). Since A is Dedekind,
AP is a discrete valuation ring. Hence, AP = BQ [FrJ08, p. 23, Lemma
2.2.5].

Next let AL,P be the localization of the A-module AL at P and let BL,Q
be the localization of the B-module BL at Q. Since as a ring, BL,Q is
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integral over BQ = AP and AL,P is the integral closure of AP in L, we have
BL,Q ⊆ AL,P . Hence, BL,Q ⊆ AL,P = ALAP ⊆ (ALB)Q ⊆ BL,Q,

Thus, BL,Q = (ALB)Q for all maximal ideals Q of B. It follows from
[AtM69, p. 40, Prop. 3.9] that BL = ALB. Since A is a Nagata ring, AL is
a finitely generated A-module. Hence, BL is a finitely generated B-module.
We conclude that B is a Nagata ring, as claimed.

(c) By Subsection 4.6, OK is a Dedekind ring. If K is a number field, then
OK is also a Nagata ring, by (a). If K is a function field of one variable over
a finite field of characteristic p, then by Subsection 4.6, OK is an integral
closure of Fp[tK ] in K. Since Fp is a Nagata ring, Nagata’s theorem implies
that OK is a Nagata ring.

Thus, (c) is a special case of (b) for A = OK and B = R. �

5.5 Affine schemes. Using the above notation, we consider the affine
integral schemes Spec(R) and X = Spec(R[x]), and let f : X → Spec(R) be
the structure morphism given by f(P ) = P ∩R. Then, Spec(R) is a regular
scheme of dimension 1 if R 6= K (resp. 0, if R = K) and dim(X) = 2 if
R 6= K (resp. 1 if R = K), because trans.deg(K(x)/K) = 1. By (3), R[x] is
a Noetherian ring, hence X is a Noetherian scheme.

By (2), for each nonzero p ∈ Spec(R), there exists a point a ∈ C(OK̃,p),
where p is considered here as an element of V r T . That point is an R-
specialization of x. It follows that 1 /∈ pR[x]. Otherwise there exist bi ∈ p

and hi ∈ R[X], i = 1, . . . , l, such that 1 =
∑l

i=1 bihi(x). Then,

1 =

l∑
i=1

bihi(a) ∈ pOK̃,p,

a contradiction. Hence, the prime ideal p of R (which is actually a maximal
ideal) extends to a prime ideal of R[x]. Since the generic point of X is
mapped onto the generic point of Spec(R), this implies that:

(4) The morphism f : X → Spec(R) is surjective.

In fact, (4) also implies (2). But, as we don’t use this implication, we do
not prove it here.

By Subsection 5.1, F/K is a regular extension of transcendence degree
1. We choose a separating transcendence element tF ∈ R[x] for F/K.
Then, R[tF ] is an integrally closed domain [ZaS75II, p. 85, Thm. 29(a)]
and F/K(tF ) is a finite separable extension. Let z ∈ R[x] be a primitive el-
ement for F/K(tF ), integral over R[tF ]. The discriminant g of irr(z,K(tF ))
is a nonzero element of R[tF ], hence g is invertible in the ring R[tF , g

−1].
Multiply g, if necessary, by a nonzero element of R[tF ] to assume that each xi
is integral over R[tF , g

−1]. By [FrJ08, p. 109, Lemma 6.1.2], R[tF , g
−1, z] is

the integral closure of R[tF , g
−1] in F . Hence, R[x, g−1] = R[tF , g

−1, z] and
the ring extension R[x, g−1]/R[tF , g

−1] is étale [Ray70, p. 18, Remarques].
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By Lemma 4.10(c), we may replace C by the affine curve with the generic
point (x, g−1) over K. Thus, we may assume without loss that g−1 is one
of the coordinates of x, hence:

(5) The ring R[x] = R[tF , g
−1, z] is integrally closed. Thus, X is normal.

Moreover, R[x] is étale over R[tF , g
−1]. Since Spec(R[tF , g

−1]) is étale over
Spec(R[tF ]) [Liu06, p. 140, Prop. 4.3.22(b)] and Spec(R[tF ]) is smooth over
Spec(R), we conclude from [Liu06, p. 143, Prop. 4.3.38] that:

(6) The morphism f : X → Spec(R) is smooth.

Note that (5) and (6) remain true if we replace T by a larger finite subset
of V, because integral closedness and smoothness are preserved under a
change of the base ring by a quotient ring.

For each p ∈ Spec(R) we consider the fiber Xp = X ×Spec(R) Spec(K̄p) of

f at p, where K̄p = R/p. Then,

Xp = Spec(R[x]/R[x]p) = Spec(R[tF , g
−1, z]/R[tF , g

−1, z]p).

Now we consider a polynomial h ∈ R[X0, Xn+1] such that h(tF , Xn+1) =
irr(z,K(tF )). Since F/K is regular, h is absolutely irreducible [FrJ08, p. 175,
Cor. 10.2.2]. Since h is absolutely irreducible, it remains absolutely irre-
ducible modulo p for almost all p ∈ Spec(R) [FrJ08, p. 170, Prop. 9.4.3].
Moreover, g 6= 0 modulo p for almost all p ∈ Spec(R). Adding the finitely
many prime divisors of K that belong to V and correspond to the exceptional
p’s to T , we may assume by Lemma 4.10 that:

(7) Each of the fibers Xp of X over Spec(R) is absolutely integral.

Lemma 5.6. Starting from the Zariski-closed affine subscheme X of AnR, we
consider the Zariski-closure X ′ of X in PnR and let X̄ be the normalization
of X ′ in F . Then:

(a) X̄ may be identified with Proj(R[t]), with t = (t0, . . . , tr), where R[t]
is a graded ring over R with R[t]1 =

∑r
i=0Rti. In particular, X̄ is a

Noetherian scheme.
(b) Each of t0, . . . , tr is transcendental over F . Thus, K(t)/K is a reg-

ular extension of transcendence degree 2 and t0, . . . , tr 6= 0.
(c) R

[
t
t0

]
is integrally closed with quotient field F .

(d) The scheme X may be identified with a Zariski-open subset of X̄ and
f : X → Spec(R) lifts to a surjective morphism f̄ : X̄ → Spec(R).

Proof. We write X ′ = Proj(R[s′]), where s′ = (s′0, . . . , s
′
n), R[s′] is a graded

ring over R with R[s′]1 =
∑n

i=0Rs
′
i such that s′0 6= 0 and xi =

s′i
s′0

for

i = 1, . . . , n. Then, the inclusion map ξ : X ′ → PnR is a closed immersion.
Let πn : PnR → Spec(R) be the canonical morphism and let f ′ : X ′ → Spec(R)
be the restriction of πn to X ′. By definition, f ′ is a projective morphism
that extends f . Let π : X̄ → X ′ be the normalization of X ′ [Liu06, p. 120,
Prop. 4.1.22]. In particular, X̄ is an absolutely integral normal scheme over
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R whose function field coincides with that of X ′, namely F . Moroever, π is
an integral morphism.

Claim A. π is a finite morphism. The scheme X ′ is covered by the affine
Noetherian Zariski-open sets Spec(R

[
s′

s′i

]
), where i ranges over all integers

between 0 and n with s′i 6= 0. Each of the integral domain R
[
s′

s′i

]
is a

finitely generated R-algebra. Hence, for each Zariski-open affine subset U
of X ′ the ring Γ(U,OX′) is a finitely generated R-algebra whose quotient
field is F [Mum88, p. 122, Def. 3 and Prop. 1]. Moreover, the open set
π−1(U) of X̄ is also affine [Liu06, p. 120, Def. 4.1.20] and Γ(π−1(U),OX̄)
is the integral closure of Γ(U,OX′) in F [Liu06, p. 121, comment following
Definition 4.1.24]. By Lemma 5.4(c), R is a Nagata ring, so Γ(π−1(U),OX̄)
is finitely generated as a Γ(U,OX′)-module. We conclude that π is finite, as
claimed.

Claim B. The map π is a projective morphism in the sense of
[Har77, p. 103, Def.]. Indeed X ′ is a closed subscheme of PnR, so the above
mentioned definition of [Har77] coincides with that of [Gro61II, p. 104,
Def. 5.5.2]. Thus, by Claim A and [Gro61II, p. 113, Cor. 6.1.11], π is
projective. (See also [GoW10, p. 401, Cor. 13.77].)

It follows from [Liu06, p. 108, Cor. 3.3.32(b)] that f ′ ◦ π : X̄ → Spec(R)
is a projective morphism. Thus, there exist a positive integer r and a closed
immersion ϕ : X̄ → PrR such that f̄ = f ′ ◦ π = πr ◦ ϕ, where πr is the
canonical morphism PrR → Spec(R). This gives the following commutative
diagram:

(8) π−1(X) //

��

X̄
ϕ

//

π

��

PrR

πr

qq

X
ι //

f

%%

X ′
ξ

//

f ′

��

PnR

πn
{{

Spec(R)

where ι : X → X ′ is the inclusion map. Since X is normal (by (5)), the
restriction of π to π−1(X) is an isomorphism onto X [GoW10, p. 340,
Rem. 12.46]. We use that isomorphism to identify X with π−1(X). Then,
we identify X̄ with the closed subscheme ϕ(X̄) of PrR. By [Liu06, p. 168,
Prop. 5.1.30], R[T0, . . . , Tr] has a homogeneous ideal J such that

X̄ = Proj(R[T0, . . . , Tr]/J).

For each 0 ≤ i ≤ r let ti = Ti + J and set t = (t0, . . . , tr). Then, R[t] is a
graded ring over R with R[t]1 =

∑r
i=0Rti. By (3), R is Noetherian, hence

so is R[t]. Therefore, X̄ is a Noetherian scheme, as (a) asserts.
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We omit all of the i’s between 0 and r with ti = 0, change r, and reenu-
merate the indices, if necessary, to assume that ti 6= 0 for each 0 ≤ i ≤ r.

Then, by Example 1.6, each ti is transcendental over F . Since tj =
titj
ti

for

all 0 ≤ i, j ≤ r, we have K(t) = F (ti) for all 0 ≤ i ≤ r. Hence,

trans.deg(K(t)/K) = trans.deg(F/K) + 1 = 2.

Since by Subsection 5.1, F/K is a regular extension, so is K(t)/K [FrJ08,
p. 41, Cor. 2.6.8(b)], as claimed by (b).

Since X̄ is normal and R
[

t
t0

]
is the coordinate ring of the open affine

subscheme of X̄ defined by T0 6= 0, we have that R
[

t
t0

]
is an integrally

closed ring with quotient field F , as claimed in (c).
Finally, we deduce from Diagram (8) that the morphism f̄ = f ′ ◦ π from

X̄ to Spec(R) extends f : X → Spec(R). Since, by (4), f is surjective, so is
f̄ , as asserted by (d). The proof of Lemma 5.6 is complete. �

5.7 Boundary. We consider the closed subset X̄ rX of X̄. Since X̄ is
irreducible of dimension 2 if R 6= K (resp. 1, if R = K) and X is open in X̄
and nonempty, dim(X̄ rX) ≤ 1. Let Z be the unique reduced subscheme
of X̄ with support X̄ rX. Thus, dim(Z) ≤ 1. Since K[x] is not finite over
K, the affine scheme C = XK is not proper [Liu06, p. 104, Lemma 3.3.17].
In particular, ZK (hence also Z) is nonempty. Since dim(Spec(R)) = 1 if
R 6= K (resp. dim(Spec(R)) = 0 if R = K), we conclude that:

(9) dim(Z) = 1 if R 6= K (resp. dim(Z) = 0 if R = K).

Let Z =
⋃d(Z)
i=1 Zi, with d(Z) ≥ 1, be the decomposition of Z into its

irreducible components over R. We prove that, after a possible enlargement
of T inside V:

(10) For each 1 ≤ i ≤ d(Z), Zi is a regular scheme over R with dim(Zi) =
1 if R 6= K (resp. dim(Zi) = 0 if R = K) and the restriction of f̄ to
Zi is a finite, flat, and surjective morphism.

Indeed, for each 1 ≤ i ≤ d(Z) let fi : Zi → Spec(R) be the restriction of
f̄ to Zi. Thus, fi is the restriction of the natural morphism PrR → Spec(R)
to the closed subset Zi of PrR. It follows that fi is a projective morphism.
By [Liu06, p. 108, Thm. 3.3.30], fi is proper. In particular, fi is a closed
map, so fi(Zi) is a closed subset of Spec(R). Since Spec(R) is an irreducible
scheme of dimension ≤ 1, fi(Zi) is either a closed point of Spec(R) or all
of Spec(R). If in the first case the prime of K that corresponds to fi(Zi)
is in V, we adjoin it to T . Since R = O

K,Vr T (by (3), Zi won’t be an

irreducible component of Z any more. Having done so for all of those i’s,
we may assume that fi(Zi) = Spec(R) for all i. Since Z is nonempty, the
above procedure does not eliminate all of the Zi’s. In other words, we may
still assume that d(Z) ≥ 1.

The fiber of the generic point of Spec(R) (i.e., of the zero ideal) is the
generic point of Zi. For each closed point p ∈ Spec(R) the subset f−1

i (p) of



STRONG APPROXIMATION THEOREM 1479

Zi is closed. Since Zi is irreducible of dimension ≤ 1, f−1
i (p) is either a finite

set or f−1
i (p) = Zi. In the latter case we have fi(Zi) = {p}, in contrast to

the preceding paragraph. It follows that the fibers of fi are finite.
We have therefore proved that the morphism fi is projective with finite

fibers. By [Liu06, p. 152, Cor. 4.4.7], fi is a finite morphism. Since Zi is
reduced, we get by the definition of a finite morphism and by the fact that
fi : Zi → Spec(R) is surjective that Zi = Spec(Ri) is an affine scheme, where
Ri is an integral domain, finitely generated and integral over R. Since R is a
Dedekind domain (by (3)), [Liu06, p. 11, Cor. 1.2.14] implies that Ri is flat
over R. Hence, fi is flat. Since the integral closure of R in Quot(Ri) is also
a finitely generated R-module (because R is a Nagata ring), we may enlarge
T in V to assume that Ri is integrally closed, hence a Dedekind domain.
Thus, Zi is a Dedekind scheme [Liu06, p. 116, Example 4.1.7] and therefore
regular [Liu06, p. 117, Prop. 4.1.12 and p. 128, Example 4.2.9]. Moreover,
since Ri is a finitely generated R-module, dim(Zi) = dim(R) = 1 if R 6= K
(resp. dim(Zi) = 0 if R = K). This complete the proof of Statement (10).

Next we prove that, after another possible enlargement of T in V (Lem-
ma 4.10):

(11) Z is a regular scheme over R of dimension 1 if R 6= K (resp. 0, if
R = K) and the restriction fZ of f̄ to Z is a finite, flat, and surjective
morphism.

Indeed, if 1 ≤ i < j ≤ d(Z), then Zi ∩ Zj , as an intersection of distinct
irreducible subschemes of Z of dimension ≤ 1, is a scheme of dimension 0,
hence finite. Therefore, fZ(Zi ∩ Zj) is a finite subset of Spec(R). Adding
the primes in V that correspond to this subset to T , we may assume that

Zi ∩Zj = ∅. In other words, we may assume that Z =
⋃
· d(Z)
i=1 Zi. Since each

of the sets Zi is closed in Z, it is also open.
As a disjoint union of open regular subschemes Zi (by (10)), the scheme

Z is itself regular. Moreover, the natural map fZ : Z → Spec(R), inducing
for each i the map fi on Zi, is finite, flat, and surjective, because by (10),
fi has these properties for each i. This concludes the proof of (11).

5.8 The ideals I and Ii. Since Z is a closed subscheme of X̄ = Proj(R[t]),
we may identify Z with Proj(R[t]/I), where I is a homogeneous ideal of
R[t] [Liu06, p. 168, Prop. 5.1.30]. Similarly, for each 1 ≤ i ≤ d(Z), there
exists a homogeneous prime ideal Ii of R[t] that contains I and R[t]+ 6⊆ Ii
such that Zi = V+(Ii). Since Z is reduced, I is equal to its radical and
the latter is equal to the intersection of all homogeneous prime ideals that
contain I and are minimal with this property [ZaS75II, p. 152, Thm. 8 and
Corollary]. The set P of all these prime ideals is finite (because R[t]/I is
Noetherian). The ideals I1, . . . , Id(Z) belong to P. Let P1, . . . , Pm be all the
other ideals in P and note that each of them contains R[t]+. For each P ∈ P
with P ∩R 6= 0, we add the elements of V that correspond to prime ideals of
R that divide a generator of P ∩ R (use (3)) to T . After this enlargement,
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P ∩ R = 0, so P ⊆ R[t]+ for each P ∈ P. In particular, Pj = R[t]+ for
j = 1, . . . ,m. Note that for 1 ≤ i ≤ d(Z), the property f̄(Zi) = Spec(R),
which (10) guarantees, implies that Ii∩R = 0, so Ii ⊆ R[t]+. Hence, Ii ⊆ Pj
for each i = 1, . . . , d(Z) and j = 1, . . . ,m. It follows from the minimality of

the elements in P that m = 0. Therefore,
⋂d(Z)
i=1 Ii = I.

5.9 The boundary over K. The quotient ring of R[t] with respect to
the multiplicative set Rr{0} is K[t]. By Subsection 5.8, Ii ∩ R = 0 for
i = 1, . . . , d(Z). Hence, KI1, . . . ,KId(Z) are distinct points of X̄K . It fol-
lows that the generic fiber ZK = Proj(K[t]/KI) of Z consists of d(Z) dis-
tinct points Z1,K , . . . , Zd(Z),K , corresponding to the points KI1, . . . ,KId(Z)

of X̄K . Each of these points is closed, so KIj 6⊆ KIi if j 6= i. It fol-
lows that

⋂
j 6=iKIj 6⊆ KIi for every 1 ≤ i ≤ d(Z). By Subsection 5.8,⋂d(Z)

i=1 KIi = KI.

We denote the degree of the divisor
∑d(Z)

i=1 Zi,K attached to ZK by
degK(ZK).

5.10 Special fibers. We let X̄sing be the closed subset of all singular points
of X̄. Since X̄ is normal, each of its points of codimension 1 is nonsingular
[Liu06, p. 268, Example 7.2.6]. Hence, X̄sing has dimension 0, so X̄sing is
finite. Following [MoB89, p. 187, (3.1.2)], we add the finitely many primes
in V corresponding to the finite subset f̄(X̄sing) of Spec(R) to T and assume
that:

(12) X̄ is regular.

Finally, we may apply the arguments that prove (7) to each of the finitely
many affine Zariski-open parts of X̄ and conclude, possibly after an addi-
tional enlargement of T in V, that:

(13) Each of the fibers X̄p of X̄ over Spec(R) is an absolutely integral
projective curve.

5.11 Generic fibers. We consider the generic fibers

XK = X ×Spec(R) Spec(K) = Spec(K[x]) and X̄K = X̄ ×Spec(R) Spec(K)

of X and X̄, respectively. Then, XK is an affine K-scheme which is actually
isomorphic to our original curve C. Since C is smooth (by (1)):

(14) XK is smooth.

Moroever, X̄K is the normalization of the projective closure of XK in PrK
[Eis95, p. 126, Prop. 4.4.13, and p. 127, last paragraph]. In particular, X̄K

is normal.
By (7) and (13):

(15) XK and X̄K are absolutely integral.

Moreover, for each p ∈ T we may view the subset Ωp of C(Lp) introduced
in Subsection 5.1 also as a p-open subset of XK(Lp).
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6. Closed separable point

We choose a closed separable point b of X over K, let E = K(b),
denote the integral closure of R in E by RE , choose a point B′ of X̄RE
that lies over b, use the conjugates of B′ over K to construct a homo-
geneous ideal B′′ of RE [t], and prove that V+(B′) ∩ V+(B′′) = ∅. We
use the homogeneous ideals B′ and B′′ of RE [t] in Section 9 to produce
homogeneous coordinates s0, s1, . . . , sl ∈ R[t] of large degree of a projec-
tive curve Y = Proj(K[s0, . . . , sl]) (Lemma 9.5), and to construct in Sec-
tion 10 a birational morhism ϕ : X̄K → Y which maps the smooth affine
curve XK minus the point corresponding to B = R[t] ∩ B′ isomorphically
onto a Zariski-open smooth affine subset Y0 of Y , maps ZK onto a point
y0 ∈ Y (K), and maps the point of X̄K corresponding to B onto cusps

y1, . . . ,ye ∈ Y (K̃) of multiplicity q, where q is a large prime number, such

that Y (K̃) = Y0(K̃)∪{y0,y1, . . . ,ye} (Lemmas 10.3 and 10.4). We use that
curve to construct a symmetrically stabilizing element for F/K using the
main result of [GJR17] quoted here as Proposition 8.6.

6.1 Separable integral point. We assume without loss that t0, t1 form a
separable transcendence base for K(t)/K (Lemma 5.6(b) and [FrJ08, p. 38,
Lemma 2.6.1]). Let h0, h1, . . . , hn ∈ R[T0, . . . , Tr] be homogeneous polyno-

mials of the same degree such that h0(t) 6= 0 and xj =
hj(t)
h0(t) for j = 1, . . . , n.

Then, we choose b1 ∈ Ksep rK and extend the map (t0, t1) 7→ (1, b1)
to a K-homomorphism ϕ : K[t] → Ksep such that with bi = ϕ(ti) for
i = 2, . . . , r and b = (1:b1: · · · :br) we have h0(b) 6= 0. It follows that
b ∈ X(Ksep)rX(K). From a geometric point of view we can choose a sep-
arating transcendence base of F/K that leads to a nonconstant morphism
f : C → A1, so there is a dense open set U in A1 such that f−1(U) → U is
finite étale, and choose b1 ∈ U(Ksep)rU(K) and b ∈ f−1(b1)(Ksep). Since
X is smooth (Subsection 5.1(1)), b ∈ X̄simp(Ksep). Let E = K(b1, . . . , br),
set e = [E : K], and note that e ≥ 2, by the choice of b1. We choose a
nonzero element b′ of R such that b′bi is integral over R for i = 1, . . . , r.
Adjoining the prime divisors of b′ that are in V to T and using Lemma 4.10,
we may assume that b1, . . . , br are integral over R. Geometrically, we can
consider the point b as a section Spec(E) → C. Then, after enlarging T if
necessary, it extends to a section Spec(RE)→ X.

For each ideal a of a graded ring A we let ah be the ideal generated by all
of the homogeneous elements of a. Then, ah is the maximal homogeneous
ideal of A contained in a. By [Liu06, p. 51, Lemma 2.3.35(a)], ah is a prime
ideal, if a is.

Having made this definition, we consider the homogeneous prime ideal
B = Ker(ϕ)h ∩ R[t] of R[t]. Geometrically, B is the generic point of the
image of the section Spec(RE) → X. Note that t0 /∈ Ker(ϕ) (because
ϕ(t0) = 1), hence t0 /∈ B. Thus, B can be also considered as a point of X̄
that belongs to X. Moreover, B lies under b.
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Since Ker(ϕ)h is a prime ideal of K[t], its intersection with K× is empty,
hence:

(1) B ∩R = 0.

Since K[t] is the quotient ring of R[t] with respect to the multiplicative set
Rr{0} and B is disjoint to that set (by (1)), we have:

(2) KB ∩R[t] = B and KB = Ker(ϕ)h.

6.2 The ring RE . Following Subsection 6.1, we consider the separable
field extension E = K(b) of K and let RE be the integral closure of R in
E. By Subsection 6.1, b1, . . . , br are integral over R, so b1, . . . , br ∈ RE .

Since R is a principal ideal domain (Subsection 5.2) and E/K is a finite
separable extension, RE is a finitely generated free R-module [Wae91, p. 175,
Sec. 17.3]. Thus, RE has an R-basis w1, . . . , we which is also a basis for E/K.

We choose σ1, . . . , σe ∈ Aut(K̃/K) whose restrictions to E are the distinct

K-embeddings of E into K̃ and σ1 is the identity map of E. Since K(t)/K
is a regular extension (Lemma 5.6(b)), we may extend σ1, . . . , σe to elements

of Aut(K̃(t)/K(t)) having the same names.
Since E/K is a separable extension det(w

σj
i ) 6= 0 [Lan93, p. 286, Cor. 5.4].

Moreover, det(w
σj
i )i,j=1,...,e belongs to the integral closure R̃ of R in K̃. We

use Lemma 4.10 to enlarge T such that:

(3) det(w
σj
i ) is invertible in R̃.

Having made this assumption, we prove that:

(4) RE
[

t
t0

]
is integrally closed.

Indeed, let f ∈ E
(

t
t0

)
be integral over RE

[
t
t0

]
. Since

E

(
t

t0

)
= E ·K

(
t

t0

)
=

e∑
i=1

Kwi ·K
(

t

t0

)
=

e∑
i=1

wiK

(
t

t0

)
,

we may write f =
∑e

i=1wifi with f1, . . . , fe ∈ K
(

t
t0

)
. Applying σj on the

latter equality, we get fσj =
∑e

i=1w
σj
i fi, j = 1, . . . , e. Applying Kramer’s

rule to the latter system of equations, we find for each 1 ≤ k ≤ e that
fk = f ′k/ det(w

σj
i ) with f ′k in the integral closure of R

[
t
t0

]
in K

(
t
t0

)
. It

follows from (3) that fk belongs to the integral closure of R
[

t
t0

]
in K

(
t
t0

)
.

Since R
[

t
t0

]
is integrally closed (Lemma 5.6(c)), fk ∈ R

[
t
t0

]
. It follows that

f ∈ RE
[

t
t0

]
.

Notation 6.3. We consider the homogeneous ideals

B̃j =
r∑
i=1

K̃[t](ti − b
σj
i t0), j = 1, . . . , e,

B′ =
r∑
i=1

RE [t](ti − bit0), B′′ =
e⋂
j=2

(RE [t] ∩ B̃j)
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of K̃[t] and RE [t], respectively, and note that B̃j = B̃
σj
1 for j = 1, . . . , e.

Note also that K̃[t]/B̃j is isomorphic to the integral domain K̃[t0], so B̃j is

a prime ideal of K̃[t] for j = 1, . . . , e. Similarly RE [t]/B′ ∼= RE [t0], so B′ is
a prime ideal of RE [t]. �

Lemma 6.4. B′ = RE [t] ∩ B̃1.

Proof. It suffices to prove that each f ∈ RE [t]∩ B̃1 belongs to B′. To that

end we choose a basis (w̃1, w̃2, w̃3, . . .) for K̃/E with w̃1 = 1. Then, we note
that since K(t)/K is a regular extension (Lemma 5.6(b)), also E(t)/E is a

regular extension. Hence, w̃1, w̃2, w̃3, . . . also form a basis for K̃[t] over E[t].

By definition, f =
∑r

i=1 fi(ti−bit0) with fi ∈ K̃[t] for i = 1, . . . , r. For each
1 ≤ i ≤ r we write fi =

∑∞
k=1 fikw̃k with fik ∈ E[t] for all k and all but

finitely many of the fik’s are 0. Then, f =
∑∞

k=1

(∑r
i=1 fik(ti − bit0))w̃k.

Comparing the coefficients of w̃1 on both sides, we have

f =
r∑
i=1

fi1(ti − bit0) ∈ E[t]B′ ∩RE [t].

Since the RE [t]-degree of each nonzero element of B′ is at least 1, we have
B′ ∩ RE = 0. In addition observe that E[t] is the quotient ring of RE [t]
with respect to the multiplicative subset RE r{0}. Since B′ is a prime ideal
of RE [t] (Notation 6.3), it follows that E[t]B′ ∩ RE [t] = B′, so f ∈ B′, as
claimed. �

Lemma 6.5. B = R[t] ∩ B̃j for j = 1, . . . , e, B ⊆ B′ ∩B′′, and

K̃B =
e⋂
j=1

B̃j .

Thus, B̃1, . . . , B̃e are exactly the points of XK̃ that lie over B. Each of them

is simple. Moreover, B̃j 6⊆ B̃j′ if j 6= j′.

Proof. Since K(t)/K is a regular extension, we may uniquely extend the

K-homomorphism ϕ introduced in Subsection 6.1 to a K̃-homomorphism
ϕ̃ : K̃[t] → K̃. Then, Ker(ϕ̃)h is a homogeneous prime ideal of K̃[t] that
belongs to XK̃ and ϕ̃(t) = b. For each f ∈ Ker(ϕ̃)h we apply the Taylor

expansion around b
b0

to f
(

t
t0

)
(with b0 = 1) and then multiply the resulting

expression by t
deg(f)
0 . We find that Ker(ϕ̃)h =

∑r
i=1 K̃[t](ti−bit0). It follows

that B = R[t] ∩ Ker(ϕ)h = R[t] ∩ Ker(ϕ̃)h = R[t] ∩
∑r

i=1 K̃[t](ti − bit0).
Applying σj on both sides, we get:

(5) B = R[t] ∩
∑r

i=1 K̃[t](ti − b
σj
i t0) = R[t] ∩ B̃j for j = 1, . . . , e.

The point B̃1 of XK̃ corresponds to b, so B̃1 is simple. Hence, B̃j = B̃
σj
1

is also simple for j = 1, . . . , e.
By (5) and by Lemma 6.4, B = R[t] ∩ B̃1 ⊆ RE [t] ∩ B̃1 = B′. Also,

B ⊆
⋂e
j=2(RE [t] ∩ B̃j) = B′′.
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Let P ′ be a point of XK̃ that contains K̃B and let b′ = (1:b′1: · · · :b′r)
be the corresponding point in X(K̃) (note that t0 /∈ P ′, otherwise t0 ∈
K[t] ∩ P ′ = KB). Let ϕ′ : K[t] → K̃ be the K-homomorphism mapping t
onto b′. Then, Ker(ϕ′)h = KB = Ker(ϕ)h (because KB is a closed point of

XK). It follows that there exists σ ∈ Aut(K̃/K) such that b′ = bσ. Hence,

P ′ is one of the B̃j ’s, as claimed.

Finally, we prove that B̃j 6⊆ B̃j′ if j 6= j′. For that it suffices to prove

that B̃j ⊆ B̃1 implies that j = 1. Indeed, the latter assumption implies that

for all 1 ≤ i, i′ ≤ r there exist fi,i′ ∈ K̃[T0, . . . , Tr] such that

ti − b
σj
i t0 =

r∑
i′=1

fi,i′(t)(ti′ − bi′t0).

Applying ϕ̃ on both sides, we get bi − b
σj
i = 0 for i = 1, . . . , r. Since E =

K(b1, . . . , br), we conclude from the choice of σ1, . . . , σe in Subsection 6.2
that j = 1, as claimed. �

Since t0 ∈ R[t], B̃j∩R[t] = B (Lemma 6.5), and t0 /∈ B (Subsection 6.1),
we have:

Corollary 6.6. For each 1 ≤ j ≤ e we have t0 /∈ B̃j.

Notation 6.7. By the choice of σ1, . . . , σe, the r-tuples (b
σj
1 , . . . , b

σj
r ), j =

1, . . . , e, are distinct. Since the ring R is infinite, it contains c1, . . . , cr such
that

r∑
i=1

ci(bi − b
σj
i ) 6= 0, j = 2, . . . , e.

We consider the nonzero element c =
∏e
j=2

∑r
i=1 ci(bi − b

σj
i ) of R̃. By

Remark 4.11, we may add finitely many primes in V to T , if necessary, to
assume that c is invertible in R̃. �

Lemma 6.8. V+(B′) ∩ V+(B′′) = ∅.

Proof. We break up the proof into several parts.

Part A. The elements t̃1, . . . , t̃e. For each 1 ≤ j ≤ e let

t̃j =

r∑
i=1

ci(ti − b
σj
i t0).

Since b1, . . . , br are separable over K, integral over R, and t̃j ∈ R̃[t]1,

(6)
t̃j
t0

is separable over K
(

t
t0

)
and integral over R

[
t
t0

]
, j = 1, . . . , e.

By definition,

(7) t̃j ∈ B̃j for j = 1, . . . , e.

We claim that:

(8) There exists a positive integer k0 such that tk0
0

∏e
j=2 t̃j ∈ B′′.
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Indeed, each σ ∈ Gal(K(t)) permutes t̃1
t0
, . . . , t̃et0 , so by (6),

e∏
j=1

t̃j
t0
∈ K

(
t

t0

)
.

In addition, t̃1
t0
∈ E

(
t
t0

)
. Therefore,

e∏
j=2

t̃j
t0

=

(
e∏
j=1

t̃j
t0

)/ t̃1
t0
∈ E

(
t

t0

)
.

By (6),
∏e
j=2

t̃j
t0

is integral over R
[

t
t0

]
, hence also over RE

[
t
t0

]
. Since by (4),

RE
[

t
t0

]
is integrally closed in E

(
t
t0

)
, we have

∏e
j=2

t̃j
t0
∈ RE

[
t
t0

]
. Hence, there

exists a positive integer k0 such that tk0
0

∏e
j=2 t̃j ∈ RE [t]. It follows from (7)

that tk0
0

∏e
j=2 t̃j ∈

⋂e
j=2 B̃j ∩RE [t] = B′′, as claimed.

Part B. A power of t0. We note that

tk0
0

e∏
j=2

t̃j = tk0
0

e∏
j=2

r∑
i=1

ci(ti − b
σj
i t0)

= tk0
0

e∏
j=2

r∑
i=1

ci(ti − bit0 + bit0 − b
σj
i t0)

= tk0
0 u+ tk0

0

e∏
j=2

r∑
i=1

ci(bi − b
σj
i )t0

= tk0
0 u+ tk0+e−1

0 c,

where c is the invertible element of R̃ introduced in Notation 6.7, and u is
a sum of products of e− 1 elements of R̃[t], one of which is ci(ti − bit0) for
some 1 ≤ i ≤ r, so belongs to B′, and the others have the form ci(bi−b

σj
i )t0,

so they belong to R̃[t]. Thus, u ∈ R̃[t]B′. Since c is invertible in R̃, we
have, by (8), that

(9) tk0+e−1
0 = −c−1tk0

0 u+ c−1tk0
0

e∏
j=2

t̃j ∈ R̃[t]B′ + R̃[t]B′′.

Completion of proof of Lemma 6.8. Recall that V+(B′) (resp. V+(B′′))
is the set of all homogeneous prime ideals of RE [t] that contain B′ (resp. B′′)
but do not contain the set {t0, . . . , tr}. If P ∈ V+(B′) ∩ V+(B′′), then

B′ + B′′ ⊆ P . Since R̃[t] is an integral extension of RE [t], there exists

a prime ideal P̃ of R̃[t] whose intersection with RE [t] is P . In particular,

R̃[t]B′+R̃[t]B′′ ⊆ P̃ . By (9), tk0+e−1
0 ∈ P̃ . Hence, tk0+e−1

0 ∈ P̃ ∩RE [t] = P ,
so t0 ∈ P . Since for each 1 ≤ i ≤ e, we have ti − bit0 ∈ B′ ⊆ P , we have
ti = (ti−bit0)+bit0 ∈ P . Thus, {t0, . . . , tr} ⊆ P . This contradiction implies
that P as above does not exist. �
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Remark 6.9. We could save the introduction of this section if XK had a
K-rational point. But in view of Falting’s theorem, many of the absolutely
integral curves over K have no K-rational points, if K is a number field.
Still, we could simplify the proof of the properties of B if we could choose
b as Galois over K, that is such that E = K(b) is a Galois extension of
K. But unfortunately, it seems to be unknown if each absolutely integral
curve over a global field has a Galois point [JaP16]. So, we have chosen b
as a separable algebraic point over K which is not K-rational. The latter
condition makes the proofs of the properties of b somewhat simpler in that
we need not distinguish between the cases where b is K-rational or not. �

6.10 The closed subschemes ZqB. Along with the closed subscheme
Z of X̄ we consider also the closed subscheme ZB = Proj(R[t]/B) and for
each positive integer q the closed subscheme ZqB = Proj(R[t]/Bq) of X̄.
All of the subschemes ZqB are actually contained in X and have the same
underlying topological space. As for Z, we have dim(ZqB) = 1 if R 6= K
(resp. dim(ZqB) = 0 if R = K) and the extensions ZqB,K = Proj(K[t]/KBq)

and ZqB,K̃ = Proj(K̃[t]/K̃Bq) have dimension 0. Moreover, since X∩Z = ∅,
we have ZqB ∩ Z = ∅. In particular, ZB,K ∩ ZK = ∅ and I 6⊆ B.

7. From Picard group to free modules

We present a result of [MoB89, Section 3] that gives a big set of effective
Cartier divisors on X whose irreducible components are finite and surjective
over Spec(R) and satisfy certain approximation conditions at each p ∈ T .
Lemma 7.10 then says that the above mentioned big set is in a sense T -open.

7.1 Divisors. For each positive integer d we consider the fiber product

Xd = X ×Spec(R) · · · ×Spec(R) X = Spec(R[x]⊗R · · · ⊗R R[x])

of d copies of X (resp. tensor product of d copies of R[x]). Let the symmetric
group Sd act on Xd by permutation. Then, the quotient

X(d) = Xd/Sd

is an affine scheme over Spec(R) and Sd acts transitively on each fiber of

Xd → X(d). Moreover, since Spec(R) is a Noetherian scheme, the natural

projection Xd → X(d) is finite [GoW10, p. 331, Prop. 12.27(4)].
The fat diagonal ∆ of Xd is the closed subscheme such that

∆(L) =
⋃
i 6=j
{(p1, . . . ,pd) ∈ Xd(L) | pi = pj}

for every ring extension L of R. Note that Sd leaves ∆ invariant. Hence, it
makes sense to set

Ud = (Xdr∆)/Sd.



STRONG APPROXIMATION THEOREM 1487

Also, note that the inertia group in Sd of each (p1, . . . ,pd) ∈ Xdr∆ is

trivial. Hence, by [Liu06, p. 147, Exer. 4.3.19], the map Xd → X(d) is étale
along Xdr∆.

Now let S be an R-scheme. Since X is smooth over Spec(R) (Statement
(6) of Section 5), [MoB89, (3.2.3)] says that there is a functorial bijection

between X(d)(S) and

(1) the set of all effective Cartier divisors D on XS = X ×Spec(R) S that
are finite and flat of degree d over S,

with deg(D) as defined in Subsection 2.2.

7.2 Global sections. We consider again the graded ring

R[t] = R[t0, . . . , tr]

introduced in Lemma 5.6 such that X̄ = Proj(R[t]). We also consider
the closed reduced subscheme Z = X̄ rX introduced in Subsection 5.7
and recall that Z = Proj(R[t]/I), where I is a homogeneous ideal of R[t]
(Subsection 5.8). For each large positive integer k, Remark 1.4 gives a
commutative diagram

(2) 0 // R[t]k ∩ I // R[t]k
π

(k)

X̄,Z
// (R[t]/I)k // 0

0 // Ker(ρ
(k)

X̄,Z
) // Γ(X̄,OX̄(k))

ρ
(k)

X̄,Z
// Γ(Z,OZ(k)) // 0

where the upper and lower rows are short exact sequences which have been

identified via canonical maps. Also, π
(k)

X̄,Z
is the quotient map and ρ

(k)

X̄,Z
is

the restriction map from X̄ to Z. Changing the base from R to a field L
that contains K, Diagram (2) becomes

(3) 0 // L[t]k ∩ LI // L[t]k
π

(k)

X̄L,ZL // (L[t]/LI)k // 0

0 // Ker(ρ
(k)

X̄L,ZL
) // Γ(X̄L,OX̄L(k))

ρ
(k)

X̄L,ZL// Γ(ZL,OZL(k)) // 0 .

7.3 Generalized Picard functor. In this subsection we let L be a ring
extension of R and consider the category C(L) whose objects are the couples
(L, α), where L is an invertible sheaf on X̄L and α : OZL → L|ZL is an
isomorphism. A morphism (L, α)→ (L′, α′) between two objects of C(L) is
an isomorphism ϕ : L → L′ such that ϕ|ZL ◦ α = α′.

In particular, if D is a Cartier divisor on X̄L which is disjoint from ZL
(Subsection 2.3) and (Um, fm)m∈M is data that represent D, then for all
m ∈ M and p ∈ Um ∩ ZL, the image fm,p of fm in OX̄L,p is invertible, so
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f−1
m,pOX̄L,p = OX̄L,p. On the other hand, L(D)p = f−1

m,pOX̄L,p (with L(D) as
in Subsection 2.5), so L(D)p = OX̄L,p. It follows that L(D)|ZL ∼= OZL . Fi-
nally, since for each m ∈M , 1D|Um is the unit element of Γ(Um,L(D)) (Sub-
section 2.5), we may consider 1D|ZL as the identity map OZL → L(D)|ZL .
Thus, (LX̄L(D), 1D) is one of the objects of C(L) mentioned in the preceding
paragraph.

If (L, α), (L′, α′) ∈ C(L), then (L⊗OX̄L L
′, α⊗α′) ∈ C(L) and morphisms

of objects of C(L) commute with tensor products.
If L is a field extension of K, we denote for each nonnegative integer d

the subcategory of C(L) of all objects (L, α) with deg(L) = d by Cd(L).
We note in passing that [MoB89, Subsection 3.4] denotes the group of

isomorphism classes of objects of Cd(L) by PGd(X̄, Z)(L) and call it the
generalized Picard functor relative to Z.

7.4 Generalized Picard functors over K̂p. We use the convention

of Subsection 5.1. For each p ∈ T let L̂p = LpK̂p and let Ω̂
[d]
p be the

set of effective Weil divisors D on XK̂p
of degree d with DL̂p

=
∑d

i=1 pi,

where p1, . . . ,pd are distinct points in Ωp(L̂p) (notation of Subsection 4.4).

Thus, D totally splits in FL̂p in the sense of Subsection 3.2, where F is the

function field of XK introduced in Subsection 5.1. Moreover, each D ∈ Ω̂
[d]
p

can be considered as a point of Ud(L̂p) which is fixed under the action of

Gal(L̂p/K̂p). Therefore, Ω̂
[d]
p may be viewed as a subset of Ud(K̂p) (notation

of Subsection 7.1), hence of X(d)(K̂p).

Next we let W
[d]
p be the set of all pairs (L, α) ∈ Cd(K̂p) that are equivalent

to (LX̄K̂p
(D), 1D) for some D ∈ Ω̂

[d]
p . We quote two results from [MoB89]

that rely on the assumptions we made on X, X̄, Z, and f in Section 5.

Lemma 7.5. The following statements hold for each p ∈ T .

(a) Ω̂
[d]
p is p-open in Ud(K̂p) [MoB89, Lemma 3.3(a)].

(b) Let d and d′ be nonnegative integers such that

d ≥ 2 · genus(X̄K) + degK(ZK)

(see Subsection 5.9 for the definition of degK(ZK)). Then,

W
[d]
p W

[d′]
p ⊆W [d+d′]

p ,

where the product on the left hand side is defined by the tensor product
introduced in Subsection 7.3 [MoB89, Lemma 3.7.2(ii)].

Next we draw a consequence of [MoB89, Lemma 3.8] and [MoB89, Lemma
3.9]. To that end we use [Har77, p. 117, Prop. II.5.12(c)] to identify OX̄(k)|Z
(which implicitly appears in the above mentioned lemmas of [MoB89]) with
OZ(k).
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Proposition 7.6. There exist a positive integer k0 and an isomorphism
α(k0) : OZ → OZ(k0) such that for each integral positive multiple k of k0 the
positive integer dk = deg(OX̄K (k)) (in the notation of Subsection 2.1) and

the isomorphism α(k) = (α(k0))⊗(k/k0) : OZ → OZ(k) satisfy the following
condition:

There is a section s
(k)
0 ∈ Γ(X̄,OX̄(k)) such that, in the notation of Dia-

gram (2),

(a) α(k)(Z)(1) = ρ
(k)

X̄,Z
(s

(k)
0 ), where α(k)(Z) : Γ(Z,OZ) → Γ(Z,OZ(k)) is

the corresponding isomorphism of Γ(Z,OZ)-modules,

(b) (OX̄K̂p
(k), α

(k)
p ) ∈W [dk]

p , and

(c) div(s
(k)
0,p) ∈ Ω̂

[dk]
p , for each p ∈ T ,

where 1 is the unit element of the ring Γ(Z,OZ), and α
(k)
p and s

(k)
0,p are the

isomorphism and the section obtained from α(k) and s0 by base change from
R to K̂p.

In addition, the identifications made in Diagrams (2) and (3) and their
commutativity are valid for R and for every field extension L of K.

Proof. By [MoB89, Lemma 3.9], applied to the ample invertible sheaf
OX̄(1) on X̄ [GoW10, p. 386, Example 13.45] rather than to M0, there

exist a positive integer k0 and an isomorphism α(k0) : OZ → OZ(k0) such
that:

(4a) d0 = dk0 = deg(OX̄K (k0)) ≥ 2 · genus(X̄K) + degK(ZK).

(4b) (OX̄K̂p
(k0), α

(k0)
p ) ∈W [d0]

p for each p ∈ T .

Now consider an integral positive multiple k of k0 and let k1 = k/k0.
Recall that OX̄(k) is naturally isomorphic to OX̄(k0)⊗k1 [Har77, p. 117,
Prop. II.5.12(b)] and OX̄(k0) is a free OX̄ -module of rank 1, so

α(k) = (α(k0))⊗k1

is an isomorphism of OZ onto OZ(k) and dk = k1d0 = deg(OX̄K (k)) (Sub-

section 2.1). By (4a) and Lemma 7.5(b), (W
[d0]
p )k1 ⊆ W

[dk]
p for each p ∈ T .

Hence, by (4b), Condition (b) holds for each p ∈ T .

By [MoB89, Lemma 3.8], there exists s
(k)
0 ∈ Γ(X̄,OX̄(k)) such that (a)

and (c) are satisfied, as claimed.
The last assertion of the proposition holds if we eventually replace k0 by

a sufficiently large integral positive multiple of itself. �

7.7 Generators of global sections. In the notation of Proposition 7.6
let k be an integral positive multiple of k0 and let

Γ(X̄,OX̄(k), α(k)) =
{
s ∈ Γ(X̄,OX̄(k)) | ρ(k)

X̄,Z
(s) = α(k)(Z)(1)

}
.
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The bijection given in (1) for the scheme Spec(R) and the bijection given
in [MoB89, p. 189, (3.5.4)] prove part (a) of the following result:

Lemma 7.8. If s ∈ Γ(X̄,OX̄(k), α(k)), then:

(a) div(s) is an effective Cartier divisor on X, finite and flat over
Spec(R) of degree dk = deg(OX̄K (k)).

(b) Each irreducible component of div(s) is finite and surjective over
Spec(R).

Proof. As stated above, it suffices to prove (b). Let f : X → Spec(R) be
the morphism introduced in Subsection 5.5, let Y be the closed subscheme of
X attached to div(s) (Subsection 2.3). By Subsection 5.5, X is Noetherian,
hence so is Y [Liu06, p. 55, Prop. 2.3.46(a)]. Consider an irreducible com-
ponent Y ′ of Y . Since f |Y is finite, it is proper [GoW10, p. 344, Example
12.56(3)], hence closed. By (a), f is flat on Y . Hence, by [Liu06, p. 136,
Lemma 4.3.7], f(Y ′) is dense in Spec(R), so f(Y ′) = Spec(R). By [GoW10,
p. 325, Prop. 12.11(1)], the closed immersion Y ′ → Y is finite. Composing
it with f |Y , we conclude that f |Y ′ is a finite morphism [GoW10, p. 325,
Prop. 12.11(2)]. �

7.9 Divisors of sections in open sets. Let k be an integral positive

multiple of k0 and consider elements s1, . . . , sl in Ker(ρ
(k)

X̄,Z
), that is elements

of Γ(X̄,OX̄(k)) that vanish on Z. Let s
(k)
0 be the section introduced in

Proposition 7.6. We set s = (s
(k)
0 , s1, . . . , sl) and

(5) Γ
(k)
s =

{
s

(k)
0 +

l∑
i=1

aisi

∣∣∣∣∣ a1, . . . , al ∈ R

}
.

Then, Γ
(k)
s ⊆ Γ(X̄,OX̄(k), α(k)), hence Lemma 7.8 holds for every s ∈ Γ

(k)
s .

For each p ∈ T and every algebraic extension K ′ of K let Ω̂
[dk]
p,K′ be the

set of Cartier divisors D on XK̂pK′
that are effective of degree

dk = deg(OX̄K (k)),

étale, totally split in FL̂pK
′ in the sense of Subsection 3.2 (where F is

the function field of XK introduced in Subsection 5.1), whose irreducible

L̂pK
′-components are in Ωp(L̂pK

′). We also set

(6) Γ
(k)
s,p,K′ to be the set of all s ∈ Γ(X̄K̂pK′

,OX̄K̂pK′
(k)) of the form

s = s
(k)
0 +

∑l
i=1 aisi with a1, . . . , al ∈ K̂pK

′ such that div(s) ∈ Ω̂
[dk]
p,K′ .

By Lemma 7.5(a), Ω̂
[dk]
p,K′ is p-open in Ud(K̂pK

′). Hence, an application of

Lemma 3.4 to the Galois extension L̂pK
′/K̂pK

′, with p ∈ T , yields the
following result:
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Lemma 7.10. Let k0 be the integer introduced in Proposition 7.6, let k be

an integral positive multiple of k0, and let s
(k)
0 be an element of Γ(X̄,OX̄(k))

that Proposition 7.6 gives. In addition let

s1, . . . , sl ∈ Ker
(
ρ

(k)

X̄,Z

)
and set s = (s

(k)
0 , s1, . . . , sl). Then, there exists a positive real number γ

such that if K ′ is a separable algebraic extension of K, then the following
holds: If a1, . . . , al ∈ K ′ satisfy |aσi |p < γ for all 1 ≤ i ≤ l, σ ∈ Gal(K), and
p ∈ T , then

s
(k)
0 +

l∑
i=1

aisi ∈ Γ
(k)
s,p,K′

for each p ∈ T .

8. A stabilizing element

Let K, F , R, X, X̄, and Z be as in Subsections 4.1, 5.1, 5.2, 5.5, Lem-
ma 5.6, and Subsection 5.7, respectively. In particular F is a finitely gen-
erated regular extension of K of transcendence degree 1. Thus, F has a
transcendental element t over K such that F/K(t) is a finite separable ex-

tension. Let F̂ be the Galois closure of F/K(t). We say that t symmetrically

stabilizes F/K if Gal(F̂ K̃/K̃(t)) is isomorphic to the symmetric group of

rank [F : K(t)]. In this case Gal(F̂ K̃/K̃(t)) ∼= Gal(F̂ /K(t)) [FrJ08, p. 391,

Lemma 18.9.2], hence F̂ /K is a regular extension. The existence of sym-
metrically stabilizing elements is proved in [GeJ89] in the case where F/K
is conservative (in particular, if K is perfect), and in [Neu98] in the general
case. In [GeJ02, Thm. 16.2] we prove that t can be chosen as a quotient
of linear combinations of a basis of the linear space L(D) (introduced just
before Lemma 3.3) attached to a certain very ample divisor D of F/K. In
this section and in the three following ones we refine that construction and
choose the coefficient of the first element of the basis to be 1, keeping the
other coefficients in given nonempty T -open subsets of R, where T is a fi-
nite subset of V that contains S such that V r T ⊆ PK,fin. Here we call a
subset U of R T -open if U is the union of basic T -open sets. The latter are
intersections of p-open discs of K, where p ranges over all elements of T .

Our construction depends on the main result of [GJR17] that we now
start to explain.

8.1 Matrices. Let f be the universal field extension of K chosen in
Subsection 4.1. For each pair (i, j) of positive integers we consider the affine
variety Mij over K such that the set Mij(f) consists of all i×j matrices with

entries in f. Thus, Mij is naturally isomorphic to the affine space AijK . If
i ≤ j, we write M∗ij for the nonempty Zariski-open subset of Mij consisting
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of all matrices in Mij of rank i, i.e., with linearly independent rows. We fix
a positive integer l for this section, let

M(l) = M∗2,3 ×M∗3,4 × · · · ×M∗l,l+1,

and define a morphism µ(l) : M(l) →M2,l+1 by multiplication:

µ(l)(A2, A3, . . . , Al) = A2A3 · · ·Al ,

and observe that actually µ(l) maps M(l)(K) onto M∗2,l+1(K) [GeJ02, §3]. For

each i ≥ 2, we define a map ψi : M∗i,i+1 → Pi mapping each A ∈ M∗i,i+1(f)

onto the unique point (y0: · · · :yi) of Pi(f) that satisfies A

y0
...
yi

 =

0
...
0

.

Kramer’s rule implies that ψi is a morphism. Let P(l) = P2 × · · · × Pl and
ψ(l) = ψ2×· · ·×ψl : M(l) → P(l). Then, ψ(l) is a morphism that maps M(l)(K)

onto P(l)(K) [GeJ02, §3]. Both maps from M(l) appear in the following row:

(1) P(l) M(l)ψ(l)

oo
µ(l)

// M∗2,l+1 .

8.2 F. K. Schmidt’s derivatives. Let ∆ = Proj(K[s0, s1, . . . , sl]) be
an absolutely integral projective curve in PlK with function field F , where
K[s0, s1, . . . , sl] is a graded domain over K with

K[s0, s1, . . . , sl]1 =
l∑

i=0

Ksi.

We set ∆̃ = ∆K̃ = Proj(K̃[s0, s1, . . . , sl]).

Over each point p ∈ ∆̃(K̃) there lie only finitely many prime divisors

P1, . . . , Pe of FK̃/K̃ (alternatively, finitely many points of the normalization

of ∆̃), with e ≥ 1. For each 1 ≤ i ≤ e let mi be the maximal ideal of the

discrete valuation ring Oi of FK̃ that corresponds to Pi and let πi be a
generator of mi. Then, O∆̃,p ⊆ Oi and mi ∩ O∆̃,p = m∆̃,p. We identify

Oi/mi with K̃. If an element f of FK̃ belongs to Oi, we denote its residue

modulo mi in K̃ by f(Pi), otherwise we set f(Pi) = ∞. In the former

case, one may express f as a formal power series f =
∑∞

k=0
Dkf
Dπki

(Pi)π
k
i , with

coefficients in K̃, where Dkf
Dπki

is an element of Oi called the F. K. Schmidt

derivative of degree k of f with respect to Pi [GJR17, Section 4].

8.3 Characteristic-0 like curves. For each 1 ≤ i ≤ e there exists ui ∈
K̃(s0, . . . , sl) such that for each 0 ≤ j ≤ l we have uisj ∈ Oi and there is
0 ≤ j′ ≤ l such that uisj′ /∈ mi. Then, we write s(Pi) for the point

p = (uis)(Pi) = ((uis0)(Pi):(uis1)(Pi): · · · :(uisl)(Pi))
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of ∆̃(K̃) and note that p does not depend on ui. However, for each k ≥ 1,

the expression Dk(uis)

Dπki
(Pi) may depend on ui and on πi. Nevertheless, we

still denote it by s[k](Pi) and make sure that each of the objects that depend
on this symbol does not depend on ui nor on πi.

For example, by [GJR17, Lemma 4.2], the condition

(2) rank(p s[1](Pi)) = 2

(where both p and s[1](Pi) are considered here as columns of height l+1 and

(p s[1](Pi)) is the corresponding (l+ 1)× 2 matrix) is independent of ui and
πi. By [GJR17, Lemma 5.1], Condition (2) is equivalent to the condition

that s[1](Pi) is not a column of zeros. Thus, the latter condition is also

independent of ui and πi. By [GJR17, Lemma 5.2], p is a simple point of ∆̃

if and only if FK̃/K̃ has a unique prime divisor P over p and s[1](P ) is not

a column of zeros. In this case we write s[1](p) for s[1](P ). Then, the linear

form pY0 + s[1](p)Y1 is a parametric presentation of the tangent T∆̃,p to ∆̃
at p.

We say that p is an inflection point of ∆̃ if p is simple and

rank(p s[1](p) s[2](p)) = 2.

Again, by [GJR17, Lemma 4.2], this condition is independent of the param-
eters. By [GeJ89, Lemma 3.1 and the paragraph before Lemma 1.1], our

definition of an inflection point coincides with the traditional one if ∆̃ is a
plane curve [Har77, p. 148].

If char(K) = 0, then ∆̃ has only finitely many double tangents (i.e., tan-
gents at two simple points or more) and only finitely many inflection points.

Moreover, if ∆̃ is not a line, it is nonstrange. This means that there exists no
point in Pl(K̃) through which infinitely many tangents to ∆̃ at simple points
go [GJR17, first paragraph of Section 11]. In positive characteristic one or
more of these properties may fail for some curves. So, we say for arbitrary
characteristic that ∆ is a characteristic-0-like curve if ∆̃ has only finitely
many double tangents, finitely many inflection points, and it is nonstrange.

The point p is a cusp of ∆̃ if p is singular and FK̃/K̃ has a unique prime
divisor that lies over p.

8.4 Multiplicities. Consider a point p ∈ ∆̃(K̃) and let m = m∆̃,p be

the maximal ideal of the local ring O∆̃,p. Let P1, . . . , Pe be the distinct

prime divisors of FK̃/K̃ that lie over p. For each 1 ≤ i ≤ e we define the

multiplicity of ∆̃ at Pi as

mult(∆̃, Pi) = min
a∈m

ordPi(a),

where ordPi is the normalized discrete valuation of FK̃/K̃ attached to Pi.
We also note that dimK̃ mk/mk+1 becomes a constant positive integer for
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all large positive integers k [GJR17, Remark 6.2]. We call that integer the

multiplicity of ∆̃ at p and denote it by mult(∆̃,p). Thus,

mult(∆̃,p) = dimK̃ mk/mk+1

for each large k. By [GJR17, Lemma 6.4],

mult(∆̃,p) =
e∑
i=1

mult(∆̃, Pi).

In particular, if p is normal (i.e., in this case, simple), FK̃/K̃ has a unique
prime divisor P over p and

mult(∆̃,p) = mult(∆̃, P ) = min
a∈m

ordP (a) = 1.

If FK̃/K̃ has a unique prime divisor P that lies over p and mult(∆̃, P ) > 1,

then O∆̃,p is a proper subring of the valuation ring of FK̃/K̃ at P , so O∆̃,p

is not a discrete valuation ring of FK̃/K̃. Hence, p is a singular point of ∆̃,

so p is a cusp of ∆̃.

Definition 8.5. Let q be a positive integer. A q-curve over K̃ is an integral
projective curve ∆̃ over K̃ which

(3a) is characteristic-0-like,
(3b) has a cusp of multiplicity q, and

(3c) maxq∈∆̃(K̃) mult(∆̃,q) = q.

We may now quote [GJR17, Thm. 16.1] for our global field K:

Proposition 8.6. Let ∆ = Proj(K[s0, . . . , sl]) be an absolutely integral
projective curve in PlK , where K[s0, . . . , sl] is a graded ring over K with

K[s0, . . . , sl]1 =
∑l

i=0Ksi. Let F be the function field of ∆ and suppose

that ∆̃ = ∆K̃ is a q-curve for some prime number q.

Then, there exists a nonempty Zariski-open subset Ui of Pi
K̃

, i = 2, 3, . . . , l,

such that with U = U2 × U3 × · · · × Ul ⊆ P(l), for each A ∈ (ψ(l))−1(U(K))

and with µ(l)(A) =

(
a
b

)
, the element t =

∑l
i=0 aisi/

∑l
i=0 bisi [F : K(t)]-

symmetrically stabilizes F/K.

Remark 8.7. Theorem 16.1 of [GJR17] assumes that s0, s1, . . . , sl are ele-
ments of F . We may achieve this condition by choosing a nonzero element

s′ of
∑l

i=0Ksi. Then, ( s0s′ : · · · : sls′ ) is a generic point of ∆ with coordinates

in F and
∑l

i=0 ai
si
s′ /
∑l

i=0 bi
si
s′ = t. �

9. Homogeneous generic point

In the next section we construct a birational morphism of X̄K onto a
q-curve Y over K, with a large prime number q, on which Proposition 8.6
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will be applied. The aim of this section is to construct the homogeneous
coordinates of the generic point of Y .

Recall from Lemma 5.6 that X̄ = Proj(R[t]), where t = (t0, . . . , tr), R[t]
is a graded ring with R[t]0 = R, R[t]1 =

∑r
i=0Rti, and t0, . . . , tr 6= 0.

Lemma 9.1. Let k be a positive integer and s0, . . . , sr′ nonzero generators
of the K-vector-space K[t]k. Then, for every 0 ≤ i ≤ r and 0 ≤ i′ ≤ r′ we
have

(1) K

(
t0
ti
, . . . ,

tr
ti

)
= K

(
s0

si′
, . . . ,

sr′

si′

)
.

Proof. The left hand side of (1) is the function field F of X and of X̄. For
each 0 ≤ i′ ≤ r′ there exists a homogeneous polynomial fi′ ∈ K[T0, . . . , Tr]
of degree k with si′ = fi′(t). Hence, for each 0 ≤ j′ ≤ r′ we have

sj′

si′
=
fj′(t0, . . . , tr)

tk0

/
fi′(t0, . . . , tr)

tk0
(2)

= fj′

(
1,
t1
t0
, . . . ,

tr
t0

)/
fi′

(
1,
t1
t0
, . . . ,

tr
t0

)
∈ F.

Conversely, we denote the right hand side of (1) by F ′. For each 0 ≤ i ≤ r
there exist a0, . . . , ar′ and b0, . . . , br′ in K such that tit

k−1
0 = a0s0+· · ·+ar′sr′

and tk0 = b0s0 + · · ·+ br′sr′ . Then,

(3)
ti
t0

=
tit

k−1
0

tk0
=
a0s0 + · · ·+ ar′sr′

si′

/b0s0 + · · ·+ br′sr′

si′
∈ F ′.

It follows from (2) and (3) that F = F ′, as claimed. �

The following result is [GJR17, Prop. 19.1]:

Proposition 9.2. Let F be an algebraic function field of one variable over
K̃ and consider an element t ∈ F×. Let s = (s0:s1: · · · :sm) be a generic
point of an integral projective curve ∆ in Pm

K̃
with s0, s1, . . . , sm ∈ F . Let

x′ = (x′0:x′1: · · · :x′n′) be a generic point of an integral projective curve Λ in

Pn′
K̃

with x′0, x
′
1, . . . , x

′
n′ ∈ F . Suppose ∆ is characteristic-0-like. In addition

suppose that for each (j, k) ∈ {0, . . . ,m} × {0, . . . , n′} there exists ajk ∈ K̃
such that tsj =

∑n′

k=0 ajkx
′
k. Then, Λ is also characteristic-0-like curve.

Setup 9.3. Let R be the principal ideal domain with quotient field K in-
troduced in Subsection 5.2, X the affine scheme over R introduced in Sub-
section 5.5, and X̄ the projective scheme over R introduced in Lemma 5.6.
Subsection 6.1 introduces a separable point B of X that we consider as a
homogeneous prime ideal of R[t] and a point b = (1:b1: · · · :br) of X(Ksep)
that lies over B with b1, . . . , br integral over R. As in Subsection 6.2, we set
E = K(b) = K(B) and let RE = O

E,Vr T be the integral closure of R in

E.
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As in Subsection 6.2, let w1, . . . , we be an R-basis of RE (hence, also

a K-basis of E) and let σ1, . . . , σe be elements of Aut(K̃(t)/K(t)) whose

restrictions to E are the distinct K-embeddings of E into K̃ and σ1 is
the identity map of E. The choices made in that subsection imply that
det(w

σj
i )i,j=1,...,e is invertible in the integral closure R̃ of R in K̃ and the

ring RE
[

t
t0

]
is integrally closed. Finally:

(4a) We consider the simple points

B̃j =
r∑
i=1

K̃[t](ti − b
σj
i t0),

j = 1, . . . , e, of XK̃ that lie over B and the corresponding points

bj = (1:b
σj
1 : · · · :bσjr ) = bσj

of X(K̃), so, in the notation of Subsection 6.10,

ZB(K̃) = {b1, . . . ,be}.
Note that since E = K(b) is a separable extension of K of degree e,
the points b1, . . . ,be form a complete system of conjugate separable
points of X̄(K̃) that lie over B and none of the ideals B̃1, . . . , B̃e of

K̃[t] contains another one.
(4b) We consider the homogeneous ideals

B′ =

r∑
i=1

RE [t](ti − bit0) = RE [t] ∩ B̃1

(Lemma 6.4) and

B′′ =

e⋂
j=2

RE [t] ∩ B̃j

of RE [t] introduced in Notation 6.3 that satisfy

V+(B′) ∩ V+(B′′) = ∅
(Lemma 6.8).

(4c) We consider the positive integer k0 mentioned in Proposition 7.6.
(4d) We recall that Z = Proj(R[t]/I), where I is a nonzero homogeneous

ideal of R[t] (Subsection 5.8) such that I 6⊆ B (Subsection 6.10),
choose a nonzero homogeneous element sI of I rB, and set

kI = degK[t](sI).

(4e) For each large multiple k of k0, we consider the isomorphism

α(k)(Z) : Γ(Z,OZ)→ Γ(Z,OZ(k))

that appears in Proposition 7.6 and the homomorphism

ρ
(k)

X̄,Z
: Γ(X̄,OX̄(k))→ Γ(Z,OZ(k))



STRONG APPROXIMATION THEOREM 1497

that appears in the commutative diagram (2) in Subsection 7.2.

Lemma 9.4. Under Setup 9.3, let a1, . . . , ar be elements of R and set

s̃ =
e∏
j=1

(a1(t1 − b
σj
1 t0) + · · ·+ ar(tr − b

σj
r t0)).

Then, s̃ ∈ R[t].

Proof. We consider the independent variables T0, . . . , Tr and the element

(5) S̃ =

e∏
j=1

(a1(T1 − b
σj
1 T0) + · · ·+ ar(Tr − b

σj
r T0))

of K̃(T), where T = (T0, . . . , Tr). Using the distributive law we may rewrite
(5) as

(6) S̃ =
m∑
i=1

hi(b
σ1 , . . . , bσe)µi(T),

where h1, . . . , hm are polynomials with coefficients in R, b = (b1, . . . , br),
and µ1(T), . . . , µm(T) are distinct monomials in T0, . . . , Tr of degree e.

We extend σ1, . . . , σe to elements of G = Aut(K̃(t,T)/K(t,T)) with the
same names. Since b1, . . . , br ∈ E (Setup 9.3), the choice of σ1, . . . , σe,
implies for each τ ∈ G that the e-tuple (bσ1τ , . . . , bσeτ ) is a permutation of

(bσ1 , . . . , bσe). Therefore, applying τ on (5), gives S̃τ = S̃. On the other

hand, applying τ on (6) gives S̃τ =
∑m

i=1 hi(b
σ1 , . . . , bσe)τµi(T). Hence,∑m

i=1 hi(b
σ1 , . . . , bσe)µi(T) = S̃ = S̃τ =

∑m
i=1 hi(b

σ1 , . . . , bσe)τµi(T). Since

µ1(T), . . . , µm(T) are linearly independent over K̃, we get

hi(b
σ1 , . . . , bσe)τ = hi(b

σ1 , . . . , bσe)

for i = 1, . . . ,m. Since b1, . . . , br ∈ Ksep (Setup 9.3), we get that

hi(b
σ1 , . . . , bσe) ∈ K

for i = 1, . . . ,m. Since hi(b
σ1 , . . . , bσe) are integral over R (because b1, . . . , br

are integral over R, as mentioned in Setup 9.3) and R is integrally closed
(Subsection 5.2), we have hi(b

σ1 , . . . , bσe) ∈ R for i = 1, . . . ,m.

Finally, we observe that the specialization T → t, extends to a K̃-
homomorphism ϕ : K̃[T]→ K̃[t]. It follows from (5) and (6) that

s̃ = ϕ(S̃) =
m∑
i=1

hi(b
σ1 , . . . , bσe)µi(t) ∈ R[t],

as claimed. �

Lemma 9.5. Under Setup 9.3, let q be a positive integer and let k be a large

multiple of k0. Then, R[t]k = Γ(X̄,OX̄(k)) has elements s
(k)
0 , s

(k)
1 , . . . , s

(k)
l(k)

with l(k) ≥ e such that the following hold:
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(a) s
(k)
0 |Z = ρ

(k)

X̄,Z
(s

(k)
0 ) = α(k)(Z)(1) 6= 0. Moreover, s

(k)
0 vanishes at no

point of Z(K̃) and div(s
(k)
0,p) ∈ Ω̂

[dk]
p (notation of Proposition 7.6) for

each p ∈ T .

(b) s
(k)
0 /∈ B̃j for j = 1, . . . , e.

(c) s
(k)
i |Z = 0, so s

(k)
i ∈ I, hence s

(k)
i ∈ Ij for i = 1, . . . , l(k) and

j = 1, . . . , d(Z) (in the notation of Subsection 5.8).

(d) s
(k)
i ≡ w

σj
i s

(k)
0 mod B̃q

j , in particular s
(k)
i (B̃j) = w

σj
i s

(k)
0 (B̃j), for

i, j = 1, . . . , e.

(e) s
(k)
i ∈ B̃

q
j for i = e+ 1, . . . , l(k) and j = 1, . . . , e.

(f) s
(k)
e+1, . . . , s

(k)
l(k) form an R-basis for the free R-module

L(k) = Ker(ρ
(k)

X̄,Z∪ZqB
) = R[t]k ∩ I ∩Bq,

hence also a K-basis for the vector space

L
(k)
K = Ker

(
ρ

(k)

X̄K ,ZK∪ZqB,K

)
= K[t]k ∩KI ∩KBq

over K.
(g) The function field of Proj

(
K
[
s

(k)
0 , . . . , s

(k)
l(k)

])
is F .

(h) Proj
(
K̃
[
s

(k)
0 , . . . , s

(k)
l(k)

])
is a characteristic-0-like integral projective

curve in Pl(k)

K̃
.

Proof. We break up the proof into several parts.

Part A. Choosing s
(k)
0 ∈ Γ(X̄,OX̄(k)). Let k be a large multiple of k0.

Let ZB be the closed reduced subscheme Proj(R[t]/B) of X̄ introduced in
Subsection 6.10. Since X and Z are disjoint (Subsection 5.7) and ZB is a
closed subscheme of X̄ which is contained in X (Subsection 6.10), restriction
of sections gives rise (by Lemma 1.5) to an epimorphism

(7) Γ(X̄,OX̄(k)) −→ Γ(Z,OZ(k))× Γ(ZB,OZB (k)).

Recall that we are identifying Γ(X̄,OX̄(k)), Γ(Z,OZ(k)), and
Γ(ZB,OZB (k)) with R[t]k, R[t]k/(R[t]k ∩ I), and R[t]k/(R[t]k ∩B), respec-
tively (Remark 1.4). The restriction maps of (7) are replaced under these
identifications by the quotient maps. Thus, in these terms, the epimorphism
(7) is given by

s 7→ (s+ (R[t]k ∩ I), s+ (R[t]k ∩B)).

By Proposition 7.6, there exists an isomorphism of sheaves

α(k) : OZ → OZ(k)

of OZ-modules such that Γ(Z,OZ(k)) = α(k)(Z)(1) · Γ(Z,OZ), where 1 is
the unit element of the ring Γ(Z,OZ). Moreover, there exists

s
(k)
0 ∈ Γ(X̄,OX̄(k)) = R[t]k
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with

(8) s
(k)
0 |Z = ρ

(k)

X̄,Z
(s

(k)
0 ) = α(k)(Z)(1) 6= 0. Also, the germ α(k)(Z)(1)P

of α(k)(Z)(1) at each point P ∈ Z is nonzero, so s
(k)
0 vanishes at no

point of Z(K̃),

as stated in (a). Moreover,

(9) div(s
(k)
0,p) ∈ Ω̂

[dk]
p for each p ∈ T , where dk = deg(OX̄K (k)).

We choose by (7) a section sIB ∈ Γ(X̄,OX̄(k)) = R[t]k that belongs

to I but not to B. By Lemma 7.10, we may replace s
(k)
0 , if necessary, by

s
(k)
0 + asIB with a ∈ R which is sufficiently T -close to 0 to assume that, in

addition to (8) and (9),

(10) s
(k)
0 /∈ B. Hence, by Lemma 6.5, s

(k)
0 /∈ B̃j for j = 1, . . . , e,

so (b) holds.

Part B. Choosing s′1, . . . , s
′
e ∈ Γ(X̄,OX̄(k)). We use Setup 9.3(4b) to

set

ZqB′ = Proj(RE [t]/(B′)q) and ZqB′′ = Proj(RE [t]/(B′′)q).

Both are disjoint closed subschemes of X̄RE which are contained in XRE , so
are disjoint from the closed subscheme ZRE of X̄RE . Hence, by Lemma 1.5,
restriction of sections gives rise to an epimorphism

(11) Γ(X̄RE ,OX̄RE (k))→
Γ(ZRE ,OZRE (k))× Γ(ZqB′ ,OZqB′ (k))× Γ(ZqB′′ ,OZqB′′ (k)).

Thus, there exists s′1 ∈ Γ(X̄RE ,OX̄RE (k)) = RE [t]k such that s′1|ZRE = 0,

s′1|ZqB′ = s
(k)
0 |ZqB′ , and s′1|ZqB′′ = 0. Then, for each large multiple k of k0,

we have by Remark 1.4 that

(12) s′1 ∈ REI, s′1 − s
(k)
0 ∈ (B′)q, and s′1 ∈ (B′′)q.

This implies that s′1 /∈ B̃1 (otherwise it would follow from

s′1 − s
(k)
0 ∈ (B′)q ⊆ B′ ⊆ B̃1

that s
(k)
0 ∈ R[t]∩B̃1 = B (Lemma 6.5), which contradicts (10)) and s′1 ∈ B̃

q
j

for j = 2, . . . , e.
Next we write s′1 = f ′1(t), where f ′1 ∈ RE [T0, . . . , Tr]k and recall that

R̃ = O
K̃,Vr T is the integral closure of R in K̃ (Subsection 4.5). We set

s′j = (s′1)σj = (f ′1)σj (t) ∈ R̃[t]k for j = 2, . . . , e. Then, by the preceding
paragraph,

(13) s′j |ZR̃ = 0, s′j − s
(k)
0 ∈ B̃q

j , and s′j′ ∈ B̃
q
j for j′ 6= j. In particular,

by (10), s′j(B̃j) = s
(k)
0 (B̃j) 6= 0 for j = 1, . . . , e and s′j(B̃j′) = 0 for

j′ 6= j.
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Part C. Choosing s
(k)
1 , . . . , s(k)

e . For each 1 ≤ i ≤ e let

(14) s
(k)
i =

∑e
j=1w

σj
i s
′
j =

∑e
j=1(wif

′
1)σj (t).

Then, each of the coefficients of the monomials in t0, . . . , tr on the right hand
side of (14) is an element of K which is integral over R. Since the latter
ring is integrally closed (Subsection 5.2), each of those coefficients belong

to R. Hence, s
(k)
i ∈ R[t]. Moreover, since f ′1 ∈ RE [T0, . . . , Tr]k, we have

s
(k)
i ∈ R[t]k. By (13),

(15) s
(k)
i |Z = 0 for i = 1, . . . , e,

as stated in (c). Again, by (13),

(16) s
(k)
i =

∑e
j′=1w

σj′
i s′j′ ≡ w

σj
i s
′
j ≡ w

σj
i s

(k)
0 mod B̃q

j for i, j = 1, . . . , e,

as stated in (d).

Part D. The free modules L(k) and the linear spaces L
(k)
K . We

choose a nonzero homogeneous element sB of B and let kB = degK[t](sB)

(Section 1).

(17) We choose a large multiple k1 of k0 such that k1 ≥ kI + qkB + 1,
where kI is as in (4d).

For each large integer k let

(18) L(k) = Ker
(
ρ

(k)

X̄,Z∪ZqB

)
= R[t]k ∩ I ∩Bq (Remark 1.4).

Since Γ(X̄,OX̄(k)) = R[t]k is a finitely generated R-module and R is Noe-

therian, L(k) is a finitely generated R-module. Moreover, since both R and
L(k) are submodules of the field K(t), the R-module L(k) is torsion-free. In

addition, R is a principal ideal domain (Setup 9.3). So, L(k) is a finitely
generated free R-module [Lan93, p. 148, Thm. 7.1]. It satisfies the following
rule:

(19) If s ∈ L(k) and s′ ∈ R[t]k′ , then ss′ ∈ L(k+k′).

Similarly we consider the vector space

(20) L
(k)
K = Ker

(
ρ

(k)

X̄K ,ZK∪ZqB,K

)
= K[t]k ∩KI ∩ (KB)q

over K and observe that Rule (19) holds also for these vector spaces.

Let s
[k1]
0 , . . . , s

[k1]
m be an R-basis of L(k1) and consider the scheme

Λ = Proj
(
R
[
s

[k1]
0 , . . . , s[k1]

m

])
.

By (19) and (18),

(21) sIs
q
BK[t]k1−kI−qkB ⊆ K[t]k1 ∩KI ∩KBq = L

(k1)
K , where sI is intro-

duced in (4d).

Since k1 − kI − qkB ≥ 1 (by (17)), Lemma 9.1 implies that the quotients
of the elements of K[t]k1−kI−qkB by a chosen nonzero element of this K-
vector-space generate the field F over K. Since sIs

q
B 6= 0, Relation (21)

implies that the function field of ΛK is F .
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Part E. Characteristic-0-like curve. We follow [GJR17, Remark 18.1]

and let s
[3k1]
0 , . . . , s

[3k1]
m∗ be all of the elements of the form s

[k1]
h s

[k1]
i s

[k1]
j with

0 ≤ h, i, j ≤ m. By (19), s
[3k1]
0 , . . . , s

[3k1]
m∗ ∈ L(3k1) ⊆ R[t]3k1 . Thus,

R
[
s

[3k1]
0 , . . . , s

[3k1]
m∗

]
is a graded ring over R with

R
[
s

[3k1]
0 , . . . , s

[3k1]
m∗

]
1

=
m∗∑
i=0

Rs
[3k1]
i

and

Λ∗ = Proj
(
R
[
s

[3k1]
0 , . . . , s

[3k1]
m∗

])
is the image of Λ under the 3-fold Veronese embedding. In particular, the
function field of Λ∗K is F . Also,

Λ∗
K̃

= Proj
(
K̃
[
s

[3k1]
0 , . . . , s

[3k1]
m∗

])
is the image of

ΛK̃ = Proj
(
K̃
[
s

[k1]
0 , . . . , s[k1]

m

])
under the 3-fold Veronese embedding. Therefore, by [GJR17, Prop. 18.6],

(22) the curve Λ∗
K̃

is characteristic-0-like.

Let k ≥ 3k1 be a large multiple of k0. For each 0 ≤ i ≤ m∗ we set

s∗i = tk−3k1
0 s

[3k1]
i ∈ L(k) (by (19)). In addition, we choose s

(k)
e+1, . . . , s

(k)
l(k) in

R[t]k that form an R-basis of L(k) (as stated in (f)). In particular,

(23) s
(k)
e+1, . . . , s

(k)
l(k) vanish on Z.

Together with (15), Statement (23) verifies (c). Also, R
[
s

(k)
0 , . . . , s

(k)
l(k)

]
is a

graded ring over R with

R
[
s

(k)
0 , . . . , s

(k)]
l(k)

]
1

=

l(k)∑
i=0

Rs
(k)
i .

Since s
(k)
e+1, . . . , s

(k)
l(k) generate L

(k)
K over K, we have s∗0, . . . , s

∗
m∗ ∈

∑l(k)
i=0 Ks

(k)
i .

Hence,

(24)
s

[3k1]
i

t3k1
0

=
s∗i
tk0
∈

l(k)∑
j=0

K
s

(k)
j

tk0
for i = 0, . . . ,m∗.

Since the function field of Λ∗K is F , it follows from (24) that F is contained

in the function field of Proj
(
K
[
s

(k)
0 , . . . , s

(k)
l(k)

])
. The latter is contained in

F . Hence, the function field of Proj
(
K
[
s

(k)
0 , . . . , s

(k)
l(k)

])
is F , as stated in

(g).
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Now observe that

(
s
[3k1]
0

t
3k1
0

: · · · : s
[3k1]

m∗

t
3k1
0

)
is a generic point of Λ∗

K̃
with co-

ordinates in F , hence in FK̃. Also,

(
s
(k)
0

tk0
: · · · :

s
(k)
l(k)

tk0

)
is a generic point of

Proj
(
K̃
[
s

(k)
0 , . . . , s

(k)
l(k)

])
with coordinates in F , hence in FK̃. Therefore, by

(22), (24), and Proposition 9.2, Proj
(
K̃
[
s

(k)
0 , . . . , s

(k)
l(k)

])
is a characteristic-

0-like curve, as (h) claims.

By the definition of L(k) in Part D, s
(k)
e+1, . . . , s

(k)
l(k) vanish on ZqB, hence

they all belong to Bq and therefore to B̃q
j , j = 1, . . . , e, as claimd by (e). �

Lemma 9.6. In the notation of Lemma 9.5, the following hold for each
large multiple k of k0:

(a) The sections s
(k)
0 , s

(k)
1 , . . . , s

(k)
l(k) have no common zero in X̄(K̃).

(b) The sections s
(k)
e+1, . . . , s

(k)
l(k) have no common zero in

X̄(K̃)r(Z(K̃) ∪ ZB(K̃)).

Proof. By Lemma 9.5(a),(b), s
(k)
0 vanishes at no point of Z(K̃) ∪ ZB(K̃).

Hence, in order to complete the proof of the claim, it suffices to prove (b).

Since Z(K̃)∪ZB(K̃) is a finite subset of X̄(K̃), there exists a homogeneous

polynomial h0 ∈ K[T0, . . . , Tr] that vanish on Z(K̃) ∪ ZB(K̃) but not on

X̄(K̃). Replacing h0 by its qth power (with q as in Lemma 9.5), we may

assume that h0(t) ∈ KBq. Then, we choose r0 ∈ X̄(K̃)r(Z(K̃) ∪ ZB(K̃))
such that h0(r0) 6= 0.

Since dim(X̄K) = 1, the polynomial h0 vanishes only at finitely many

points of X̄(K̃). Let r1, . . . , rm be the finitely many points inX(K̃)rZB(K̃)
at which h0 vanishes. For each i between 1 and m we choose a homogeneous
polynomial hi ∈ K[T0, . . . , Tr] that vanishes on Z(K̃) but not at ri such that
hi(t) ∈ KBq. Then, we set k2 = max(deg(h0), . . . ,deg(hm)).

We consider a positive multiple k of k0 with k ≥ k2. Given a point
p ∈ X(K̃)rZB(K̃), we choose an index 0 ≤ j ≤ r such that tj(p) 6= 0. If
p = ri for some i between 1 and m, then hi(p) 6= 0 (by the choice of hi).
If p 6= r1, . . . , rm, then h0(p) 6= 0 (by the defining property of r1, . . . , rm).
Thus, in any case, there exists 0 ≤ i ≤ m with hi(p) 6= 0. It follows that

h(T0, . . . , Tr) = T
k−deg(hi)
j hi(T0, . . . , Tr) is a homogeneous polynomial of de-

gree k with coefficients in K that vanishes on Z(K̃), hence on ZK , but not at

p. Moreover, h(t) ∈ KBq. In particular, h(t) ∈ Ker
(
ρ

(k)

X̄K ,ZK∪ZqB,K

)
. By

Lemma 9.5(f), the set
{
s

(k)
e+1, . . . , s

(k)
l(k)

}
is a K-basis of Ker

(
ρ

(k)

X̄K ,ZK∪ZqB,K

)
.

Hence, h(t) is a linear combination of s
(k)
e+1, · · · , s

(k)
l(k) with coefficients in K,

so h(p) is a linear combination of s
(k)
e+1(p), . . . , s

(k)
l(k)(p) with coefficients in K.
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Therefore, at least one of the elements s
(k)
e+1(p), . . . , s

(k)
l(k)(p) of K̃ is nonzero.

This proves (b) and completes the proof of the lemma. �

10. The curve Y

We construct a birational morphism of X̄K onto a projective q-curve Y
over K for each given positive integer q ≥ 2. Choosing q to be a large
prime number, we then apply Proposition 8.6 to construct a symmetrically
stabilizing element for F/K of a special form.

Setup 10.1. We replace k0 (Proposition 7.6) by a large multiple of itself
to assume that Lemmas 9.5 and 9.6 hold for each positive multiple k of k0.
Under Setup 9.3, we consider a large multiple k of k0, a positive integer

q, and the elements s
(k)
0 , . . . , s

(k)
l(k) of R[t]k that Lemma 9.5 produces. In

particular, K
[
s

(k)
0 , . . . , s

(k)
l(k)

]
is a graded ring over K such that

K
[
s

(k)
0 , . . . , s

(k)
l(k)

]
1

=

l(k)∑
i=0

Ks
(k)
i .

Let Y = Proj
(
K
[
s

(k)
0 , . . . , s

(k)
l(k)

])
and let ϕ = ϕ(k) : X̄K → Y be the ratio-

nal map defined by ϕ(t) = s(k). Since s
(k)
0 , . . . , s

(k)
l(k) have no common zero

in X̄(K̃) (Lemma 9.6), ϕ is a morphism.

Let ϕ̃ = ϕ
(k)

K̃
: X̄K̃ → YK̃ be the extension of ϕ created by changing the

base field from K to K̃. We consider the points

y0 = (1:0: · · · :0)

y1 = (1:wσ1
1 : · · · :wσ1

e :0: · · · :0)

...

ye = (1:wσe1 : · · · :wσee :0: · · · :0)

of Pl(k)(K̃).

Lemma 10.2. Let Γ be an absolutely integral projective curve over a field
L and let Γ0 be a nonempty Zariski-open subset of Γ with Γ0 6= Γ. Then, Γ0

is an absolutely integral affine curve over L.

Proof. By a result of Goodman, Γ0,L̃ is affine [Goo69, p. 167, Prop. 5]. It

follows from [GoW10, p. 442, Prop. 14.51(6)] that Γ0 is also affine. (We are
indebted to Ulrich Görtz for this argument.)

Alternatively, we may point out that Γ0 is not a proper scheme and use
[Liu06, Exer. 7.5.5, p. 315].

Another possibility communicated to us by David Harbater is to construct
an effective Cartier divisorD on Γ whose support is ΓrΓ0 and then conclude
from [Liu06, Prop. 7.5.5, p. 305] that D is ample. Thus, for some positive
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integer n0, the divisor n0D is very ample. Hence, L(n0D) admits a set of
global sections that provide an embedding of Γ into some projective space
PmL such that D is the (set-theoretic) inverse image of the hyperplane at
infinity. Therefore, Γ0 is the inverse image of AmL , hence is affine, because
closed immersions are finite [GoW10, p. 325, Prop. 12.11(1)]. �

Lemma 10.3. The morphism ϕ of Setup 10.1 maps the affine curve
XK rZB,K isomorphically onto a Zariski-open smooth affine subset Y0 of
Y . Moreover:

(a) The morphism ϕ : X̄K → Y is birational.
(b) y0 ∈ Y (K) and ϕ−1(y0) = ZK .

(c) yj ∈ Y (K̃) and ϕ̃−1(yj) = bj for j = 1, . . . , e.
(d) Y0 = Y r

(
ϕ(ZK) ∪ ϕ(ZB,K)

)
.

(e) Y0(K̃) = Y (K̃)r{y0,y1, . . . ,ye}.

Proof. Recall that XK = Spec(K[x1, . . . , xn]) (Subsection 5.11). By Lem-
ma 10.2, the Zariski-open subset

XK rZB,K = X̄K r(ZK ∪ ZB,K)

of XK (with ZB,K as introduced in Subsection 6.10) is an absolutely integral
affine curve over K, hence may be written as Spec(K[x1, . . . , xn′ ]), for some
n′ ≥ n and elements xn+1, . . . , xn′ of F that do not vanish on ZB,K . The
rest of the proof breaks up into several parts.

Part A. The affine subset Y0 of Y . By Subsection 5.11, X̄K is a normal
curve. Hence, for each Q ∈ X̄K , the local ring OX̄K ,Q is a discrete valuation
ring of F [Lan58, p. 151, Thm. 1]. In particular, this statement holds for
each of the points KI1, . . . ,KId(Z) of X̄K that correspond to the points
Z1,K , . . . , Zd(Z),K of ZK and which are introduced in Subsection 5.9. The
statement also applies to the point KB of XK introduced in Subsection 6.1.
We choose a positive integer e′ that satisfies the following condition:

(1) ordKIi(xj′)+e′ ≥ 0 and ordKB(xj′)+e′q ≥ 0 for i = 1, . . . , d(Z) and
j′ = 1, . . . , n′.

Now we set k′ = e′k0 and suppose that k ≥ k′. For each 0 ≤ i ≤ l(k)
we choose (by Setup 10.1) a homogeneous polynomial fi ∈ K[T0, . . . , Tr]

of degree k such that s
(k)
i = fi(t). By Setup 10.1, the morphism ϕ̃ =

ϕ
(k)

K̃
: X̄K̃ → YK̃ is defined by

(2) ϕ̃(t) = (f0(t):f1(t): · · · :fl(k)(t)).

By Lemma 9.5(a), s
(k)
0 does not vanish on Z, by Lemma 9.5(c), s

(k)
j |Z = 0

for j = 1, . . . , l(k). Hence,

(3) ϕ̃(ZK̃) = {y0}, so ϕ(ZK) = {y0} and ϕ̃(Z(K̃)) = {y0}, in particular
y0 ∈ Y (K).
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Next note in the notation of Setup 9.3 that

(4) ZB(K̃) = {b1, . . . ,be}.

We consider j between 1 and e. By Lemma 9.5(b), s
(k)
0 (B̃j) 6= 0. Also,

for i = 1, . . . , e we have by Lemma 9.5(d) that s
(k)
i (B̃j) = w

σj
i s

(k)
0 (B̃j). By

Lemma 9.5(e), s
(k)
i (B̃j) = 0 for i = e+ 1, . . . , l(k). Hence,

yj = (1 : w
σj
1 : · · · : wσje : 0 : · · · : 0)(5)

= (s
(k)
0 (B̃j) : w

σj
1 s

(k)
0 (B̃j) : · · · : wσje s(k)

0 (B̃j) : 0 : · · · : 0)

= (s
(k)
0 (B̃j) : s

(k)
1 (B̃j) : · · · : s(k)

e (B̃j) : s
(k)
e+1(B̃j) : · · · : s(k)

l(k)(B̃j))

= (f0(bj) : f1(bj) : · · · : fe(bj) : fe+1(bj) : · · · : fl(k)(bj))

= ϕ̃(bj) ∈ Y (K̃).

It follows from (3), (4), and (5) that

(6) ϕ̃(ZB(K̃)) = {y1, . . . ,ye} and ϕ̃(Z(K̃)∪ZB(K̃)) = {y0,y1, . . . ,ye}.
By Setup 9.3, b1, . . . ,be form a complete system of K-conjugate sepa-

rable points of X̄(K̃) that lie over KB, so they are all of the points of

X̄(K̃) that lie over KB. Similarly, y1, . . . ,ye form a complete system of

K-conjugate separable points of Y (K̃) that lie over ϕ(KB). By [Lan58,
p. 74, the equivalence of C6 and C7], Y has a Zariski-closed subset Y1,1

with Y1,1(K̃) = {y1, . . . ,ye}. Then, Y1 = {y0} ∪ Y1,1 is a Zariski-closed
subset of Y , Y0 = Y rY1 is a nonempty Zariski-open subset of Y and
Y0(K̃) = Y (K̃)r{y0,y1, . . . ,ye}.

Part B. Inclusion of coordinate rings. We consider a point p of
X(K̃)rZB(K̃). For each positive multiple k of k0, Lemma 9.6(b) gives
e+ 1 ≤ i ≤ l(k) such that fi(p) 6= 0. Hence, by (2) and the definition of the
yj ’s,

ϕ̃(p) = (f0(p):f1(p): · · · :fl(k)(p)) 6= yj , j = 0, 1, . . . , e,

so ϕ̃(p) ∈ Y0(K̃). Thus,

(7) ϕ̃(X(K̃)rZB(K̃)) ⊆ Y0(K̃).

By (3), ϕ̃(Z(K̃)) = {y0} 6⊆ Y0(K̃), hence the morphism ϕ̃ : X̄K̃ → YK̃
of integral projective curves over K̃ is nonconstant. Since morphisms of
projective curves are closed [Mum88, p. 77, Thm. I.9.1], ϕ̃(X̄K̃) = YK̃ . It

follows from (7) and (6) that ϕ̃(X(K̃)rZB(K̃)) = Y0(K̃), hence also:

(8) ϕ(XK rZB,K) = Y0. It follows from (6) that ϕ−1(Y0) = XK rZB,K .

By Lemma 10.2, Y0 is an affine curve over K. Hence, there is an inclusion

(9) K[Y0] ⊆ K[XK rZB,K ]

of the coordinate rings of the affine schemes Y0 and XK rZB,K [Liu06, p. 48,
Prop. 2.3.25].
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Part C. Equality of coordinate rings. We choose nonzero homoge-
neous elements a0 ∈ KI and b0 ∈ KB of K[t]. Then, both Zariski-closed
subsets V+(a0K[t]) and V+(b0K[t]) of X̄K are of dimension 0. Therefore,
(XK rZB,K) ∩ (V+(a0K[t]) ∪ V+(b0K[t])) is a finite set, say {P1, . . . , Pm}.
For each i between 1 and m we choose nonzero homogeneous elements
ai ∈ KI rPi and bi ∈ KBrPi of K[t]. Note that Pi /∈ ZK , because
XK and ZK are disjoint.

Now we assume, in addition to the conditions we have put so far on k,
that

(10) k ≥ k′ + max
0≤i≤m

(degK[t](ai) + q degK[t](bi)),

where k′ = e′k0 (Part A).
We consider P ∈ XK rZB,K . If P /∈ V+(a0K[t]) ∪ V+(b0K[t]), we set

aP = a0 and bP = b0. Otherwise P = Pi for some i between 1 and m and
we set aP = ai and bP = bi. In each case:

(11) aP ∈ (KI rP ) ∩ {a0, . . . , am} and bP ∈ (KBrP ) ∩ {b0, . . . , bm}.

By Lemma 9.6(b), there exists i′ between e+1 and l(k0) such that s
(k0)
i′ /∈

P . By Lemma 9.5(f), s
(k0)
i′ ∈ K[t]k0 ∩ KI ∩ KBq. We set s′ = (s

(k0)
i′ )e

′
.

Then,

(12) s′ ∈ K[t]k′ ∩KI ∩KBq and s′ /∈ P .

For each 1 ≤ j ≤ n′ we consider the element x′j = xjs
′ of K(t). Since

xj ∈ F ,

(13) degK[t](x
′
j) = degK[t](s

′) = k′ (second and third paragraphs of Ex-

ample 1.6).

Since XK rZB,K = Spec(K[x1, . . . , xn′ ]), we have ordQ(xj) ≥ 0 for each
Q ∈ XK rZB,K and every 1 ≤ j ≤ n′. We choose u1 ∈ K[t]1 rQ (e.g., one
of the elements t0, . . . , tr) and write

(14)
x′j

uk
′

1

= xj ·
(
s

(k0)
i′

uk0
1

)e′
.

By Example 1.6(b), ordQ
(s(k0)

i′

u
k0
1

)
≥ 0. Hence, by (14),

(15a) ordQ

(
x′j

uk
′

1

)
= ordQ(xj) + e′ · ordQ

(
s

(k0)
i′

uk0
1

)
≥ 0.

Given an i between 1 and d(Z), we choose u2 ∈ K[t]1 rKIi (e.g., one

of the elements t0, . . . , tr). By Lemma 9.5(c), s
(k0)
i′ ∈ Ii, hence by Exam-

ple 1.6(c), ordKIi
(s(k0)

i′

u
k0
2

)
≥ 1. Therefore, by (14) (with u2 replacing u1) and
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(1),

(15b) ordKIi

( x′j
uk
′

2

)
= ordKIi(xj)+e′ ·ordKIi

(
s

(k0)
i′

uk0
2

)
≥ ordKIi(xj)+e′ ≥ 0.

Finally, we choose u3 in K[t]1 rKB. Since s
(k0)
i′ ∈ (KB)q (Lemma 9.5(f)),

we have by Example 1.6(e) that ordKB
(s(k0)

i′

u
k0
3

)
≥ q. Hence, by (14) (with u3

replacing u1) and (1),

(15c) ordKB

(
x′j

uk
′

3

)
= ordKB(xj)+e′·ordKB

(
s

(k0)
i′

uk0
3

)
≥ ordKB(xj)+e′q ≥ 0.

By (13), degK[t](x
′
j) = k′. It follows from (15a)–(15c) and Example 1.6(d)

that x′j ∈ OX̄K (k′)Q for each Q ∈ X̄K . Hence, by Example 1.6(a), x′j ∈
K[t]k′ (note that, by the last paragraph of Proposition 7.6, each positive
multiple of k0 satisfies Diagrams (2) and (3) of Subsection 7.2). Now we
choose 0 ≤ j′ ≤ r such that tj′ /∈ P . We use (10), (11), (12), and (13) to set

x′′j = t
k−degK[t](aP )−q degK[t](bP )−k′

j′ aP b
q
Px
′
j ∈ K[t]k ∩KI ∩ (KB)q

and

s = t
k−degK[t](aP )−q degK[t](bP )−k′

j′ aP b
q
P s
′ ∈ K[t]k ∩KI ∩ (KB)q rP.

By Lemma 9.5(f),

(16) x′′j , s ∈
l(k)∑
i=e+1

Ks
(k)
i .

By (7), ϕ(P ) ∈ Y0. Since Y = Proj
(
K
[
s

(k)
0 , . . . , s

(k)
l(k)

])
, we have by the

definition of ϕ that ϕ(P ) = P ∩K
[
s

(k)
0 , . . . , s

(k)
l(k)

]
. Since

s ∈ K
[
s

(k)
0 , . . . , s

(k)
l(k)

]
rP,

we conclude that s /∈ ϕ(P ). Hence, by (16),

xj =
x′j
s′

=
x′′j
s
∈ OY,ϕ(P ) = OY0,ϕ(P ).

It follows from (8) that each xj with 1 ≤ j ≤ n′ lies in OY0,P0 for each
P0 ∈ Y0, so xj ∈ K[Y0] [Lan58, p. 31, Thm. 6]. Thus,

K[XK rZB,K ] = K[x1, . . . , xn′ ] ⊆ K[Y0].

We conclude from (9) that K[Y0] = K[XK rZB,K ].

Part D. End of proof. By (8) and by the conclusion of Part C, ϕ maps
the affine curve XK rZB,K isomorphically onto Y0. Since XK is smooth
(Statement (14) in Subsection 5.11),
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(17) Y0 is smooth

and the morphism ϕ : X̄K → Y is birational. We know that X̄(K̃) is the

disjoint union of (X rZB)(K̃), {b1}, . . . , {be}, and Z(K̃). By (5),

ϕ̃(bj) = yj

for j = 1, . . . , e and, by (3), ϕ̃(Z(K̃)) = {y0}. We conclude that

(18) ϕ−1(y0) = ZK and ϕ̃−1(yj) = bj , j = 1, . . . , e.

This settles all of the statements of the lemma. �

Lemma 10.4. Suppose q ≥ 2. Then, for each 1 ≤ j ≤ e, the point yj of

Y (K̃) is a cusp of multiplicity q.

Proof. We consider 1 ≤ j ≤ e. By Lemma 10.3(c), the simple point B̃j
of XK̃ is the unique point of X̄K̃ that ϕ̃ maps onto yj . Thus, OX̄K̃ ,B̃j is

the unique valuation ring of K̃F/K̃ that contains the local ring OYK̃ ,yj . Let
m be the maximal ideal of OYK̃ ,yj . Since q ≥ 2, it suffices to prove that

q = minm∈m ordB̃j (m) (Subsection 8.4).

Part A. Lower bound. By Lemma 9.5(b), s
(k)
0 /∈ B̃j . Hence,

K̃

s(k)
1

s
(k)
0

, . . . ,
s

(k)
l(k)

s
(k)
0


is the coordinate ring of an open affine neighborhood of yj in YK̃ . Therefore,
by Lemma 9.5(d),(e),

(19) m is generated by the elements
s
(k)
1

s
(k)
0

−wσj1 , . . . , s
(k)
e

s
(k)
0

−wσje ,
s
(k)
e+1

s
(k)
0

, . . . ,
s
(k)
l(k)

s
(k)
0

.

Moreover, by Lemma 9.5(d),(e), ordB̃j

(
s
(k)
i

s
(k)
0

− wσji

)
≥ q for i = 1, . . . , e and

ordB̃j

(
s
(k)
i

s
(k)
0

)
≥ q for i = e+ 1, . . . , l(k). Hence, ordB̃j (m) ≥ q for all m ∈ m.

Part B. Vector spaces. The proof of the lemma will be complete, once
we produce an element of OYK̃ ,yj whose ordB̃j -value is q. To this end we

consider the K-vector-spaces

Vj =

{
(a1, . . . , ar) ∈ Kr

∣∣∣∣∣ ordB̃j

(
r∑
i=1

ai

(
ti
t0
− bσji

))
≥ 1

}

V
(2)
j =

{
(a1, . . . , ar) ∈ Kr

∣∣∣∣∣ ordB̃j

(
r∑
i=1

ai

(
ti
t0
− bσji

))
≥ 2

}
.
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We also consider for each j′ 6= j the K-vector-space

Vj′ =

{
(a1, . . . , ar) ∈ Kr

∣∣∣∣∣ ordB̃j

(
r∑
i=1

ai

(
ti
t0
− bσj′i

))
≥ 1

}
.

Claim B1. Vj 6⊆ V
(2)
j . Indeed, since B̃j is a simple point of the curve

X̄K̃ (Lemma 6.5), mX̄K̃ ,B̃j
is the maximal ideal of the discrete valuation

ring OX̄K̃ ,B̃j . By Notation 6.3, B̃j =
∑r

i=1 K̃[t](ti − b
σj
i t0). Since t0 /∈ B̃j

(Corollary 6.6), we have

mX̄K̃ ,B̃j
=

r∑
i=1

OX̄K̃ ,B̃j

(
ti
t0
− bσji

)
.

Hence, there exists 1 ≤ i ≤ r such that ordB̃j (
ti
t0
− bσji ) = 1. By definition,

(0, . . . , 0, 1, 0, . . . , 0) ∈ Vj rV
(2)
j , where 1 stands in the ith place, as desired.

The claim follows.

Claim B2. Vj 6⊆ Vj′ for each j′ 6= j. Assume toward contradiction that
Vj ⊆ Vj′ for some j′ 6= j. Then, for each (a1, . . . , ar) ∈ Kr we have
(20)

ordB̃j

(
r∑
i=1

ai

(
ti
t0
− bσji

))
≥ 1 =⇒ ordB̃j

(
r∑
i=1

ai

(
ti
t0
− bσj′i

))
≥ 1.

For each 1 ≤ i ≤ r we have ti − b
σj
i t0 ∈ B̃j , so by Example 1.6(c),

ordB̃j

(
ti
t0
− bσji

)
≥ 1.

By (20), ordB̃j (
ti
t0
− bσj′i ) ≥ 1. Since B̃j′ =

∑r
i=1 K̃[t](ti − b

σj′
i t0), we get

B̃j′ ⊆ B̃j in contrast to Lemma 6.5. The claim follows.

It follows from Claims B1 and B2 that V
(2)
j and Vj ∩ Vj′ for j′ 6= j are

proper subspaces of Vj . Since K is an infinite field, there exists

(a1, . . . , ar) ∈ Vj r

V (2)
j ∪

⋃
j′ 6=j

Vj′

 .

In other words,

ordB̃j

(
r∑
i=1

ai

(
ti
t0
− bσji

))
= 1,(21)

ordB̃j

(
r∑
i=1

ai

(
ti
t0
− bσj′i

))
= 0 for j′ 6= j.

We multiply a1, . . . , ar by a nonzero element of R to assume that a1, . . . , ar
are in R.
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Part C. An element of R[t]k ∩ I ∩Bq. We consider the element

(22) s̃ =
e∏

j′=1

(a1(t1 − b
σj′
1 t0) + · · ·+ ar(tr − b

σj′
r t0)

)
of K̃[t]e. By Lemma 9.4, s̃ ∈ R[t], hence s̃ ∈ R[t]e. By the first statement

of (21) and by Example 1.6(c),
∑r

i=1 ai(ti − b
σj
i t0) ∈ B̃j . Hence, by (22),

s̃ ∈ R[t] ∩ B̃j = B (Lemma 6.5).
Assuming that k ≥ kI + eq, we set

s = tk−kI−eq0 sI s̃
q,

where sI is the homogeneous element of I rB chosen in Setup 9.3(4d) and
kI = degK[t](sI). Then,

(23) s ∈ R[t]k ∩ I ∩Bq.

Part D. The ordB̃j
-value of s

s
(k)
0

. By (21) and (22), the ordB̃j -value of

the j-factor of the product on the right hand side of

(24)
s

tk0
=

sI

tkI0

e∏
j′=1

(
a1

(
t1
t0
− bσj′1

)
+ · · ·+ ar

(
tr
t0
− bσj′r

))q
is q and the ordB̃j -value of the j′th factor is 0 for each j′ 6= j. Since sI , t0 /∈

B̃j (because sI ∈ R[t]rB), we have ordB̃j

(
sI

t
kI
0

)
= 0 (Example 1.6(b)).

Therefore, by (24), ordB̃j

(
s
tk0

)
= q. Finally, since t0, s

(k)
0 /∈ B̃j , we have

ordB̃j

(
s

s
(k)
0

)
= q.

We may now complete the proof of Lemma 10.4. By Lemma 9.5(f),

s
(k)
e+1, . . . , s

(k)
l(k) generate R[t]k ∩ I ∩ Bq over R. Hence, by (23), there ex-

ist a′e+1, . . . , a
′
l(k) ∈ R such that s =

∑l(k)
i=e+1 a

′
is

(k)
i . It follows from (19)

that

s

s
(k)
0

=

l(k)∑
i=e+1

a′i
s

(k)
i

s
(k)
0

∈ m,

as desired. �

Proposition 10.5. Let q be a large positive integer. Then, for each large
positive multiple k of the integer k0 introduced in Proposition 7.6, there exists
a birational morphism ϕ of X̄K onto an absolutely integral projective curve

Y in Pl(k)
K such that YK̃ is a q-curve (Definition 8.5).
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Proof. In the notation of Subsection 5.9, let ZK(K̃) = {z1, . . . , zd̃}. Since

each point of X̄K and in particular each point of ZK is normal (Subsec-

tion 5.11), each zδ with 1 ≤ δ ≤ d̃ is simple or a cusp of X̄K̃ [Neu98, p. 234,

Lemma 2.14]. In each case zδ lies under a unique prime divisor Z̃δ of K̃F/K̃.
In the other direction, zδ lies over the point Zi(δ),K of ZK for a unique

i(δ) between 1 and d(Z) (Subsection 5.9). Since KIi(δ) is a normal point of

X̄K , we may identify Zi(δ),K with the restriction of Z̃δ to F . Let zδ be a
generator of mX̄K ,Zi(δ),K

. Then, ordZ̃δ(zδ) is the ramification index eZ̃δ/Zi(δ),K
of Z̃δ over Zi(δ),K . We consider an integer

(25) q ≥
d̃∑
δ=1

eZ̃δ/Zi(δ),K =

d̃∑
δ=1

ordZ̃δ(zδ).

Next we choose a large positive multiple k of k0 that satisfies the condi-
tions of the preceding lemmas of this section. In particular,

Y = Proj
(
K
[
s

(k)
0 , . . . , s

(k)
l(k)

])
is the integral projective curve in Pl(k)

K and ϕ : X̄K → Y is the morphism

with ϕ(t) = s(k) introduced in Setup 10.1.
By Lemma 10.3(a), ϕ is a birational morphism. Since X̄K is absolutely

integral, so is Y . By Lemma 9.5(h), Y is a characteristic-0-like curve.

By Lemma 10.3, each of the points of Y (K̃) except possibly y0,y1, . . . ,ye
is simple, hence of multiplicity 1 in YK̃ (Subsection 8.4). By Lemma 10.4,
each of the points y1, . . . ,ye is a cusp of YK̃ of multiplicity q. Therefore, it
suffices to prove that mult(YK̃ ,y0) ≤ q (Definition 8.5).

By Lemma 10.3(b), ϕ−1(y0) = ZK . Hence, by Subsection 8.4,

mult(YK̃ ,y0) =

d̃∑
δ=1

mult(YK̃ , Z̃δ),

so if for each 1 ≤ δ ≤ d̃ we produce

(26) yδ ∈ mY,y0 with ordZ̃δ(yδ) = ordZ̃δ(zδ),

then, by (25),

mult(YK̃ ,y0) =

d̃∑
δ=1

mult(YK̃ , Z̃δ) ≤
d̃∑
δ=1

ordZ̃δ(yδ) =

d̃∑
δ=1

ordZ̃δ(zδ) ≤ q,

and we will be done.
In order to produce yδ as in (26), we recall that ZB,K and ZK are disjoint

(Subsection 6.10), in particular KBq 6⊆ KIi(δ). Thus, we may choose a
positive integer k′ and an element ν ∈ (K[t]k′ ∩KBq)rKIi(δ).
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By Subsection 5.9, the point Zi(δ),K of ZK corresponds to the homoge-
neous prime ideal KIi(δ) of K[t] that contains KI. Since zδ ∈ mX̄K ,Zi(δ),K

,

we may write

(27) zδ = µ′′

λ , where µ′′, λ ∈ K[t]k′′ for some positive integer k′′ such that
µ′′ ∈ KIi(δ) and λ /∈ KIi(δ) (Example 1.6(c)).

Next we choose a homogeneous element ρ′ ∈ (
⋂
j 6=i(δ)KIj)rKIi(δ) (Sub-

section 5.9) and an 0 ≤ i′ ≤ r with ti′ /∈ KIi(δ).
Observe that k′, k′′, and ρ′ depend on X̄K but not on Y , so we may

assume that k > k′ + k′′ + degK[t](ρ
′). This assumption allows us to set

ρ = t
k−k′−k′′−degK[t](ρ

′)

i′ ρ′. Then, ρ ∈ K[t]k−k′−k′′ ∩ (
⋂
j 6=i(δ)KIj)rKIi(δ),

so µ′′ρ ∈
⋂d(Z)
j=1 KIj = KI (Subsection 5.9) and degK[t](µ

′′ρ) = k − k′.
It follows that µ = µ′′νρ ∈ K[t]k ∩ KI ∩ KBq. By Lemma 9.5(f), µ

is a linear combination of s
(k)
e+1, . . . , s

(k)
l(k) with coefficients in K. Since µ

belongs to KI, it vanishes on ZK , hence also at y0. By Lemma 9.5(a), s
(k)
0

does not vanish on Z(K̃), hence s
(k)
0 does not vanish at y0 (which is the

image of Z(K̃) under ϕ̃, by Lemma 10.3(b)). Therefore, yδ = µ

s
(k)
0

∈ mY,y0

(Example 1.6(c)).
In order to compute ordZ̃δ(yδ), we choose 0 ≤ j ≤ r with tj(zδ) 6= 0. Since

ν, ρ ∈ K[t]rKIi(δ), we also have ν(zδ) 6= 0, ρ(zδ) 6= 0, and s
(k)
0 (zδ) 6= 0.

Hence, each of the elements ν

tk
′
j

, ρ

tk−k
′−k′′

j

, and
λtk−k

′′
j

s
(k)
0

of OX̄K̃ ,zδ is invertible.

Therefore, the ordZ̃δ -value of these elements is 0. Writing

yδ =
µ′′

λ
· ν
tk
′
j

· ρ

tk−k
′−k′′

j

·
λtk−k

′′

j

s
(k)
0

we get from (27) that

ordZ̃δ(yδ) = ordZ̃δ

(
µ′′

λ

)
+ordZ̃δ

(
ν

tk
′
j

)
+ordZ̃δ

(
ρ

tk−k
′−k′′

j

)
+ordZ̃δ

(
λtk−k

′′

j

s
(k)
0

)
= ordZ̃δ(zδ),

as desired. �

Having established in Proposition 10.5 that the absolutely integral projec-

tive curve Y = Proj
(
K
[
s

(k)
0 , . . . , s

(k)
l(k)

])
is a q-curve with function field F

for a large positive multiple k of k0 and a large positive integer q, we choose
q as a large prime number and apply Proposition 8.6 with Y replacing ∆ to
deduce the following mile stone of the work:

Proposition 10.6. Under Setup 10.1 and in the notation of Subsection 8.1,
the following statement holds for every large positive multiple k of k0:
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There exists a nonempty Zariski-open subset Ui of PiK , i = 2, 3, . . . , l(k),

such that with U = U2 ×U3 × · · · ×Ul(k), for each A ∈ (ψ(k))−1(U(K)) and

with
(
a
b

)
= µ(k)(A), the element

t =

l(k)∑
i=0

ais
(k)
i /

l(k)∑
i=0

bis
(k)
i

[F : K(t)]-symmetrically stabilizes F/K.

Remark 10.7. The case where K is a number field is much simpler. In this
case K̃ is a separable extension of K. Hence, the normal absolutely integral
curve X̄K remains normal under the base change from K to K̃. Thus, in
this case X̄K̃ is a smooth projective curve. This allows us to forget about
the special separable point B of X constructed in Section 6. The birational
morphism ϕ : X̄K → Y now maps XK isomorphically onto Y0. However,
we have to take extra care of the point y0 = ϕ(ZK). Over K̃, y0 is a
higher ordinary point of YK̃ . In other words, the tangents to X̄K̃ at points
that lie over y0 are distinct. Then, we may use a much simple version of
Proposition 8.6 that makes a big part of the paper [GJR17] redundant. �

11. A normalized stabilizing element

Proposition 11.2 below allows us to choose the stabilizing element more
carefully. We prove that t can be chosen in Proposition 10.6 such that
a0 = 1, b0 = 1, b1 = a1 + 1, and (a1, . . . , al(k)) and (b2, . . . , bl(k)) respectively

belong to given T -open subsets of Rl(k) and Rl(k)−1, where the T -topologies
on powers of R are the product T -topologies.

Lemma 11.1. Let m be a positive integer and C a nonempty T -open subset
of Rm. Then, C is Zariski-dense in AmK .

Proof. It suffices to prove that if f ∈ K[X1, . . . , Xm] is nonzero, then there
exists x ∈ C such that f(x) 6= 0. In order to do it we first choose a point
c = (c1, . . . , cm) ∈ C and a positive real number ε such that if x ∈ Rm

satisfies |x − c|p < ε for all p ∈ T , then x ∈ C. Using induction, we may
assume that m = 1. Then, we use the strong approximation theorem of
algebraic number theorey [CaF67, p. 67] to choose a ∈ R such that |a|p < ε
for all p ∈ T . Then, x = c1 + ay ∈ C for each y ∈ R. Hence, f(x) 6= 0 for all
but finitely many x ∈ C. �

Proposition 11.2. Under Setup 10.1, let k be a large positive multiple of
k0 such that Proposition 10.6 holds. Let A and B be nonempty T -open

subsets of Rl(k) and Rl(k)−1, respectively. Set si = s
(k)
i for i = 0, . . . , l(k).

Then, there exist (a1, . . . , al(k)) ∈ A and (b2, . . . , bl(k)) ∈ B such that with

b1 = a1 + 1 the quotient t =
s0+a1s1+···+al(k)sl(k)

s0+b1s1+···+bl(k)sl(k)
symmetrically stabilizes

F/K.
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Proof. We write l = l(k) and simplify the notation introduced in Subsec-

tion 8.1 by setting M = M(l), µ = µ(l), P = P(l), and ψ = ψ(k). Then, (1) of
that subsection simplifies to the row

(1) P M
ψ
oo

µ
// M∗2,l+1.

For each 2 ≤ i ≤ l let Ui be the nonempty Zariski-open subset of PiK that
Proposition 10.6 supplies. We shrink Ui, if necessary, to assume that:

(2) Each (a1: · · · :ai:ai+1) ∈ Ui(K̃) satisfies ai+1 6= 0.

Let U = U2 × · · · × Ul. By Proposition 10.6:

(3) For each A ∈ ψ−1(U(K)) and with µ(A) =

(
a0 a1 · · · al
b0 b1 · · · bl,

)
the

element t = a0s0+···+alsl
b0s0+···+blsl symmetrically stabilizes F/K.

We are going to extend row (1) to a commutative diagram:

(4) P = P2 × · · · × Pl M = M∗2 × · · · ×M∗l
ψ

oo
µ
// M∗2,l+1

A = A2 × · · · × Al

ρ

OO

M′ = M′2 × · · · ×M′l
ψ′

oo
µ′

//
?�

OO

A2l−1 .

θ′

OO

The subset M′ of M. Let M′2 be the Zariski-closed subset of M∗2 such that
M′2(f) consists of all matrices of the form

(5) A2 =

(
1 a11 a12

1 a11 + 1 a22

)
.

For each 3 ≤ i ≤ l let M′i be the Zariski-closed subset of M∗i such that M′i(f)
consists of all matrices of the form

(6) Ai =


1 a11 · · · · a1i

0 1 · · · · a2i
...

...
. . .

...
...

0 0 · · · 1 aii

 .

Then, for each 2 ≤ i ≤ l, M′i is naturally isomorphic to the affine space

Ai(i+1)/2. We define a closed immersion θ′ : A2l−1 →M∗2,l+1 by

(7) θ′(a1, . . . , al, b2, . . . , bl) =

(
1 a1 a2 · · · al
1 a1 + 1 b2 · · · bl

)
.

Now we set M′ = M′2 × · · · ×M′l and observe by induction on l that

µ(M′) ⊆ θ′(A2l−1).

Hence, there exists a unique morphism µ′ : M′ → A2l−1 such that

θ′ ◦ µ′ = µ|M′ .
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The morphism ρ. For each 2 ≤ i ≤ l we define an embedding ρi : Ai → Pi
by ρi(a1, . . . , ai) = (a1: · · · :ai:1). Let A = A2 × · · · × Al and consider the
morphism ρ = ρ2 × · · · × ρl from A to P.

The morphism ψ′i : M′i → Ai. In the notation of (5) and by Subsec-
tion 8.1, ψ2(A2) = (y0:y1:y2) is the unique element of P2 that satisfies

(8)

(
1 a11

1 a11 + 1

)(
y0

y1

)
+

(
a12

a22

)
y2 =

(
1 a11 a12

1 a11 + 1 a22

)y0

y1

y2

 = 0 .

Let A′2 =

(
1 a11

1 a11 + 1

)
. Since yi 6= 0 for at least one i and det(A′2) = 1,

we have y2 6= 0. Hence, we may assume that y2 = 1 and conclude that
ψ2(A2) = (y0:y1:1) = ρ2(y0, y1).

Similarly, for i = 3, . . . , l we consider a matrix Ai as in (6). Then,
ψi(Ai) = (y0: · · · :yi) is the unique element of Pi that satisfies

(9)


1 a11 · · · a1,i−1

0 1 · · · a2,i−1
...
0 0 · · · 1




y0

y1

· · ·
yi−1

+


a1i

a2i

· · ·
aii

 yi = 0 .

Again, the determinant of the i× i matrix A′i on the left hand side of (9) is
1, hence yi 6= 0, so we may assume that yi = 1. As in the previous case, we
conclude that

(10) ψi(Ai) = (y0: · · · :yi−1:1) = ρi(y0, . . . , yi−1).

Let ỹi and ãi be the first and the second columns of height i that appear
in (8) if i = 2 and in (9) if 3 ≤ i ≤ l. Then, A′iỹi + ãi = 0 and we define the
morphism ψ′i : M′i → Ai by the formula

(11) ψ′i(Ai) = ỹi = −(A′i)
−1ãi

and consider ψ′i(Ai) in the sequel as a row. It follows from (10) and (11)
that ρi ◦ψ′i = ψi|M′i . Writing ψ′ = ψ′2×· · ·×ψ′l, this establishes the left part

of Diagram (4).

Claim A. For each 2 ≤ i ≤ l we have ψ′i(M
′
i) = Ai. Indeed, let

y0, y1, . . . , yi−1 ∈ f. For i = 2 we set a11 = 0, a12 = −y0, and a22 = −y0−y1

in A2. Then, (8) holds for y2 = 1, so by (11),

ψ′2(A2) = (y0, y1).

When l > 2, we set for each 3 ≤ i ≤ l,

Ai =


1 0 · · · 0 −y0

0 1 · · · 0 −y1
...

...
. . .

...
...

0 0 · · · 1 −yi−1

 ∈M′i.
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Substituting the corresponding values for the parameters appearing in (9)
and setting yi = 1, we get that ψ′i(Ai) = (y0, . . . , yi−1), as desired. The
claim follows.

Claim B. µ′(M′(R)) = A2l−1(R). First observe that if A ∈M′(R), then
µ(A) ∈ θ′(A2l−1(R)), hence by (4) and (7),

µ′(A) = (θ′)−1(µ(A)) ∈ A2l−1(R).

To prove the inclusion in the other direction, we consider

(a1, . . . , al, b2, . . . , bl) ∈ A2l−1(R).

If l = 2, let A2 =

(
1 a1 a2

1 a1 + 1 b2

)
∈M′2(R). If l > 2, let

A2 =

(
1 0 0
1 1 0

)
∈M′2(R), Ai =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0

 ∈M′i(R)

for i = 3, . . . , l − 1, and

Al =


1 a1 a2 a3 · · · al−1 al
0 1 b2 − a2 b3 − a3 · · · bl−1 − al−1 bl − al
0 0 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 1 0

 ∈M′l(R) .

Then,

A2A3 · · ·Al−1 =

(
1 0 0 · · · 0
1 1 0 · · · 0

)
∈M2,l(R).

Thus, in both cases,

µ(A) = A2 · · ·Al−1 ·Al =

(
1 a1 a2 · · · al
1 a1 + 1 b2 · · · bl

)
= θ′(a1, . . . , al, b2, . . . , bl).

Hence, by the commutativity of (4),

(a1, . . . , al, b2, . . . , bl) = (θ′)−1(µ(A)) = µ′(A) ∈ µ′(M′(R)),

as desired. The claim follows.

Conclusion of the proof. The productA×B is a nonempty T -open subset
of A2l−1(R). By Claim B, µ′(M′(R)) = A2l−1(R). Hence, the T -open subset
(µ′)−1(A× B) of M′(R) is nonempty. By definition, M′ is isomorphic to an
affine space. Hence, by Lemma 11.1, (µ′)−1(A× B) is Zariski-dense in M′.

Since ai+1 6= 0 for each 2 ≤ i ≤ l and every (a1: · · · :ai:ai+1) ∈ Ui (by
(2)), we have Ui ⊆ ρi(Ai), hence U ⊆ ρ(A). Therefore, U ′ = ρ−1(U) is a
nonempty Zariski-open subset of A.
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By Claim A, ψ′(M′) = A, hence (ψ′)−1(U ′) is a nonempty Zariski-open
subset of M′. Therefore, there exists A ∈ (µ′)−1(A × B) ∩ (ψ′)−1(U ′). Let
(a1, . . . , al, b2, . . . , bl) = µ′(A). Then,

a = (a1, . . . , al) ∈ A, b = (b2, . . . , bl) ∈ B,

µ(A) = θ′(µ′(A)) =

(
1 a1 · · · al
1 b1 · · · bl

)
with b1 = a1 + 1, and ψ(A) = ρ(ψ′(A)) ∈ U(K). By (3), the element
t = s0+a1s1+···+alsl

s0+b1s1+···+blsl symmetrically stabilizes F/K, as desired. �

12. M -points on varieties defined over K

Using the notation of Subsection 4.8, we fix a global field K, a proper
subset V of the set PK of all primes of K, and a finite subset S of V. We
also consider a finite subset T of V that contains S such that V r T ⊆ PK,fin.
The following definition puts together those properties of the fields Ktot,S [σ]
that are used in the proof of Theorem C. Then, Proposition 12.3 restates
Theorem C for curves for algebraic extensions of K having those properties.

Definition 12.1 ([GJR00, Def. 1.10]). Let M be an extension of K in Ktot,S
and let O be a subset of M . We say that M is weakly (resp. weakly symmet-
rically) K-stably PSC over O if for every absolutely irreducible polynomial
h ∈ K[T, Y ] monic in Y with d = degY (h) and every polynomial g ∈ K[T ]
satisfying:

(1a) h(0, Y ) has d distinct roots in Ktot,S , g(0) 6= 0.

(1b) Gal(h(T, Y ),K(T )) ∼= Gal(h(T, Y ), K̃(T )) (resp. and is isomorphic
to the symmetric group Sd).

there exists (a, b) ∈ O ×M such that h(a, b) = 0 and g(a) 6= 0.
Note that in that case, if M ⊆ M ′ ⊆ Ktot,S , then M ′ is also weakly K-

stably PSC over O. Also note that if M is weakly K-stably PSC over O,
then M is also weakly symmetrically K-stably PSC over O.

Setup 12.2. Proposition 7.6 introduces a positive integer k0, for each pos-
itive multiple k of k0 an isomorphism α(k) : OZ → OZ(k) of sheaves and an

element s
(k)
0 ∈ Γ(X̄,OX̄(k)) such that the isomorphism

α(k)(Z) : Γ(Z,OZ)→ Γ(Z,OZ(k))

of Γ(Z,OZ)-modules induced by α(k) satisfies ρ
(k)

X̄,Z
(s

(k)
0 ) = α(k)(Z)(1), where

1 is the unit element of the ring Γ(Z,OZ). We choose k sufficiently large such

that Proposition 10.6 holds. Then, we consider the elements s
(k)
1 , . . . , s

(k)
l(k)

of Ker(ρ
(k)

X̄,Z
) that appear in Proposition 10.6 and set

s =
(
s

(k)
0 , s

(k)
1 , . . . , s

(k)
l(k)

)
.
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As in Subsection 7.9, for each algebraic extension K ′ of K and every

p ∈ T let Γ
(k)
s,p,K′ be the set of all s ∈ Γ

(
X̄K̂pK′

,OX̄K̂pK′
(k)
)

of the form

s = s
(k)
0 +

∑l(k)
i=1 ais

(k)
i with a1, . . . , al(k) ∈ K̂pK

′ such that div(s) ∈ Ω̂
[dk]
p,K′ ,

where dk = deg(OX̄K (k)). In particular, div(s) totally splits in FL̂pK
′ into

dk distinct components each of which is a point that belongs to Ωp(L̂pK
′)

(Subsection 7.4).

Proposition 12.3. Let K,S, T ,V be as in the first paragraph of this section.
Let C be an absolutely integral affine curve over K and let (Lp,Ωp)p∈T be
approximation data for K,S, T ,V, C (as in Subsection 4.7). Let M be a
subfield of Ktot,S that contains K. Suppose M is weakly symmetrically K-
stably PSC over OK,V (resp. OM,V). Then, there exists z ∈ C(O

M,Vr T )

such that zτ ∈
⋂

p∈T Ωp (resp. zτ ∈
⋂

p∈S Ωp ∩
⋂

p∈T rS Ωp(LpKtot,S)) for

each τ ∈ Gal(K).

Proof. We letX and X̄ be as in Subsection 5.5 and Lemma 5.6, respectively,
and write F for the common function field of X and X̄. Following Lem-
ma 4.10, we change C and T , if necessary, to meet all of the assumptions
of Sections 5 and 6. We also simplify our notation by setting l = l(k) and

si = s
(k)
i for i = 0, . . . , l. We set s = (s0, s1, . . . , sl).

The rest of the proof naturally breaks up into six parts.

Part A. The subset A of Rl. Lemma 7.10 supplies a T -open neighbor-
hood A of (0, . . . , 0) in Rl such that if L is an algebraic extension of K, if RL
is the integral closure of R in L, and if (a1, . . . , al) belongs to the TL-open
neighborhood A(RL) of (0, . . . , 0) in RlL induced by A, then, in the notation
of Setup 12.2, (

s0 +
l∑

i=1

aisi

)
p

∈ Γ
(k)
s,p,L

for each p ∈ T , where for s ∈ Γ(X̄RL ,OX̄RL (k)), sp is the section in

Γ(X̄K̂pL
,OX̄K̂pL

(k)) obtained from s by base change from RL to K̂pL. We

set B = Rl−1.
Proposition 11.2 gives a = (a1, . . . , al) ∈ A and (b2, . . . , bl) ∈ B such that,

with b1 = a1 + 1, s = s0 +
∑l

i=1 aisi and s∗ = s0 +
∑l

i=1 bisi, the element
t = s

s∗ symmetrically stabilizes F/K.

Part B. Ktot,S-rational points of X. By Subsection 7.9, s and s∗ are

elements of Γ
(k)
s , hence they belong to Γ(X̄,OX̄(k), α(k)) (Setup 12.2). More-

over, by Part A, sp ∈ Γ
(k)
s,p,K for each p ∈ T . Following Subsection 2.6, we

consider div(s) as an effective Weil divisor on X̄. By Lemma 4.10, we may
assume that T is nonempty. By Setup 12.2, for each p ∈ T , div(sp) belongs

to Ω̂
[dk]
p,K , where dk = deg(OX̄K (k)), hence div(sp) totally splits in FL̂p. The
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components of div(sp) are points in X(L̂p) and there are exactly dk of them

(Subsection 7.4). When p ∈ S, we have L̂p = K̂p, so the components of

div(sp) are in this case (K̃ ∩ K̂p)-rational points of X. By Subsection 4.4,
they are Kp-rational points. Since div(s) is invariant under the action of
Gal(K), each of those components is Kτ

p -rational for all τ ∈ Gal(K) and
p ∈ S. Therefore, with N = Ktot,S and RN the integral closure of R in N ,
we have

(2) div(s)RN = div(s) ×Spec(R) Spec(RN ) is a formal sum of dk Ktot,S-
rational points of X, each with multiplicity 1.

Note that if S is empty, then Ktot,S = Ksep, so (2) also holds in this case.

Part C. Choosing y. The homogeneous element s∗ ∈ K[t0, . . . , tr] gives
rise to the Zariski-open affine subscheme C0 = D+(s∗) of X̄K [Liu06, p. 51,
Lemma 3.36(a)]. Thus, C0 = Spec(A), where A is an integrally closed
domain (because X̄K is normal) with quotient field F . Therefore,

A =
⋂

p∈X̄K
s∗ /∈p

OX̄K ,p.

In particular, t = s
s∗ ∈ A and A is integral over K[t].

By (4) in Subsection 2.7, div(t) = div(s) − div(s∗). Hence, since div(s)
and div(s∗) are effective Weil divisors (Subsection 2.4), div0(t) ≤ div(s), so
each zero of t is also a zero of s. It follows from (2) that t has at most dk
zeros, each with multiplicity 1.

We choose y ∈ A such that F = K(t, y) and let h0 ∈ K[T, Y ] be the
absolutely irreducible polynomial, monic in Y , such that h0(t, y) = 0. Let
d = [F : K(t)], let y1, . . . , yd be the roots of h0(t, Y ) in K(t)sep with y1 = y,
and let ∆(t) =

∏
i 6=j(yi − yj) ∈ K[t]. Since h0 is separable in Y , ∆(t) 6= 0.

We write h0(T, Y ) = Y d + fd−1(T )Y d−1 + · · · + f0(T ) with f0, . . . , fd−1 ∈
K[T ]. Since the roots of h0(0, Y ) bijectively correspond to the zeros of t,
it follows from the preceding paragraph, that h0(0, Y ) has d distinct roots,
ȳ1, . . . , ȳd in Ksep and d ≤ dk, so ∆(0) =

∏
i 6=j(ȳi − ȳj) 6= 0.

Part D. Another stabilizing element. For each 1 6= a0 ∈ K we have∑l
i=1(ai − a0bi)si

1− a0
=

l∑
i=1

(
ai + (ai − bi)

a0

1− a0

)
si,

hence

(3) t0 =
t− a0

1− a0
=
s0 +

∑l
i=1(ai + (ai − bi) a0

1−a0
)si

s0 +
∑l

i=1 bisi
.

Note that K(t0) = K(t), so also t0 symmetrically stabilizes F/K. Since A
is T -open, there exists a positive real number γa such that

(4) if c ∈ RlN satisfies |c− a|p < γa for each p ∈ TN , then c ∈ A(RN ).
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We use the strong approximation theorem for K [CaF67, p. 67] to choose
a nonzero m ∈ R = O

K,Vr T such that

(5) |(ai − bi)m|p < γa

for all 1 ≤ i ≤ l and p ∈ T . In particular, for i = 1, we get |m|p < γa for all
p ∈ T .

Let t′ = t
m(1−t) and note that t = mt′

1+mt′ . We let j′ be a positive integer

such that

h1(t′, Y ) =

(
1 +mt′

m

)j′
· h0

(
mt′

1 +mt′
, Y

)
∈ K[t′, Y ]

and write

h1(t′, Y ) = f∗d (t′)Y d + f∗d−1(t′)Y d−1 + · · ·+ f∗0 (t′)

with f∗0 , . . . , f
∗
d ∈ K[T ′] and f∗d (T ′) =

(
1+mT ′

m

)j′
. In particular,

f∗d (0) = m−j
′ 6= 0.

We set Y ′ = f∗d (t′)Y and h(T ′, Y ′) = f∗d (T ′)d−1 · h1(T ′, Y ). Then, h ∈
K[T ′, Y ′] is monic of degree d in Y ′ and y∗1 = f∗d (t′)y1, . . . , y

∗
d = f∗d (t′)yd are

the roots of h(t′, Y ′). Let ∆∗(t′) =
∏
i 6=j(y

∗
i − y∗j ) ∈ K[t′]. Then,

∆∗(t′) = f∗d (t′)d(d−1) ·
∏
i 6=j

(yi − yj) = f∗d (t′)d(d−1) ·∆
(

mt′

1 +mt′

)
.

In particular, by Part C, ∆∗(0) = f∗d (0)d(d−1)∆(0) 6= 0, so h(0, Y ′) has d
distinct roots.

Since K(t′) = K(t) ⊆ F , we may consider a prime divisor Q of FK̃/K̃

such that t′(Q) = 0. Then, t(Q) = mt′(Q)
1+mt′(Q) = 0. Let q be the point of

X̄(K̃) that lies under Q. Then, q is a zero of t, hence of s, so by (2),
q ∈ X(Ktot,S).

Since f∗d (t′) 6= 0, we have

K(t′, y∗1) = K(t′, f∗d (t′)y) = K(t′, y) = K(t, y) = F .

Also, since h(T ′, Y ′) is absolutely irreducible, the d distinct roots of h(0, Y ′)

are the images of y∗1 at the distinct prime divisors of FK̃/K̃ which are
zeros of t′ [Lan58, p. 10, Thm. 2]. By the preceding paragraph each of
these roots lies in Ktot,S . Thus, h(T ′, Y ′) satisfies Condition (1a) (with
(T ′, Y ′) replacing (T, Y )). Since t is a symmetrically stabilizing element
for F/K, so is t′. Hence, h(T ′, Y ′) also satisfies Condition (1b), with
Gal(h(T ′, Y ′),K(T ′)) ∼= Sd.

Part E. A prime divisor of FM/M of degree 1. By the assumption
on M , there exists (t̄, ȳ) ∈ OK,V ×M (resp. (t̄, ȳ) ∈ OM,V ×M) such that
h(t̄, ȳ) = 0, h(t̄, Y ) is separable, mt̄ + 1 6= 0, and x1, . . . , xn (introduced
in Subsection 5.1) belong to the local ring of M [t′, y∗1] at (t̄, ȳ). Since C is
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a smooth curve (Statement (1) of Section 5), there exists a prime divisor
P of FM/M of degree 1 such that t′(P ) = t̄ is in OK,V (resp. in OM,V),

1 + mt′(P ) 6= 0, and z = x(P ) ∈ C(M). Hence, t = mt′

1+mt′ is defined at P ,

a0 = t(P ) 6= 1, P is a zero of t−a0
1−a0

, and

(6)
a0

1− a0
= mt′(P ) is in mOK,V (resp. in mOM,V).

Let a′ = a + (a − b) a0
1−a0

and set s′ = s0 +
∑l

i=1 a
′
isi. Since P is a zero of

the left hand side of (3), P is also a zero of the right hand side of (3). The

latter is s′

s∗ . Again, since div(s′) and div(s∗) are effective divisors, P is a
zero of s′.

By the properties of t′(P ) mentioned in the preceding paragraph, by (6),
and by (5), |a′i − ai|p =

∣∣(ai − bi)
a0

1−a0

∣∣
p

= |(ai − bi)mt
′(P )|p < γa for

all 1 ≤ i ≤ l and p ∈ T (resp. p ∈ TM ). By (4), a′ ∈ A(RN ) ∩ K l

(resp. a′ ∈ A(RN ) ∩M l), hence a′ ∈ A (resp. a′ ∈ A(RM )). Therefore,

by Part A, for each p ∈ T the section s′p lies in Γ
(k)
s,p,K (resp. in Γ

(k)
s,p,M ). In

particular, div(s′p) has no multiple components (Setup 12.2), so div(s′)RN
has no multiple components.

Part F. The irreducible components of div(s′)RN . Let p be an irre-
ducible component of div(s′)RN . By Lemma 7.8(b) (for s′ replacing s), the
restriction of the morphism fRN : X ×Spec(R) Spec(RN ) → Spec(RN ) (in-
duced from the morphism f which is introduced in Subsection 5.5) to p is
finite and surjective over Spec(RN ). Since p is not a multiple component of
div(s′)RN , we may consider p as a prime ideal of RN [x]. If p0 = p∩RN 6= 0,
then the image of p considered as an irreducible component of div(s′)RN
in Spec(RN ) contains exactly one element, namely p0, in contrast to the
surjectivity of fRN on p. Thus, p∩RN = 0, so the coordinates z′1, . . . , z

′
n of

z′ = (x1+p, . . . , xn+p) are algebraic overK. Since p is finite over Spec(RN ),
the ring RN [z′1, . . . , z

′
n] is a finitely generated RN -module. Hence, z′1, . . . , z

′
n

are integral over RN (hence, over R). In addition, by Setup 12.2, z′ ∈ Ωp

(resp. z′ ∈ Ωp(LpM)) for each p ∈ T . Since z′ is algebraic over K, we have
z′ ∈ Ωp (resp. z′ ∈ Ωp(LpM)) for each p ∈ T .

If p is the irreducible component of div(s′)RN that corresponds to P , then
by Part E, z = x(P ) ∈ C(M). Since z1, . . . , zn are integral over R, we have
z ∈ C(O

M,Vr T ).

Next observe that for each τ ∈ Gal(K) (resp. τ ∈ Gal(M)) we have
div(s′)τ = div(s′), because a′1, . . . , a

′
l ∈ K (resp. because a′1, . . . , a

′
l ∈ M).

Hence, pτ is also an irreducible component of div(s′)RN . Therefore, by the
paragraph preceding the latter one, zτ ∈ Ωp (resp. zτ ∈ Ωp(LpM)) for each
p ∈ T .

In the alternative case (i.e., when M is weakly symmetrically K-stably
PSC over OM,V), we note that if p ∈ S, then M ⊆ Ktot,S ⊆ Kp = Lp. Hence,
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Ωp(LpM) = Ωp, so by the preceding paragraph, zτ ∈ Ωp. If p ∈ T rS, then
by the preceding paragraph, zτ ∈ Ωp(LpM) ⊆ Ωp(LpKtot,S), as desired. �

Proposition 12.4. Let K,S,V be as in Subsection 4.8. Let M be a subfield
of Ktot,S that contains K and is weakly symmetrically K-stably PSC over
OK,V . Then, (M,K,S,V) |= SAT (Subsection 4.7).

Proof. By Proposition 12.3, (M,K,S,V, C) |= SAT for every absolutely
integral affine curve C over K. Hence, by Lemma 4.12, (M,K,S,V) |= SAT,
as claimed. �

13. Varieties over M

We use the strong approximation theorem for varieties defined over K to
prove the strong approximation theorem for varieties defined over M . The
first step is to remove the adverb “symmetrically K-stably” from the con-
dition “M is weakly symmetrically K-stably PSC over OM,V” that appears
in Proposition 12.4 and allow instead the polynomial h that appears in Def-
inition 12.1 to have coefficients in M (and not only in K). This is done via
Weil’s descent.

Definition 13.1. [GJR00, Def. 1.10]. Let M be an extension of K in Ktot,S
and let O be a subset of M . We say that M is weakly PSC over O if for
every absolutely irreducible polynomial h ∈ M [T, Y ] monic in Y such that
h(0, Y ) decomposes into distinct monic linear factors over Ktot,S and every
polynomial g ∈ M [T ] with g(0) 6= 0 there exists (a, b) ∈ O ×M such that
h(a, b) = 0 and g(a) 6= 0. �

Lemma 13.2. Let M be an extension of K in Ktot,S which is weakly sym-
metrically K-stably PSC over OK,V . Then, M is weakly PSC over OM,V .

Proof. Let h ∈ M [T, Y ] and g ∈ M [T ] be as in Definition 13.1 We prove
that there exists (a, b) ∈ OM,V ×M such that h(a, b) = 0 and g(a) 6= 0.

Part A. Weil’s descent. Let L be a finite extension of K in M with
h ∈ L[T, Y ] and g ∈ L[T ]. Let V be the absolutely integral affine curve in
A3
L defined by h(T, Y ) = 0 and g(T )Z − 1 = 0.
Let d = [L : K] and let σ1, . . . , σd with σ1 = 1 be elements of Gal(K)

whose restrictions to L are all of the K-embeddings of L into K̃. Let
ω1, . . . , ωd ∈ OL be a basis for L/K, where OL is the ring of integers of
the global field L (Subsection 4.6).

Consider the linear morphism λ : A3d
L → A3

L defined by

λ(a,b, c) =

(
d∑
i=1

ωiai,
d∑
i=1

ωibi,
d∑
i=1

ωici

)
,

where a = (a1, . . . , ad), b = (b1, . . . , bd), and c = (c1, . . . , cd). By Weil’s
descent [FrJ08, p. 183, Prop. 10.6.2], there exists an absolutely integral
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affine variety W in A3d
K such that the restriction of λσ1

K̃
× · · · × λσd

K̃
to WK̃ is

an isomorphism Λ: WK̃ → V σ1

K̃
× · · · × V σd

K̃
which is defined by

Λ(a,b, c)

(1)

=

(
d∑
i=1

ωσ1
i ai,

d∑
i=1

ωσ1
i bi,

d∑
i=1

ωσ1
i ci, . . . ,

d∑
i=1

ωσdi ai,
d∑
i=1

ωσdi bi,
d∑
i=1

ωσdi ci

)
.

Part B. Approximation data. Let t0 ∈ Ksep be a root of h(0, Y ). By
assumption x0 = (0, t0, g(0)−1) ∈ Vsimp(Ktot,S). Let L′ be a finite Galois
extension of K in Ktot,S that contains L(t0). Then, x0 ∈ Vsimp(L′), so
xσi0 ∈ V

σi
simp(L′), i = 1, . . . , d. Hence, since Λ is defined over L′,

(2) z0 = Λ−1
(
xσ1

0 , . . . ,xσd0

)
∈Wsimp(L′).

Let T be a finite subset of V such that S ⊆ T , V r T ⊆ PK,fin, and
z0 ∈W (O

L′,Vr T ).

For each p ∈ T let Lp = KpL
′ and

(3) Ωp = {(a,b, c) ∈Wsimp(Lp) | |a|p ≤ 1 if p ∈ PK,fin and

|a|p < δp if p ∈ PK,inf},

where δp =
(
d ·max1≤i,j≤d |ω

σj
i |p
)−1

if p ∈ PK,inf . If p ∈ S, then Lp = Kp,
because L′ ⊂ Ktot,S ⊂ Kp.

Let a0,b0, c0 be the points of (L′)d such that z0 = (a0,b0, c0). By (1)
and (2),

(0, tσ1
0 , (g(0)−1)σ1 , . . . , 0, tσd0 , (g(0)−1)σd)

= (xσ1
0 , . . . ,xσd0 )

= Λ(z0) = Λ(a0,b0, c0)

=

(
d∑
i=1

ωσ1
i a0,i,

d∑
i=1

ωσ1
i b0,i,

d∑
i=1

ωσ1
i c0,i, . . . ,

d∑
i=1

ωσdi a0,i,

d∑
i=1

ωσdi b0,i,

d∑
i=1

ωσdi c0,i

)
.

Let Q =
(
ω
σj
i

)
1≤i,j≤d ∈ GLd(L

′) [Lan93, p. 286, consequence of Cor. 5.4].

Then, Qa0 = 0 (where a0 is now considered as a column), so a0 = 0.
Hence, by (3), z0 ∈ Ωp for each p ∈ T . Therefore, Ωp is a nonempty p-open
subset of Wsimp(Lp), invariant under Gal(Lp/Kp), for each p ∈ T . Since
z0 ∈ W (O

L′,Vr T ), we have z0 ∈ W (OK̃,p) for each p ∈ V r T . It follows

that (Lp,Ωp)p∈T is approximation data for K,S, T ,V,W .

Part C. Conclusion of the proof. By Proposition 12.4,

(M,K,S,V,W, T , (Lp,Ωp)p∈T ) |= SAT.
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Hence, there exists z = (a,b, c) ∈ W (O
M,Vr T ) such that zτ ∈ Ωp for each

p ∈ T and each τ ∈ Gal(K). Let

(a, b, c) = λ(z) =

(
d∑
i=1

ωiai,

d∑
i=1

ωibi,

d∑
i=1

ωici

)
.

Since ω1, . . . , ωd ∈ L ⊆ M , we have (a, b, c) ∈ V (M). Hence, a, b, c ∈ M ,
h(a, b) = 0, and g(a)c = 1, so g(a) 6= 0. Moreover,

a =
d∑
i=1

ωiai ∈ OM,Vr T

(because ω1, . . . , ωd ∈ OL) and, by (3), |aτ |p ≤ 1 for each p ∈ T and each
τ ∈ Gal(K). Here, note that if p ∈ T ∩PK,inf , then

|aτ |p ≤
d∑
i=1

|ωτi |p|aτi |p < d · max
1≤i,j≤d

|ωσji |p · δp = 1.

Hence, a ∈ O
M,Vr T ∩ OM,T = OM,V , as desired. �

Lemma 13.2 makes it possible to generalize the strong approximation
theorem from varieties V defined over K to varieties V defined over finite
extensions of K in Ktot,S .

To this end we choose for each finite extension K ′ of K in Ktot,S and

for each p ∈ PK′ a completion K̂ ′p of K ′ at p and an embedding of K̃

into the algebraic closure of K̂ ′p, as we do in Subsection 4.1. Then the
notions defined with respect to K are also well defined for K ′. In particular,
SK′ , TK′ , and VK′ are the sets of all p ∈ PK′ that lie over S, T , and V,
respectively. Note that SK′ and TK′ are finite sets, VK′ is a proper subset of
PK′ , SK′ ⊆ TK′ ⊆ VK′ , and VK′ r TK′ ⊆ PK′,fin. Moreover, K ′p = K̂ ′p ∩ K̃,
for all p ∈ TK′ . Finally, observe that K ′tot,SK′

= Ktot,S .

Proposition 13.3. Let K,S, T ,V be as in Subsection 4.8, let K ′ be a
finite extension of K in Ktot,S . Let M be an extension of K ′ in Ktot,S
which is weakly symmetrically K-stably PSC over OK,V . Consider an ab-
solutely integral affine variety V in AnK′ for some positive integer n. Let
(Lp,Ωp)p∈TK′ be approximation data for K ′,SK′ , TK′ ,VK′ , V . Then there
exists z ∈ V (O

M,Vr T ) such that zτ ∈ Ωp(LpKtot,S) for all p ∈ TK′ and

τ ∈ Gal(K ′).

Proof. First we assume that V is a curve. By Lemma 13.2, M is weakly
PSC over OM,V . By definition, O

M,VK′r TK′ = O
M,Vr T . Moreover, M is

also weakly symmetrically K ′-stably PSK′C over OM,VK′ . Hence, we may
apply Proposition 12.3 to K ′ rather than to K and find z ∈ V (O

M,Vr T )

such that zτ ∈ Ωp(LpKtot,S) for all p ∈ TK′ and τ ∈ Gal(K ′).
Finally, the reduction lemmas 4.10 and 4.12 work if we replace K by K ′

and the condition “zτ ∈ Ωp for all τ ∈ Gal(K) and p ∈ T ” by the condition
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“zτ ∈ Ωp(LpKtot,S) for all τ ∈ Gal(K ′) and p ∈ TK′”. Hence, the case where
V is a curve implies the general case. �

An interesting special case of Proposition 13.3 is the local-global principle
stated as Proposition 13.4 below. It is a consequence of Lemma 13.2 and
[JaR08, Thm. 2.5]. However, since the latter theorem is one of the main
results of [JaR08] and its proof extends over all of that paper, we prefer to
give a proof that relies on the results of the present work.

Given a field K ⊆M ⊆ Ktot,S and a prime q ∈ VM we set

DM,q = {x ∈M | |x|q ≤ 1 if q|K ∈ PK,fin and |x|q < 1 if q|K ∈ PK,inf}.

We also let DM,V =
⋂

q∈VM DM,q. Given p ∈ VK′ for some extension K ′ of

K in Ktot,S and a field K ′p ⊆ L ⊆ K̃, we set

D(L) = Dp(L)

= {x ∈ L | |x|p ≤ 1 if p|K ∈ PK,fin and |x|p < 1 if p|K ∈ PK,inf} .

Proposition 13.4 (Local-global principle). Let K be a global field, V a
proper subset of PK , and S a finite subset of V. Let M be an extension of
K in Ktot,S . Suppose M is weakly symmetrically K-stably PSC over OK,V .
Let V be an absolutely integral affine variety in AnM for some positive integer
n such that Vsimp(D(Mq)) 6= ∅ for each q ∈ SM and V (D(Mq)) 6= ∅ for all
q ∈ VM rSM . Then, V (DM,V) 6= ∅.

Proof. We choose a finite extension K ′ of K in M over which V is defined
[Lan58, Sec. III.5, p. 74]. For each p ∈ SK′ the p-closure K ′p of K ′ that
we have chosen contains Ktot,S , hence also M . Thus, K ′p = Mq, where q
is the prime of M induced by K ′p. By assumption, Ωp = Vsimp(D(K ′p)) is
nonempty. We set Lp = K ′p.

Next we choose a finite subset T of V that contains S ∪ (V ∩PK,inf). For
each p ∈ TK′ rSK′ the p-adic topology on MK ′p (which is actually Ksep, by
[GJR00, p. 220, Prop. 1.15]) induces a prime q ∈ TM rSM , so MK ′p contains
Mq. Since V (D(Mq)) 6= ∅, there exists zp ∈ V (D(MK ′p)). We choose a finite
Galois extension Lp of K ′p such that zp ∈ V (Lp) and set Ωp = V (D(Lp)).
Then, zp ∈ Ωp.

The collection (Lp,Ωp)p∈TK′ obtained in this way is approximation data
for K ′,SK′ , TK′ ,VK′ , V . By Proposition 13.3, there exists z ∈ V (O

M,Vr T )

such that zτ ∈ Ωp(LpKtot,S) for all p ∈ TK′ and all τ ∈ Gal(K ′). The
latter condition implies that z ∈ DM,q for every coordinate z of z and every
q ∈ TM . Combining this conclusion with the former condition, we conclude
that z ∈ V (DM,V), as desired. �

Definition 13.5. We say that a field M0 is PAC over a subset O if for
every absolutely irreducible polynomial f ∈M0[X,Y ] which is separable in
Y there exist infinitely many points (a, b) ∈ O×M0 such that f(a, b) = 0. �
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The next two results contain notation introduced in the second paragraph
of the introduction.

Lemma 13.6 ([GJR00, p. 218, Lemma 1.12]). Let M0 be an algebraic ex-
tension of K, M = M0 ∩Ktot,S , and e a positive integer. Suppose that M0

is PAC over OK,V . Then:

(a) M is weakly PSC over OK,V . In particular, Ktot,S is weakly PSC
over OK,V and Ktot,S(σ) is weakly PSC over OK,V for almost all
σ ∈ Gal(K)e.

(b) Let M ′ be the maximal Galois extension of K inside M . Then M ′ is
weakly K-stably PSC over OK,V . In particular, Ktot,S [σ] is weakly
K-stably PSC over OK,V for almost all σ ∈ Gal(K)e.

We conclude our work with the main result.

Theorem 13.7. Let K be a global field, e a nonnegative integer, V a proper
subset of the set of all primes of K, and S a finite subset of V. Then, for
almost all σ ∈ Gal(K)e and for every subfield M of Ktot,S that contains
Ktot,S [σ], we have:

(a) M is weakly PSC over OM,V .
(b) (M,K,S,V) |= SAT.
(c) M satisfies the local-global principle 13.4.

Proof. For almost all σ ∈ Gal(K)e, Lemma 13.6 assures that Ktot,S [σ]
is weakly K-stably PSC over OK,V . Hence, by Definition 12.1, M is also
weakly symmetrically K-stably PSC over OK,V . It follows from Proposi-
tion 12.4 that (M,K,S,V) |= SAT. Moreover, M satisfies the local-global
principle 13.4. Finally, by Lemma 13.2, M is weakly PSC over OM,V . �

Remark 13.8.

(a) Statements (a) and (c) of Theorem 13.7 settle a question posed in
[Jar06, p. 376, Remark 6] when K = Q and S = ∅.

(b) Let M be an extension of K in Ktot,S . It is possible to prove Propo-
sition 13.3 under the assumption that M is weakly PSC over OM,V
(rather that M is weakly symmetrically K-stably PSC over OK,V).
Conversely, one may use the arguments of the proof of Lemma 13.2
to prove that if M satisfies the conclusion of Proposition 13.3, then
M is weakly PSC over OM,V .

(c) The local global principle mentioned in the abstract is a quick con-
sequence of Theorem 13.7(c).
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