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Hurwitz number fields

David P. Roberts

Abstract. The canonical covering maps from Hurwitz varieties to con-
figuration varieties are important in algebraic geometry. The scheme-
theoretic fiber above a rational point is commonly connected, in which
case it is the spectrum of a Hurwitz number field. We study many exam-
ples of such maps and their fibers, finding number fields whose existence
contradicts standard mass heuristics.
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1. Introduction

This paper is a sequel to Hurwitz monodromy and full number fields [21],
joint with Venkatesh. It is self-contained and aimed more specifically at
algebraic number theorists. Our central goal is to provide experimental evi-
dence for a conjecture raised in [21]. More generally, our objective is to get
a concrete and practical feel for a broad class of remarkable number fields
arising in algebraic geometry, the Hurwitz number fields of our title.
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1.1. Full fields, the mass heuristic, and a conjecture. Say that a
degree m number field K = Q[x]/f(x) is full if the Galois group of f(x) is
either the alternating group Am or the symmetric group Sm. For P a finite
set of primes, let FP(m) be the number of isomorphism classes of full fields
K unramified outside of P of degree m and any signature. In the sequel, we
suppress the words “of isomorphism classes,” as it is understood that we are
always counting fields up to isomorphism.

In [3, Eq. 10], Bhargava formulated a heuristic expectation µD(m) for the
number FD(m) of degree m full number fields with absolute discriminant
D ∈ Z≥1. The main theorems of [7], [2], and [4] respectively say that this
heuristic is asymptotically correct for m = 3, 4, and 5. While Bhargava is
clearly focused in [3] on this “horizontal” direction of fixed m and increasing
D, it also makes sense to apply the same mass heuristic in the “vertical”
direction. In [17, Eq. 68], we summed over contributing D to obtain a
heuristic expectation µP(m) for the number FP(m). It is a product of local
contributions, one for each p ∈ P. Figure 6 of [17] graphed the function
µ{2,3}, while Figure 1.1 graphs the function µ{2,3,5} which is more relevant
for us here. All µP share a common qualitative behavior: the numbers µP(m)
can be initially quite large, but by [17, Eq. 42 and Prop. 6.1] they ultimately
decay super-exponentially to zero. From this decay, one might expect that
for any fixed P, the sequence FP(m) would be eventually zero.
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Figure 1.1. The heuristic approximation µ{2,3,5}(m) to the
number F{2,3,5}(m) of degree m full fields ramified within
{2, 3, 5}. In contrast, §9 shows F{2,3,5}(202) ≥ 2497 and §10
shows F{2,3,5}(1200) ≥ 1.

The construction studied in [21] has origin in work of Hurwitz and in-
volves an arbitrary finite nonabelian simple group T . Let PT be the set of
primes dividing T . The construction gives a large class of separable alge-
bras Kh,u over Q which we call Hurwitz number algebras. Infinitely many of
these algebras have all their ramification with PT . Within the range of our
computations here, these algebras are commonly number fields themselves;
in all cases, they factor into number fields which we call Hurwitz number
fields. The algebras come in families of arbitrary dimension ρ ∈ Z≥0, with
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the Hurwitz parameter h giving the family and the specialization parameter
u giving the member of the family. Strengthening Conjecture 8.1 of [21]
according to the discussion in §8.5 there, we expect that there are enough
contributing Kh,u to give the following statement.

Conjecture 1.1. Suppose P contains the set of primes dividing the order of
a finite nonabelian simple group. Then the sequence FP(m) is unbounded.

From the point of view of the mass heuristic, the conjecture has both an
unexpected hypothesis and a surprising conclusion.

1.2. Content of this paper. The parameter numbers ρ = 0 and 1 have
special features connected to dessins d’enfants, and we present families with
ρ ∈ {0, 1} in [20]. To produce enough fields to prove Conjecture 1.1, it is
essential to let ρ tend to infinity. Accordingly we concentrate here on the
next case ρ = 2, with our last example being in the setting ρ = 3.

Section 2 serves as a quick introduction. Without setting up any general
framework, it exhibits a degree 25 family. Specializing this family gives more
than 10, 000 number fields with Galois group S25 or A25 and discriminant of
the form ±2a3b5c.

Section 3 introduces Hurwitz parameters and describes how one passes
from a parameter to a Hurwitz cover. Full details would require deep forays
into moduli problems on the one hand and braid group techniques on the
other. We present information at a level adequate to provide a framework
for our examples to come. In particular, we use the Hurwitz parameter

h = (S5, (2111, 5), (4, 1))

corresponding to our introductory example to illustrate the generalities.
Section 4 focuses on specialization, meaning the passage from a Hurwitz

cover to its fibers. In the alternative language that we have been using in this
introduction, a Hurwitz cover gives a family of Hurwitz number algebras, and
then specialization is passing from the entire family to one of its members.
The section elaborates on the heuristic argument for Conjecture 1.1 given in
[21]. It formulates Principles A, B, and C, all of which say that specialization
behaves close to generically. Proofs of even weak forms of Principles A and B
would suffice to prove Conjecture 1.1. Here again, the introductory example
is used to illustrate the generalities.

The slightly shorter Sections 5–10 each report on a family and its special-
izations, degrees being 9, 52, 60, 96, 202, and 1200. Besides describing its
family, each section also illustrates a general phenomenon.

Sections 5–10 together indicate that the strength with which Principles A,
B, and C hold has a tendency to increase with the degreem, in strong support
of Conjecture 1.1. In particular, our two largest degree examples clearly show
that Hurwitz number fields are not governed by the mass heuristic as follows.
In the degree 202 family, Principles A, B, and C hold without exception.
One has µ{2,3,5}(202) ≈ 2 · 10−17, but the family shows F{2,3,5}(202) ≥ 2947.
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Similarly, µ{2,3,5}(1200) ≈ 10−650 while the one specialization point we look
at in the degree 1200 family shows F{2,3,5}(1200) ≥ 1.

There are hundreds of assertions in this paper, with proofs in most cases in-
volving computer calculations, usingMathematica [25], Pari [23], andMagma
[5]. We have aimed to provide an accessible exposition which should make
all the assertions seem plausible to a casual reader. We have also included
enough details so that a diligent reader could efficiently check any of these
assertions. Both types of readers could make use of the large Mathematica
file HNF.mma on the author’s homepage. This file contains seven large polyno-
mials defining the seven families considered here, and miscellaneous further
information about their specialization to number fields.

1.3. Acknowledgements. I thank Akshay Venkatesh whose careful read-
ing of early drafts of this paper in the context of its relation with [21] im-
proved it substantially. I also thank the anonymous referee for useful detailed
comments, and Jordi Guàrdia and Enric Nart for carrying out the compu-
tation described in the final paragraph of the paper.

2. A degree 25 introductory family

In this section, we begin by constructing a single full Hurwitz number
field, of degree 25 and discriminant 256334530. We then use this example to
communicate the general nature of Hurwitz number fields and their explicit
construction. We close by varying two parameters involved in the construc-
tion to get more than ten thousand other degree twenty-five full Hurwitz
number fields from the same family, all ramified within {2, 3, 5}.

2.1. The 25 quintics with critical values −2, 0, 1 and 2. Consider
polynomials in C[s] of the form

(2.1) g(s) = s5 + bs3 + cs2 + ds+ x.

We will determine when the set of critical values of g(s) is {−2, 0, 1, 2}.
The critical points of such a polynomial are of course given by the roots

of its derivative g′(s). The critical values are then given by the roots of the
resultant

r(t) = Ress(g(s)− t, g′(s)).
Explicitly, this resultant works out to

r(t) = 3125t4 + 1250(3bc− 10x)t3

+
(
108b5 − 900b3d+ 825b2c2 − 11250bcx+ 2000bd2 + 2250c2d

+ 18750x2
)
t2

− 2
(
108b5x− 36b4cd+ 8b3c3 − 900b3dx+ 825b2c2x+ 280b2cd2

− 315bc3d− 5625bcx2 + 2000bd2x+ 54c5 + 2250c2dx− 800cd3

+ 6250x3
)
t
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+
(
108b5x2 − 72b4cdx+ 16b4d3 + 16b3c3x− 4b3c2d2 − 900b3dx2

+ 825b2c2x2 + 560b2cd2x− 128b2d4 − 630bc3dx+ 144bc2d3

− 3750bcx3 + 2000bd2x2 + 108c5x− 27c4d2 + 2250c2dx2

− 1600cd3x+ 256d5 + 3125x4
)
.

This large expression conforms to the a priori known structure of r(t): it
is a quartic polynomial in the variable t depending on the four parameters
b, c, d, and x. The computation required to obtain the expression is not at
all intensive; for example, Mathematica’s Resultant does it nearly instanta-
neously.

Now consider in general the problem of classifying quintic polynomials
(2.1) with prescribed critical values. Clearly, if the given values are the roots
of a monic degree four polynomial τ(t), then we need to choose the b, c, d,
and x so that r(t) is identically equal to 3125τ(t). Equating coefficients of ti
for i = 0, 1, 2, and 3 gives four equations in the four unknowns b, c, d, and
x. If (b, c, d, x) is a solution then so is (ω2b, ω3c, ω4d, ω5x) for any fifth root
of unity ω. Thus the solutions come in packets of five, each packet having a
common x.

In our explicit example, τ(t) = (t + 2)t(t − 1)(t − 2). Mathematica de-
termines in less than a second that there are 125 solutions (b, c, d, x). The
twenty-five possible x’s are the roots of a degree twenty-five polynomial,
(2.2)
f(x) = 29838x25 − 2963852x24 + · · ·+ 4543326944239835953052526892234.

The algebra Q[x]/f(x) is our first explicit example of a Hurwitz number
algebra. In this case, f(x) is irreducible in Q[x], so that Q[x]/f(x) is in fact
a Hurwitz number field.

2.2. Real and complex pictures. Before going on to arithmetic concerns,
we draw two pictures corresponding to the Hurwitz number field Q[x]/f(x)
we have just constructed. Any Hurwitz number algebra K would have analo-
gous pictures. Our objective is to visually capture the fact that any Hurwitz
number algebra K is involved in a very rich mathematical situation. Indeed
if K has degree m, then one has m different geometric objects, with their
arithmetic coordinated by K.

Of the twenty-five solutions x to (2.2), five are real. Each of these x
corresponds to exactly one real solution (b, c, d, x). The corresponding poly-
nomials gx(s) are plotted in the window [−2.1, 2.1]×[−2.4, 2.4] of the real s-t
plane in Figure 2.1. The critical values ti are indexed from bottom to top so
that always (t1, t2, t3, t4) = (−2, 0, 1, 2), with i printed at the corresponding
turning point (si, ti). The labeling of each graph encodes the left-to-right
ordering of the critical points si. For example, in the upper left rectangle
the critical points are (s2, s1, s4, s3) ≈ (−1.5,−0.6, 0.7, 1.4) and the graph is
accordingly labeled by L = 2143. The labeling is consistent with the labeling
in Figure 2.4 below.
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Figure 2.1. Graphs t = gx(s) of five quintic polynomials with
critical points (si, ti) ordered from bottom to top and marked by
i ∈ {1, 2, 3, 4}.

To get images for all twenty-five roots x, we consider the semicircular
graph J in the complex t-plane drawn in Figure 2.2. We then draw in
Figure 2.4 its preimage g−1x ( J) in the complex s-plane under twenty-five
representatives gx. Each of the four critical values ti ∈ {−2, 0, 1, 2} has a
unique critical preimage si ∈ C, and we print i at si in Figure 2.4. There are
braid operations σ1, σ2, σ3 corresponding to universal rules which permute
the figures, given in this instance by Figure 2.3. Here the σi all have cycle
type 3525 with σ2 preserving the letter and incrementing the index modulo
3. The fact that this geometric action has image all of S25 suggests that the
Galois group of (2.2) will be A25 or S25 as well.

1 2 3 4

Figure 2.2. A graph
connecting the roots of
the specialization poly-
nomial (t+2)t(t−1)(t−
2)
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I // E1 // D1 G // A1

Figure 2.3. Actions of σ1 (vertical ar-
rows), σ2 (symbols), and σ3 (horizontal ar-
rows)

The twenty-five preimages are indeed topologically distinct. Thus for the
twelve γabc = γcba, the critical points a, b, and c are connected by a triangle
and the middle index b is connected also to the remaining critical point.
Similarly the indexing for the twelve γabcd = γdcba describes how the critical
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points are connected. The five graphs corresponding to the real x treated in
Figure 2.1 are easily identified by the horizontal line present in Figure 2.4.
We touch on the braid-theoretic infrastructure of Hurwitz number fields in
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Figure 2.4. The preimage of the semicircular graph of Fig-
ure 2.2 under twenty-five quintic polynomials

this paper only very lightly. Our point in presenting Figures 2.2–2.4 is simply
to give some idea of the topology behind the existence of Hurwitz number
fields.

2.3. A better defining polynomial φ(x) and field invariants. We are
not so much interested in the polynomial f(x) from (2.2) itself, but rather
in the field Q[x]/f(x) it defines. Pari’s command polredabs converts f(x)
into a monic polynomial φ(x) which defines the same field and has minimal
sum of the absolute squares of its roots. It returns

φ(x) =

x25 − 5x24 + 15x23 − 5x22 − 380x21 + 1290x20 − 4500x19 − 28080x18

+183510x17 + 74910x16 − 3033150x15 + 4181370x14 + 27399420x13

−48219480x12 − 124127340x11 + 266321580x10 + 466602765x9

−592235505x8 − 905951965x7 + 1232529455x6 + 2423285640x5

+664599470x4 − 814165000x3 − 517891860x2 − 58209720x+ 2436924.
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For fields of sufficiently small degree, one applies the reduction operation
polredabs as a matter of course: the new smaller-height polynomials are
more reflective of the complexity of the fields considered, isomorphic fields
may be revealed, and any subsequent analysis of field invariants is sped up.

Pari’s nfdisc calculates that the discriminant of Q[x]/φ(x) is

D = 1119186718586212624367616000000000000000000000000000000

= 256334530.

The fact thatD factors into the form 2a3b5c is known from the general theory
presented in Sections 3 and 4, using that 2, 3, and 5 are the primes less than
or equal to the degree 5, and the polynomial discriminant of

τ(t) = (t+ 2)t(t− 1)(t− 2),

namely 2304 = 2832, has this form too. Note that since all the exponents
of the field discriminant are greater than the degree 25, the number field is
wildly ramified at all the base primes, 2, 3, and 5.

To look more closely at Q[x]/φ(x), we factorize the p-adic completion
Qp[x]/φ(x) as a product of fields over Qp. We write the symbol efc to indicate
a factor of degree ef , ramification index e, and discriminant pfc. One gets

2-adically: 1650 32 32 32,(2.3)

3-adically: 918 43 43 35 35 120,

5-adically: 2530,

with wild factors printed in bold. Thus, the first line means that Q2[x]/φ(x)
is a product K1 ×K2 ×K3 ×K4, where K1 is a wild totally ramified degree
sixteen extension of Q2 with discriminant 250, while K2, K3, and K4 are
tame cubic extensions of discriminant 22. The behavior for the three primes
is roughly typical, although, as we will see in Figure 4.2, a little less ramified
than average.

Because the field discriminant is a square, the Galois group of φ(x) is
in A25. Many small collections of p-adic factorization patterns for small
unramified p each suffice to prove that the Galois group is indeed all of A25.
Most easily, φ(x) factors in Q19[x] into irreducible factors of degrees 17, 6,
and 2, so that the Galois group contains an element of order 17. Jordan’s
criterion now applies: a transitive subgroup of Sm containing an element of
prime order in (m/2,m−2] is all of Am or Sm. We will use this easy technique
without further comment for all of our other determinations that Galois
groups of number fields are full. One could also use information from ramified
primes as above, but unramified primes give the easiest computational route.

2.4. A family of degree 25 number fields. We may ask, more gener-
ally, for the quintics with any fixed set of critical values. This amounts to
repeating our previous computation, replacing the polynomial

τ(t) = (t+ 2)t(t− 1)(t− 2)
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of the three previous subsections with other separable quartic polynomials

(2.4) τ(t) = t4 + b1t
3 + b2t

2 + b3t+ b4.

From each such τ , we obtain a degree 25 algebra over Q, once again the
algebra determined by the possible values of the variable x.

Changing τ via a rational affine transformation t→ αt+β does not change
the degree twenty-five algebra constructed. Accordingly, one can restrict
attention to specialization polynomials τ(t) with b1 = 0, and consider only
a set of representatives for the equivalence (b2, b3, b4) ∼ (α2b2, α

3b3, α
4b4),

where α is allowed to be in Q×. In particular, if b2 and b3 are nonzero, any
such polynomial is equivalent to a unique polynomial of the form

(2.5) τ(u, v, t) = t4 − 2t2v − 8tv2 − 4uv2 + v2.

Here the reason for the complicated form on the right is explained in the
discussion around (3.4). We will treat in what follows only the main two-
parameter family where b2 and b3 are both nonzero. Note, however, that
two secondary one-parameter families are also interesting: if b3 = 0, one
gets degree 25 algebras with Galois group in S5 × S2 o S10, because of the
symmetry induced from t 7→ −t; the case b2 = 0 gives rise to full degree 25
algebras, just like the main case.

One can repeat the computation of §2.1, now with the parameters u and
v left free. The corresponding general degree twenty-five moduli polynomial
f25(u, v, x) has 129 terms as an expanded polynomial in Z[u, v, x]. After
replacing x by 5x/4 and clearing a constant, coefficients average about 16
digits. We will not write this large polynomial explicitly here, instead giving
a simpler polynomial that applies only in the special case u = 1/3 at the end
of §4.2.

2.5. Keeping ramification within {2, 3, 5}. Suppose τ(t) from (2.4)
normalizes to τ(u, v, t) from (2.5). We write the corresponding Hurwitz
number algebra as Ku,v. Inclusion (3.12) below says that if τ(t) is ramified
within P = {2, 3, 5}, then so is Ku,v. By a computer search we have found
11031 such (u, v). From irreducible f25(u, v, x), we obtain FP(25) ≥ 10938.
The remaining f25(u, v, x) all have a single rational root and from these poly-
nomials we obtain FP(24) ≥ 93. The behavior of the 11031 different Ku,v

will be discussed in more detail in Section 4 below.
A point to note is that ramification is obscured by the passage to standard-

ized coordinates. In the case of our first example τ(t) = (t+2)t(t−1)(t−2),
the corresponding (u, v) is (37/175, 9/1715). The standardized polynomial
τ(37/175, 9/1715, t) after clearing denominators has a 7 in its discriminant.

3. Background on Hurwitz covers

In this section, we provide general background on Hurwitz covers. Most
of our presentation is in the setting of algebraic geometry over the complex
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numbers. In the last subsection, we shift to the more arithmetic setting
where Hurwitz number fields arise.

3.1. Hurwitz parameters. We use the definition in [21, §1B] of Hurwitz
parameter: Let r ∈ Z≥3. An r-point Hurwitz parameter is a triple

h = (G,C, ν)

where
• G is a finite group.
• C = (C1, . . . , Ck) is a list of conjugacy classes whose union generates
G.
• ν = (ν1, . . . , νk) is a list of positive integers summing to r such that∏

[Ci]
νi = 1 in the abelianization Gab.

We henceforth always take the Ci distinct and not the identity, and normalize
so that νi ≥ νi+1. The number νi functions as a multiplicity for the class Ci.

Table 3.1 gives the Hurwitz parameters of the seven Hurwitz covers de-
scribed in this paper. It is also gives the associated degrees m and bad
reduction sets Ph, each to be discussed later in this section. In the case that

Section G C ν m Ph
§2 S5 (2111, 5) (4, 1) 25 {2, 3, 5}
§5 S3 o S2 (21111, 33, 222) (3, 1, 1) 9 {2, 3}
§6 S6 (21111, 222, 31111, 3∞201) (2, 1, 1, 1) 52 {2, 3, 5}
§7 PSL3(3) (2415, 3314) (3, 2) 2 · 60 {2, 3}
§8 GL3(2) (22111, 421) (4, 1) 2 · 96 {2, 3, 7}
§9 S6 (21111, 3021, 31111, 4∞11) (2, 1, 1, 1) 202 {2, 3, 5}
§10 S6 (21111, 321, 411) (4, 1, 1) 1200 {2, 3, 5}

Table 3.1. Hurwitz parameters for the seven covers pursued in
this paper, two of them with normalizations given via subscripts

G is a symmetric group Sn, we label a conjugacy class Ci by the partition
λi of n giving the lengths of the cycles of any of its elements. We describe
classes for general G in a similar way. Namely we choose a transitive em-
bedding G ⊆ Sn. We then label classes Ci by their induced cycle partitions
λi, removing any ambiguities which arise by further labeling. In none of our
examples is further labeling necessary.

Our concept of Hurwitz parameter emphasizes multiplicities more than
other similar concepts in the literature. For example, the first line of Ta-
ble 3.1 says that our introductory example comes from the parameter

h = (S5, (2111, 5), (4, 1)).

In, e.g., [14], the indexing scheme would center on the class vector

(2111, 2111, 2111, 2111, 5).
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3.2. Covers indexed by a parameter. An r-point parameter

h = (G,C, ν)

determines an unramified cover of r-dimensional complex algebraic varieties

(3.1) πh : Hurh → Confν .

The base is the variety whose points are tuples (D1, . . . , Dk) of disjoint sub-
sets Di of the complex projective line P1, with Di consisting of νi points.
Above a point u = (D1, . . . , Dk) ∈ Confν , the fiber has one point for each
solution of a moduli problem indexed by (h, u).

Note that we are using a sans-serif font to indicate smooth complex alge-
braic varieties, to be thought of simply as complex manifolds in the classical
topology. This fonting convention was introduced in [21, §3] and is followed
also throughout [20]. As explained after (3.11) below, we switch to a dif-
ferent font when we need to descend to algebraic varieties over Q. Most
of our work takes place at the conceptually simpler complex level, despite
the fact that our ultimate concern is the construction of number fields. As
another notational convention, we sometimes subscript a projective line by
the coordinate we are using; thus P1

t has function field C(t).
The moduli problem described in [21, §2] involves degree |G| Galois covers

Σ→ P1
t , with Galois group identified with G. An equivalent version of this

moduli problem makes reference to the embedding G ⊆ Sn used to label
conjugacy classes. When G is its own normalizer in Sn, which is the case for
all our examples, the equivalent version is easy to formulate: above a point
u = (D1, . . . , Dk) ∈ Confν , the fiber π−1h (u) consists of points x indexing
isomorphism classes of degree n covers

(3.2) Sx → P1
t .

These covers are required to have global monodromy group G, local mon-
odromy class Ci for all t ∈ Di, and be otherwise unramified. In this equiv-
alent version, the ramification numbers of the preimages of t ∈ Di in Sx
together form the partition λi.

We prefer the equivalent version for the purposes of this paper, since it
directly guides our actual computations. For example, in our introductory
example, the quintic polynomials prominent there can be understood as de-
gree five rational maps P1

s → P1
t . Here P1

s is a common coordinatized version
of all the Sx. Also the preimage of ∞ consists of the single point ∞, ex-
plaining why polynomials rather than more general rational functions are
involved. At no point did degree 120 maps explicitly enter into the compu-
tations of Section 2.

3.3. Covering genus. Let h = (G,C, ν) be a Hurwitz parameter with G ⊆
Sn a transitive permutation group. Let `i be the the number of parts of the
partition λi induced by Ci, and let di = n − `i be the corresponding drop.
Consider the Hurwitz covers Sx → P1

t parametrized by x ∈ Hurh. By the
Riemann-Hurwitz formula, the curves Sx all have genus g = 1−n+ 1

2

∑
νidi.
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Given G, let d be the minimal drop of a nonidentity element. If h is an
r-point Hurwitz parameter based on G, then necessarily g ≥ 1−n+dr/2. To
support Conjecture 1.1, one needs to draw fields from cases with arbitrarily
large r and thus arbitrarily large g. However explicit computation of families
rapidly becomes harder as g increases, and in this paper we only pursue cases
with genus zero.

3.4. Normalization. The three-dimensional complex group PGL2 acts by
fractional linear transformations on Confν . Since PGL2 is connected, the
action lifts uniquely to an action on Hurh making πh equivariant. To avoid
redundancy, it is important for us to use this action to replace (3.1) by a cover
of varieties of dimension ρ = r − 3. Rather than working with quotients in
an abstract sense, we work with explicit codimension-three slices as follows.

We say that a Hurwitz parameter is base normalizable if k ≥ 3 and νk−2 =
νk−1 = νk = 1. For a base normalizable Hurwitz parameter, we replace (3.1)
by a map of ρ-dimensional varieties,

(3.3) πh : Xh → Uν .

Here the target Uν is the subvariety of Confν with

(Dk−2, Dk−1, Dk) = ({0}, {1}, {∞}).
The domain Xh is just the preimage of Uν in Hurh. This reduction in dimen-
sion is ideal for our purposes: each PGL2 orbit on Confν contains exactly one
point in Uν .

We say that a base normalizable genus zero Hurwitz parameter is fully
normalizable if the partitions λk−2, λk−1, and λk have between them at least
three singletons. A normalization is then obtained by labeling three of the
singletons by 0, 1, and ∞, as illustrated twice in Table 3.1. This labeling
places a unique coordinate function s on each Sx. Accordingly, each point of
Xh is then identified with an explicit rational map from P1

s → P1
t .

When the above normalization conventions do not apply, we modify the
procedure, typically in a very slight way, so as to likewise replace the cover of
r-dimensional varieties (3.1) by a cover of ρ-dimensional varieties (3.3). For
example, two other multiplicity vectors ν figuring into some of our examples
are (4, 1) and (3, 1, 1). For these cases, we define

τ4(t) = t4 − 2t2v − 8tv2 − 4uv2 + v2, τ3(t) = t3 + t2 + ut+ v.

The form for τ4(t) is chosen to make discriminants tightly related:

disct(τ4(t)) = −212v6d, disct(tτ3(t)) = vd,(3.4)

with

(3.5) d = 4u3 − u2 − 18uv + 27v2 + 4v.

In the respective cases, we say that a divisor tuple is normalized if it has the
form

(D1, D2) = ((τ4(t)), {∞}), (D1, D2, D3) = ((τ3(t)), {0}, {∞}).
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These normalization conventions define subvarieties

U4,1 ⊂ Conf4,1 and U3,1,1 = Conf3,1,1.

As explained in the (4, 1) setting in §2.4, we are throwing away some perfectly
interesting PGL2 orbits on Confν by our somewhat arbitrary normalization
conventions. However all these orbits together have positive codimension in
Confν and what is left is adequate for our purposes of supporting Conjec-
ture 1.1. Always, once we have Uν ⊂ Confν we just take Xh ⊂ Hurh to be its
preimage.

The two base varieties just described are identified by their common co-
ordinates: U4,1 = U3,1,1 = SpecC[u, v, 1/vd]. This exceptional identification
has a conceptual source as follows. With (u, v) fixed, let D1 = (τ4(u, v, t)) so
that (D1, {∞}) ∈ U4,1. Let V be the four-element subgroup of PGL2 consist-
ing of fractional transformations stabilizing the roots of τ4(u, v, t). One then
has a degree four map q from P1

t to its quotient P := P1
t /V . There are three

natural divisors on P: the divisor ∆1 consisting of the three critical values,
and the one-point divisors ∆2 = {q(D1)} and ∆3 = {q(∞)}. Uniquely co-
ordinatize P so that (∆1,∆2,∆3) = ((τ3(u

′, v′, t)), {0}, {∞}). Then u′ = u
and v′ = v.

3.5. The mass formula and braid representations. The degree m of
a cover Xh → Uν can be calculated by group-theoretic techniques as follows.
Define the mass m of an r-point Hurwitz parameter h = (G,C, ν) via a sum
over the irreducible characters of G:

(3.6) m =

∏
i |Ci|νi
|G|2

∑
χ∈Ĝ

∏
i χ(Ci)

νi

χ(1)r−2
.

Then m ≥ m always, because m −m comes from covers with monodromy
group strictly containing G, while m counts covers with the desired mon-
odromy group. In particular, suppose that no proper subgroup H ⊂ G
contains elements from all the conjugacy classes Ci, as is the case in §§2, 5,
6. Then m = m. When there exist such H, as in §§7, 8, 9, and 10, one
can still get exact degrees by applying (3.6) to all such H and computing
via inclusion-exclusion. Chapter 7 of [22] gives (3.6) as Theorem 7.2.1 and
works out several examples in the setting r = 3.

As a one-parameter collection of examples, consider

h(j) = (S5, (2111, 5), (j, 1))

for j ≥ 4 even. Since S5 is generated by any 5-cycle and any transposition,
one has m = m for h(j). From 0’s in the character table of S5, only the
characters 1, ε, χ, and χε contribute, with ε the sign character and χ+ 1 the
given degree 5 permutation character. We can ignore ε and χε by doubling
the contribution of 1 and χ:

m =
10j24

1202

(
2 + 2

χ(2111)jχ(5)

χ(1)r−1

)
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=
10j−2

6

(
2 + 2 · 2j(−1)

4j−1

)
=

1

3

(
10j−2 − 5j−2

)
.

For j = 4, one indeed has m = 25, as in the introductory example.
The monodromy group of a cover Xh → Uν can be calculated by group-

theoretic techniques [21, §3]. These techniques center on braid groups and
underlie the mass formula. The output of these calculations is a collec-
tion of permutations in Sm which generate the monodromy group, with
〈σ1, σ2, σ3〉 = S25 from Figure 2.3 being completely typical. Fullness of these
representations is important for us: once we switch over to the arithmetic
setting in §3.8, it implies fullness of generic specializations.

Theorem 5.1 of [21] proves a general if-and-only-if result about fullness. In
one direction, the important fact for us here is that to systematically obtain
fullness one needs forG to be very close to a nonabelian simple group T . Here
“very close” includes subgroups of Aut(T ) of the form T.2, such as G = Sn
for T = An. This direction accounts for the hypothesis of Conjecture 1.1.
In the other direction, fullness is the typical behavior for these G. This
statement is the main theoretical reason we expect that the conclusion of
Conjecture 1.1 follows from the hypothesis.

3.6. Accessible families. The groups An and Sn give rise to many com-
putationally accessible families with ρ ∈ {0, 1, 2}. Table 3.2 presents families
with ρ = 2 and n ∈ {5, 6}, omitting 1’s from partitions to save space. The
table gives the complete list of h with covering genus g = 0 and degree
m ∈ {1, . . . , 250}. We have verified by a braid group computation that the
58 families listed all have full monodromy group.

Table 3.2 reveals that our introductory example has the lowest degree m
in this context. It and the only other degree 25 family are highlighted in
bold. Two of the six families we pursue in §5-10 are likewise put in bold. The
remaining families from these sections are not on the table because three of
them have group different from An and Sn and one has ρ = 3.

A remarkable phenomenon revealed by braid computations is what we call
cross-parameter agreement. There are three instances on Table 3.2: covers
given with the same label, be it A, B, or C, are isomorphic. Note that
the first instance involves the exceptional isomorphism U4,1 = U3,1,1 from
§3.4, with the cover of U4,1 being our introductory family. Many instances
of cross-parameter agreement are given with defining polynomials in [20].
Völklein [24] explains some instances of cross-parameter agreement via the
Katz middle convolution operator [11].

3.7. Computation and rational presentation. Our general method of
passing from a Hurwitz parameter h = (G,C, ν) to an explicit Hurwitz cover
is well illustrated by our introductory example. Very briefly, one writes down
all covers S → P1

t conforming to h and satisfying the chosen normalization
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ν = (3,1,1)
n C1 C1 C1 C2 C3 m
6 3 3 3 2 32 216
6 2 2 2 32 5 150
6 2 2 2 32 42 120
6 3 3 3 2 4 96
6 2 2 2 4 5 75
6 2 2 2 4 42 72
6 22 22 22 2 222 60
6 2 2 2 22 6 C54
6 2 2 2 32 33 C54
5 2 2 2 3 4 48
5 2 2 2 22 4 48
5 2 2 2 3 32 45
6 3 3 3 2 222 44
6 2 2 2 3 6 36
6 2 2 2 4 33 B36
5 2 2 2 22 32 B36
6 2 2 2 222 5 A25

ν = (2,1,1,1)
n C1 C1 C2 C3 C4 m
6 22 22 2 3 4 240
6 2 2 3 4 32 202
6 3 3 2 22 4 168
6 2 2 3 22 5 125
6 2 2 3 22 42 100
6 2 2 22 32 222 60
6 22 22 2 3 222 57
6 2 2 3 32 222 52
6 2 2 3 22 33 48
6 3 3 2 22 222 42
6 2 2 22 4 222 40
6 2 2 3 4 222 36

ν= (4,1)
n C1 C1 C1 C1 C2 m
6 3 3 3 3 22 192
5 2 2 2 2 5 A25

ν= (2,2,1)
n C1 C1 C1 C2 C3 m
6 2 2 22 22 5 175
6 2 2 4 4 22 158
6 2 2 22 22 42 128
6 2 2 4 4 3 89
6 2 2 3 3 42 80
6 2 2 3 3 5 75
6 2 2 22 22 33 54
5 2 2 3 3 22 58
5 2 2 22 22 3 48
6 2 2 3 3 33 39

ν = (5)
n C1 C1 C1 C1 C1 m
6 3 3 3 3 3 96

ν = (3, 2)
n C1 C1 C1 C2 C2 m
5 3 3 3 2 2 55
5 22 22 22 2 2 40

Table 3.2. Fifty-eight computationally accessible two-
parameter families. One, eight, one, and forty-eight of these
families respectively have G = A5, S5, A6, and S6.

conditions. From this first step, one extracts a generator x of the function
field of the variety Xh. For all ν we are considering, one has also coordinates
u1, . . . , uρ on the base variety Uν . By computing critical values, one arrives
at a degree m polynomial relation f(u1, . . . , uρ, x) = 0 describing the degree
m extension C(Xh)/C(Uν). In all the examples of both Table 3.2 and §5-10,
the covering variety Xh is connected and so C(Xh) is a field. In general, as
illustrated many times in [20], the polynomial f(u1, . . . , uρ, x) may factor,
making Xh disconnected and C(Xh) a product of fields.

When Xh is a connected rational variety, one can seek a more insightful
presentation as follows. One finds not just the above single element x of the
function field, but rather elements x1, . . . , xρ which satisfy

C(Xh) = C(x1, . . . , xρ).

Then, working birationally, the map πh : Xh → Uν is given by ρ rational
functions,

(3.7) ui = πh,i(x1, . . . , xρ).

We call such a system a rational presentation.
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As an example of a rational presentation, consider the Hurwitz parameter
ĥ25 = (S6, (21111, 222, 51), (3, 1, 1)), chosen because it relates to our intro-
ductory example h25 by cross-parameter agreement. We partially normalize
via 5∞10. We complete our normalization by requiring the coefficient of s2
in the cubic in the numerator of g(s) be 1:

g(s) =

(
s3 + s2 + zs+ y

)2
as

,
g′(s)

g(s)
=

5s3 + 3s2 + zs− y
s (x+ s3 + s2 + sz)

.

In the logarithmic derivative of g(s) to the right, let ∆(s) be its numerator.
Writing g(s) = g0(s)/g∞(s), one requires that the resultant

Ress(g0(s)− g∞(s)t,∆(s))

be proportional to t3 + t2 + ut+ v. Working out this proportionality makes
a = 4(27− 225z + 500z2 + 375y − 5625yz)/3125.

We have thus identified Xh birationally with the plane Cy × Cz. But
moreover, the proportionality gives

u =

55
(
−2025y3 + 2700y2z2 − 405y2z − 12y2 − 660yz3

+301yz2 − 36yz + 16z5 − 8z4 + z3

)
(−5625yz + 375y + 500z2 − 225z + 27)2

,(3.8)

v = −
510y

(
27y2 − 18yz + 4y + 4z3 − z2

)2
(−5625yz + 375y + 500z2 − 225z + 27)3

.(3.9)

Equations (3.8) and (3.9) together form a rational presentation of the form
(3.7). In general, one can always remove all but one of the xi by resultants,
thereby returning to a ρ-parameter univariate polynomial.

To see the cross-parameter agreement between h25 and ĥ25 explicitly, we
proceed as in [18, (5.3) or (5.5)] to identify the root of f25(u, v, x) in the
function field C(y, z). It turns out to be

(3.10) x =
3 · 57z

(
4y3 − y2 − 18yz + 27z2 + 4z

)
2 (500y2 − 5625yz − 225y + 375z + 27)2

.

Thus the natural function x in the first approach has only a rather compli-
cated presentation in the second approach.

3.8. Rationality, descent, and bad reduction. We have been working
over C so far in this section to emphasize that large parts of our subject
matter are a mixture of complex geometry and group theory. In the con-
struction of Hurwitz number fields, arithmetic enters “for free” and only at
the end. For example, the final equations (3.8) and (3.9) have coefficients in
Q, even though we were thinking only in terms of complex varieties when
deriving them.

Following [21, §2D] we say that a Hurwitz parameter h = (G,C, ν) is
strongly rational if all the conjugacy classes Ci are rational. This is the case
in all our examples, as each Ci is distinguished from all the other classes in G
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by its partition λi. We henceforth work only with strongly rational Hurwitz
parameters. In this case, the cover (3.1) canonically descends to a cover of
varieties defined over Q,

(3.11) πh : Hurh → Confν .

A standard reference for Hurwitz varieties is [1]. This reference is written
from a very different viewpoint from the present paper. For example in the
development culminating in §6.2 there, the existence of Hurh is proved by
moduli techniques without reference to C; the associated complex variety is
recovered as Hurh = Hurh(C).

Similarly, since all our normalizations are chosen rationally, the corre-
sponding reduced cover (3.3) descends to a cover of Q-varieties,

πh : Xh → Uν .

Computations as in our introductory example or the previous subsection
end at polynomials f(u1, . . . , uρ, x) ∈ Q[u1, . . . , uρ, x] whose vanishing cor-
responds to (3.11).

Note that in the previous paragraphs we conformed to the notational
conventions of [21] and [20] by changing fonts as we passed from complex
spaces to Q-varieties. As a further example of this font change, Uν has
appeared many times already as conveniently brief notation for Uν(C). In
the future we will also need the subsets Uν(R) for various subrings R of
C. In subsequent sections we will continue this convention: when working
primarily geometrically we emphasize complex spaces, and when specializing
we emphasize varieties over Q.

Let Ph be the set of primes at which (3.11) has bad reduction. Let PG be
the set of primes dividing the order of G. Then a fundamental fact is

(3.12) Ph ⊆ PG.
This fact is essential for our argument supporting Conjecture 1.1, and en-
ters our considerations through (4.1). The inclusion (3.12) follows from the
standard reference [1] because all the results there hold for any ground field
with characteristic not dividing |G|. This good reduction statement is not
emphasized throughout [1], but is indicated by the standing convention in-
troduced in §2.1.1 there, that p can be any prime not dividing |G|. Table 3.1
gives Ph for our covers.

4. Specialization to Hurwitz number algebras

This section discusses specializing a given Hurwitz cover Xh → Uν to
number fields, taking the introductory example of Section 2 further to illus-
trate general concepts. The goal is to extrapolate from the observed behavior
of the 11031 algebras Ku,v = K(S5,(2111,5),(4,1)),(u,v) to the expected behavior
of specialization in general. We dedicate a subsection each to Principles A,
B, and C. The extent to which they hold will be discussed in connection
with all of our examples in the sequel.
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4.1. Algebras corresponding to fibers. Let Xh → Uν be a Hurwitz
cover, as in §3.8. Let u ∈ Uν(Q). The scheme-theoretic fiber π−1h (u) is the
spectrum of a separable Q-algebra Kh,u. We call Kh,u a Hurwitz number
algebra. The homomorphisms of Kh,u into C are indexed by points of the
complex fiber π−1h (u) ⊂ Xh. Like all separable algebras, the Kh,u are prod-
ucts of fields. These factor fields are the Hurwitz number fields of our title.
Whenever the monodromy group of Xh → Uν is transitive, the algebras Kh,u

are themselves fields for all but a thin set of u, by the Hilbert irreducibility
theorem [22, Chapter 3].

For many ν, certainly including all ν containing three 1’s, Uν can be
identified with an open subvariety of affine space SpecQ[u1, . . . , uρ] as in
[19, §8]. Birationally at least, the cover is given by a polynomial equation
f(u1, . . . , uρ, x) = 0. The point u corresponds to a vector (u1, . . . , uρ) ∈ Qρ.
The algebra Kh,u is then Q[x]/f(u1, . . . , uρ, x). The factorization of Kh,u

into fields corresponds to the factorization of f(u1, . . . , uρ, x) into algebras.

4.2. Real pictures and specialization sets Uν(Z[1/P]). Figure 4.1
draws a window on U4,1(R). With the choice of coordinates made in §3.4,
it is the complement of the drawn discriminant locus in the real u-v plane.
One should think of the line at infinity in the projectivized plane as also part
of the discriminant locus. An analogous picture for ν = (2, 1, 1, 1) is drawn
in Figure 6.1.

Let P be a finite set of primes with product N . Let Z[1/P] = Z[1/N ]
be the ring obtained from Z by inverting the primes in P. When the last
three entries of ν are all 1 then Uν is naturally a scheme over Z. Accordingly
it makes sense to consider Uν(R) for any commutative ring. The finite set
of points Uν(Z[1/P]) is studied in detail in [19], including complete iden-
tifications for many (ν,P). For general ν, one similarly has a finite subset
Uν(Z[1/P]) of Uν(Q). Its key property for us is that

(4.1) for any Hurwitz cover Xh → Uν and any u ∈ Uν(Z[1/P]),
the algebra Kh,u is ramified within Ph ∪ P.

In §6.5 we take P strictly containing Ph so as to provide examples of ramifi-
cation known a priori to be tame. Otherwise, we are always taking P = Ph
in this paper. Figure 4.1 shows the 8461 of the known 11031 points of
U4,1(Z[1/30]) which fit into the window.

In our Hurwitz parameter formalism, we emphasize the multiplicity vector
ν because of the following important point. Fix r and a nonempty finite
set of primes P, and consider all multiplicity vectors ν with total r. Then
Uν(Z[1/P]) tends to get larger as ν moves from (1r) to (r). This phenomenon
is represented by the two cases considered for P = {2, 3, 5} in this paper:
|U2,1,1,1(Z[1/30])| = 2947, from [19, §8.5], and |U4,1(Z[1/30])| ≥ 11031. In
fact, as r increases the cardinality |U1r(Z[1/P])| eventually becomes zero
[19, §2.4] while |Ur−3,1,1,1(Z[1/P])| increases without bound [19, §7]. This
increase is critical in supporting Conjecture 1.1.
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Figure 4.1. A window on U4,1(R), which is the complement of
the two discriminantal curves in the u-v plane. Points are part
of the specialization set U4,1(Z[1/30]), which applies in §2. For
§5, §7, and §8, specialization sets U3,1,1(Z[1/6]), U3,1,1(Z[1/6]),
and U4,1(Z[1/42]) are respectively used, and the corresponding
pictures would have the same discriminant locus but different
specialization points.

In both Figure 4.1 and the similar Figure 6.1, one can see specialization
points from Uν(Z[1/30]) concentrating on certain lines. These lines, and
other less visible curves, have the property that they intersect the discrimi-
nant locus in the projective plane exactly three times. While the polynomial
f25(u, v, x) of §2.4 was too complicated to print, variants over any of these
curves are much simpler. For example, the most prominent of the lines is
u = 1/3. Parametrizing this line by v = (j − 1)/27j, one has the simple
equation

f25(j, x) = 22(x+ 2) ·
(
729x8 − 486x7 − 702x6 − 8x5 + 105x4

+ 1118x3 − 1557x2 + 1296x− 576
)3

+ 515j(x− 1)4x9.

The ramification partitions above 0, 1, and ∞ are respectively 381, 21015,
and (12, 9, 4). A systematic treatment of these special curves in the cases
ν = (3, 1, 1) and ν = (3, 2) is given in [18, §7]. For general ν, they play
an important role in [20]. In this paper the above line v = 1/3 will play a
prominent role in §8, and analogous lines for ν = (2, 1, 1, 1) will enter in §6.2
and §9.3.
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4.3. Pairwise distinctness. For each of the 11031 algebras Ku,v of §2.5,
and each prime p ≥ 7, one has a Frobenius partition αu,v,p giving the degrees
of the factor fields of Ku,v⊗Qp. For p = 7, 11, 13, 17, 19, and 23, the number
of partitions of 25 arising is 71, 126, 157, 205, 243, and 302. Taking now p =
7, 11, 13, 17, 19, and 23 as cutoffs, the number of tuples (αu,v,7, . . . , αu,v,p)
arising is 71, 2992, 10252, 10981, 11027, and 11031. Thus all the known
algebras Ku,v are pairwise nonisomorphic. There are many other quick ways
of seeing this pairwise distinctness. For example, one could use that 6772
different discriminants Du,v arise as a starting point.

Abstracting this simple observation to a general Hurwitz map Xh → Uν

gives

Principle A. For almost all pairs of distinct elements u1, u2 in Uν(Z[1/P]),
the algebras Kh,u1 and Kh,u2 are nonisomorphic.

So, at least when one restricts to the known elements of U4,1(Z[1/30]),
Principle A holds without exception for our introductory family.

In general, the reader should understand our principles as being state-
ments which one could refine in several inequivalent ways into precise con-
jectures. For example, let G be a finite nonabelian simple group and let P
be the set of primes dividing its order. Then one rigorous refinement is that
there is a sequence of Hurwitz parameters h = (G,C, ν) with |Uν(Z[1/P])|
tending to ∞, so that Principles A, B, and C all hold with the word “al-
most” removed. Given the behavior of our examples, we think that this very
strong assertion is plausible. However, various much weaker rigorizations of
just Principles A and B would also suffice for Conjecture 1.1. We find it
best at the moment to not try to speculate on the strongest true rigorization
of the three principles. Our repeated use of the phrase “almost all” lets us
meaningfully speak about exceptions to these principles. To summarize: we
expect exceptions to be very rare in a way that it is premature to quantify.

4.4. Minimal Galois group drop. The Galois group of f25(u, v, x) over
Q(u, v) is S25. Some of the 11031 specialized algebras Ku,v have smaller
Galois groups as follows. First, in 93 cases, there is a factorization of the
form Ku,v = K ′u,v × Q, with K ′u,v a field. Second, the discriminant of the
specializing polynomial τ(u, v, t) and the discriminant of the degree twenty-
five algebra Ku,v agree modulo squares. Thus one knows the total number
of times that a given discriminant class d ∈ Q×/Q×2 occurs, even without
inspecting the Ku,v themselves. The number of degree m fields obtained
with discriminant class d is as follows:
m \ d −30 −15 −10 −6 −5 −3 −2 −1 1 2 3 5 6 10 15 30

25 1050 547 310 363 641 1702 1000 480 557 360 576 572 1026 787 897 70
24 14 3 2 4 5 15 8 4 2 4 10 6 3 1 12 0

Galois groups are as large as possible given the above considerations. Thus
A25 and A24 occur respectively 557 times and twice, leaving S25 and S24
occurring respectively 10381 and 91 times.
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Let Galh be the generic Galois group of the cover Xh → Uν .

Principle B. For almost all elements u in Uν(Z[1/P]), the specialized Ga-
lois group Gal(Kh,u) contains the derived group Gal′h of the generic Galois
group.

The most important case of this principle for us is when Xh → Uν is
full, i.e., all of Am or Sm. Then the principle says that Kh,u is full for al-
most all u ∈ Uν(Z[1/P]). In our example, 93 of the 11031 known points
of U4,1(Z[1/30]), thus slightly less than 1%, are exceptions to the principle.
However, in terms of supporting Conjecture 1.1, these exceptions are rela-
tively minor, in that they produce contributors to F{2,3,5}(24) rather than
F{2,3,5}(25).

Principle B is formulated so that it includes other cases of interest to
Conjecture 1.1. For example, let m = m1 + m2 with m1,m2 ≥ 3. Suppose
Galh is one of the five intransitive groups containing Am1 × Am2 . Then
Principle B holds for u if and only if Kh,u factors as a product of two full
fields. This case is illustrated many times in [20], with splittings of the form
25 = 10 + 15 and 70 = 30 + 40 being presented in detail in §6.1 and §6.2
respectively.

4.5. Wild ramification. Consider the discriminants disc(Ku,v) = ±2a3b5c

as (u, v) varies over the known elements of U4,1(Z[1/30]). The left part of
Figure 4.2 gives the distribution of the exponents a, b and c. There is much
less variation in the exponents than is allowed for field discriminants of degree
twenty-five algebras in general. For general algebras, the minimum value for
a, b, and c is of course 0 in each case. The maximum values occur for the
algebras defined by (x16 − 2)(x8 − 2)x, (x18 − 3)(x6 − 3)x, and x25 − 5,
and are respectively 110, 64, and 74. The average values in our family are
(〈a〉, 〈b〉, 〈c〉) ≈ (56, 43, 42).

There are many open questions to pursue with regard to wild ramification.
One could ask for lower bounds valid for all u, upper bounds valid for all
u, or even exact formulas for wild ramification as a function of u. Principle
C is in the spirit of lower bounds. Here we say that a global algebra K is
wildly ramified at a prime p if one of the factor fields of its completion Kp

is wildly ramified over Qp.

Principle C. For almost all u ∈ Uν(Z[1/P]), the specialized algebra Kh,u

is wildly ramified at all primes p ∈ Ph.

Certainly, if ordp(Kh,u) ≥ m then Principle C holds for Kh,u and p. The
left part of Figure 4.2 shows that, for each p, most Ku,v satisfy this sufficient
criterion. In fact, for p = 2, 3, and 5, there are only 374, 568, and 179
algebras Ku,v which do not. However to conform to Principle C at p, an
algebra Kh,u needs only to satisfy a much weaker condition. Define the wild
degree of a p-adic algebraK to be the sum of the degrees of its wildly ramified
factor fields. Thus in (2.3) these degrees mp-wild for p = 2, 3, and 5 are 16,
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Figure 4.2. Left: distribution of the discriminant exponents
ordp(D) the algebras Ku,v; the variation of ordp(D) is much less
than is allowed by general discriminant bounds. Right: distri-
bution of the wildness degrees mp-wild relevant for Principle C.

15, and 25 respectively. Then conformity to Principle C at p means simply
that the p-adic wild degree is positive.

The right part of Figure 4.2 gives the distribution ofmp-wild. For example,
for p = 5, there are 179 exceptions to Principle C, including all the 93
factorizing algebras. Besides these exceptions, all algebras have m5-wild at
its maximum possible value of 25.

4.6. Expectations. As discussed in [21, §8], the Hilbert irreducibility the-
orem, applied to Xh → Uν and Xh × Xh → Uν × Uν respectively, already
points in the direction of Principles A and B. In a wide variety of contexts,
analogs of these principles hold with great strength. For example, in [15, §9]
several covers are discussed in the setting P = {2, 3} and for most of them
both Principles A and B hold without exception. However the situation we
consider here, with fixed P and arbitrarily large degree m, is outside the
realm of previous experience. Explicitly verifying the principles in degrees
large enough to contradict the mass heuristic is important for being confident
that these standard expectations do indeed hold in this new realm.

We are confident that for a given G and varying h = (G,C, ν), one has
strict inclusion Ph ⊂ PG for only finitely many (C, ν). This expectation,
together with Principle C, suggests that there are only finitely many full
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fields Kh,u ramified strictly within PG. One possibility is that full number
fields coming from Hurwitz-like constructions are the main source of outliers
to the mass heuristic. If one believes this, then one is led to the first of the
two extreme possible complements to Conjecture 1.1 discussed at the end of
[21]: The sequence FP(m) always has support on a density zero set, and it
is eventually zero unless P contains the set of primes divisors of the order
of a nonabelian finite simple group. Our verification that Principle C holds
with great strength in our examples is supportive of this very speculative
assertion.

5. A degree 9 family: comparison with complete number
field tables

This section begins our sequence of six sample families of increasing degree.
To start in very low degree, we take G solvable. The number fields coming
from this first example are not full and so not directly relevant to Conjec-
ture 1.1. This family is nonetheless a good place to begin our presentation
of examples, for two reasons. First, the low degree makes comparison with
complete tables of number fields possible. Second, there are many exceptions
to Principles A, B, and C. These exceptions form the first data-point argu-
ing for the expectation already formulated in the introduction: as the degree
of the Hurwitz family increases, the frequency of exceptions decreases.

5.1. A Hurwitz parameter with solvable G. Let G be the wreath prod-
uct S3 o S2 of order 72, considered as a subgroup of S6. The group G
has unique conjugacy classes with cycle type 21111, 222, and 33. Take
h = (G, (21111, 222, 33), (3, 1, 1)). Then mh = mh = 9.

5.2. A two-parameter polynomial. In the present context of

ν = (3, 1, 1),

our normalized specialization polynomials take the form

τ(u, v, t) = (t3 + t2 + ut+ v)t.

The discriminant of the cubic factor is d = 4u3−u2− 18uv+ 27v2 + 4v from
(3.5). A nonic polynomial capturing the family and a resolvent octic are as
follows:

f9(u, v, x) = x9 − 3x8 + 12ux7 − 4(u+ 12v)x6 + 42vx5 − 6(4u+ 1)vx4

+ 4v(2u+ 3v)x3 − 12v2x2 + 3(4u− 1)v2x− v2(4u− 8v − 1),

f8(u, v, x) = x8 + x4
(
18v − 6u2

)
+ x2

(
8u3 − 36uv + 108v2

)
+ (−3u4 + 18u2v − 27v2).

Here f9(u, v, x) and f8(u, v, x) respectively have Galois group

9T26 = F2
3.GL2(F3) and 8T23 = GL2(F3) = S̃4.
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Because of the complete lack of singletons in the partitions 222 and 33, our
computation of f9(u, v, x) required substantial ad hoc deviations from the
procedure sketched in §3.7.

The discriminants of the two polynomials are respectively

D9(u, v) = −22439v10d4(27v − 1)6, D8(u, v) = −224319v8d4
(
u2 − 3v

)2
.

In each case, the discriminant modulo squares is −3. Because of this con-
stancy, the Galois groups of f9(u, v, x) and f8(u, v, x) over C(u, v) are re-
spectively the index two subgroups

9T23 = F2
3.SL2(F3) and 8T12 = SL2(F3) = Ã4.

The last factor of the discriminant in each case is an artifact of our particular
polynomials. Because of these factors, one knows that that if v = 1/27 or
v = u2/3, the algebra Ku,v has to be in some way degenerate. However
if v 6= 1/27 and v 6= u2/3, then these factors do not contribute to field
discriminants in specializations.

5.3. Comparison of specializations with complete tables of number
fields. We work with 507 pairs (u, v) in U3,1,1(Z[1/6]). Twenty-one of them
have v = 1/27 and so f9(u, v, x) is not separable. For forty more, f9(u, v, x)
also reduces, with the factorization partitions 63, 81, 6111, and 333 occurring
respectively 9, 29, 1, and 1 times. The remaining 446 specialization points
yield only 129 different fields, as for example (−13/12, 2/9), (11/12, 1/9),
(−5/12,−8/27), (1/4,−1/27), (1/4, 2/27), (35/108, 8/243), (1/4, 64/3375),
and (19/2028, 1/59319) all yield the field defined by x9−9x7+27x5−27x3−4.
Moreover, a wide variety of subgroups of 9T26 appear, as follows.

Group G: 9T4 9T8 9T12 9T13 9T16 9T18 9T19 9T26
Size |G|: 18 36 54 54 72 108 144 432

Number of fields in family: 2 1 10 1 5 20 8 82
Total number of fields: 4 1 12 3 5 23 8 87

The last line compares with the relevant complete lists at the website as-
sociated to [10]. It gives the total number of number fields with the given
Galois group and with discriminant of the form −2a3b with a even and b
odd. One can get even a larger fraction of the total number of fields by
specializing outside of U3,1,1(Z[1/6]), both by considering the curve at in-
finity and then by specializing also at the rare-but-existent points of say
U3,1,1(Z[1/6p]), where the auxiliary prime p does not divide the discrimi-
nant of the field constructed. The fact that such a large fraction of all fields
of the type considered come from a single Hurwitz family is suggestive that
other Hurwitz families may be essentially the only source of number fields
with certain invariants.

5.4. Exceptions to Principles A, B, and C. The current family presents
many examples of phenomena that Principles A, B, and C say are rare in
general. The drop from 446 specialization points giving nonic fields to only
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129 isomorphism classes of fields constitutes many exceptions to Principle A.
The further drop from 129 fields to just 82 fields with the generic Galois group
includes many exceptions to Principle B. Some of the specializations are
tamely ramified or even unramified at 2, and thus correspond to exceptions
to Principle C.

6. A degree 52 family: tame ramification and exceptions to
Principle B

In our introductory family, the only exceptions to Principle B were alge-
bras of the form Kh,u = Q×K ′h,u with K ′h,u full. In specializing many other
full families, most of the exceptions to Principle B we have found have this
very same form. In this section, we present a family which is remarkable
because some of its specializations have a much more pronounced drop in
fullness. However we do not regard this more serious failure of Principle B
as anywhere near extreme enough to raise doubts about Conjecture 1.1.

6.1. A Hurwitz parameter yielding a rational Xh. We start from the
normalized Hurwitz parameter

h = (S6, (21111, 222, 31111, 3∞201), (2, 1, 1, 1)).

All rational functions with this normalized Hurwitz parameter have the form

g(s) =

(
s3 + bs2 + cs+ x

)2
as2(s− y)

.

The ramification requirement on g at 1 is that (g(1), g′(1), g′′(1)) = (1, 0, 0).
These three equations allow the elimination of a, b, and c via

a = −64(x+ 1)2(y − 1)3,

b = 4xy − 3x+ 4y − 6,

c = −8xy2 + 12xy − 6x− 8y2 + 12y − 3.

Using a resolvent as usual, we find that the critical values of g(s) besides 0,
1, and ∞ are the roots of Wt2 + (V − U −W )t+ U where

U = (4xy − x+ 3y)
(
64x2y4 − 160x2y3 + 180x2y2 − 108x2y + 27x2

+ 256xy4 − 736xy3 + 864xy2 − 540xy + 162x+ 192y4 − 576y3

+ 576y2 − 216y + 27
)2
,

V = 33(2xy − x+ 1)4
(
64xy3 − 144xy2 + 108xy − 27x+ 64y3 − 144y2

+ 81y
)
,

W = 21233(x+ 1)4(y − 1)6y3.
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Comparing with the standard quadratic t2 + (v − u − 1)t + u, one gets the
rational presentation

u =
U

W
, v =

V

W
.(6.1)

Summarizing, birationally we have Xh = Cx × Cy, Uν = Cu × Cv, and the
equations (6.1) give the map Xh → Uν . Removing y by a resolvent gives the
single equation f52(u, v, x) = 0. Likewise removing x by a resolvent gives
the single equation φ52(u, v, y) = 0. The left sides have 2781 and 829 terms
respectively.

The discriminants of f52(u, v, x) and φ52(u, v, y) are both −3 times a
square in Q(u, v). The Galois groups of these polynomials over Q(u, v) are
S52, but over C(u, v) they reduce to A52. This general phenomenon appeared
already in the previous section. It is not of central importance to us, which is
why we generally refer to full fields and only sometimes make the distinction
between Sm and Am fields.

6.2. Specialization to curves. Using homogeneous coordinates U , V , and
W , related to our standard coordinates u and v via (6.1), we can view U2,1,1,1

as completed by the projective plane. Its complement in this projective plane
has four components,

A: the vertical line U = 0,
B: the horizontal line V = 0,
C: the line at infinity W = 0, and
D: the conic U2 + V 2 +W 2 − 2UV − 2UW − 2VW = 0.

Figure 6.1 draws A, B, and D. Note that lines A, B, and C pass through
points a = (0 : 1 : 1), b = (1 : 0 : 1), and c = (1 : 1 : 0) respectively, while
the conic D goes around d = (1 : 1 : 1). Note also that while this completion
to a projective plane has the virtue of introducing a convenient S3 symmetry,
it is not particularly natural from a moduli-theoretic viewpoint.

A general line in the projective plane intersects the discriminant locus
in five points. However the lines that go through two of the points in
{a, b, c, d} intersect the discriminant locus only three times. These six lines
are parametrized in Table 6.1, so that the three points become 0, 1, and
∞. Exactly as in Figure 4.1 earlier, the lines are clearly suggested by the
drawn specialization points. Having used homogeneous coordinates for two
paragraphs to make an S3 symmetry clear, we now return to our standard
practice of focusing on the affine u-v plane.

When restricted to any one of the six lines, the cover Xh remains full.
This preserved fullness is in the spirit of Principle B. Table 6.1 gives the
ramification partitions of these restricted covers. Note that all partitions
are even, reflecting the fact that the monodromy group is only A52. Before
beginning any computations with polynomials, we knew these partitions and
the fullness of the six covers from a braid group computation.
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Figure 6.1. A window on U2,1,1,1(R), which is the complement
of the three thick discriminantal curves in the u-v plane. Points
are part of the specialization set U2,1,1,1(Z[1/30]) which is used
in both §6 and §9. The thin parabola (u− v)2 = 4v plays a role
only in §6.

Line u v λ0 λ1 λ∞ genus
ad 4t 1 122 6 44 3 2 1 38 212 14 20 12 5 43 2 1 6
bd 1 4t 102 8 63 5 1 38 212 14 102 62 5 42 22 13 5
cd t/4 t/4 49 27 12 38 212 14 64 46 22 0
bc t t− 1 222 18 102 8 63 5 1 64 46 22 2
ac t− 1 t 49 23 110 122 6 44 3 2 1 64 46 22 5
ab t 1− t 122 6 44 3 2 1 102 8 63 5 1 55 42 34 17 9

Table 6.1. Six lines in U2,1,1,1 and topological information on
their preimages in Xh.

To give an explicit degree 52 polynomial coming from the cover

Xh → U2,1,1,1,
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we work over the line cd. The preimage of cd is a curve in the x-y plane
with equation having x-degree 3, y-degree 6, and twenty-two terms. A
parametrization is

x = −
(
s2 − 2s− 2

) (
s4 − 4s3 + 4s+ 2

)
2s3

, y = −
3
(
s2 − 2s− 2

)
2(s− 2) (s2 − 4s− 2)

.

Using the domain coordinate s and the target coordinate t, the restricted
rational function takes the form

(6.2) t =
−A
C

=
B

C
+ 1.

Here A, B, and C sum to zero and are given explicitly by

A = (s+ 1)4
(
s8 − 10s7 + 34s6 − 40s5 − 2s4 + 8s3 + 8s2 + 16s+ 8

)4
· (s− 2)2

(
s2 − 4s− 2

)2 (
s4 − 6s3 + 9s2 − 6

)2
(s− 4)s,

B = −
(
s8 − 12s7 + 52s6 − 92s5 + 30s4 + 96s3 − 72s2 − 48s+ 8

)3
·
(
s12 − 12s11 + 48s10 − 52s9 − 87s8 + 108s7 + 264s6 − 216s5

−312s4 + 48s3 + 192s2 + 96s+ 16
)2 (

s4 − 4s3 + 4s+ 2
)
,

C = 22
(
2s3 − 9s2 + 6s+ 2

)6 (
s6 − 6s5 + 6s4 + 10s3 − 6s2 − 12s− 4

)4
·
(
s2 − 2s− 2

)2
.

This explicit slice is intended to give a sense of the full cover for h52, just as
the slices in §4.2 and §8.2 indicate the covers for h25 and h∗96 respectively.
Here we have explicitly presented information at all three of the cusps, not
just at 0 and ∞ as in §4.2 and §8.2.

6.3. No exceptions to Principles A and C. Unlike all our previous
examples, the current ν contains at least three ones. It thus fits into the
framework of [19], where many Uν(Z[1/P]) for such ν are completely identi-
fied. We therefore can be more definitive in reporting specialization results.

The set U2,1,1,1(Z[1/30]) contains exactly 2947 points [19, §8.5] and is
drawn in Figure 6.1. The Hurwitz number algebras Kh,u are all nonisomor-
phic, so that Principle A holds without exception. All 2947 algebras are
wildly ramified at all three of 2, 3, and 5, so that Principle C also holds
without exception; in fact ordp(D) ≥ 52 fails at p = 2, 3, and 5 only 0, 60,
and 481 times, so the verification of Principle C is particularly easy at p = 2.

6.4. Easily explained exceptions to Principle B. Twenty-five of the
2947 specialization points (u, v) give exceptions to Principle B. Three of
these, namely (3/8, 1/8), (1/16,−375/16), (16,−375) are exceptions of the
sort we have seen earlier: Kh,u = Q × K ′h,u with K ′h,u full. Exceptions of
this nature are not surprising whenever the Hurwitz cover is rational. In this
case the three points in question come respectively from points (−1/6, 3/8),
(−4/3, 3/4), and (−3, 3/4) in Xh(Q).
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In fact, any point (x, y) ∈ Xh(Q) causes such a factorization, because it
is a rational point above its image u = (u, v) ∈ Uν(Q). However even for
very low height (x, y), the algebra Kh,u is typically ramified at extraneous
primes. For example, take s = 1 in the equations after (6.2), making

(6.3) t =
111936400

43923
=

24 52 234

3 114
= 1 +

373 472

3 114
.

The number field K ′ defined by the degree 51 factor of f52(t, s) has discrimi-
nant −2102395548111637124716. Whenever we discuss exceptions to Principle
B, we always have in mind a fixed P, here {2, 3, 5}, and do not consider
fields like K ′ to be exceptions.

6.5. Ramification at tame primes. We are confident that that ramifi-
cation at p in a Hurwitz number algebra Kh,u can only be wild if p ∈ Ph or
p ≤ maxi νi. The field K ′ from the previous subsection presents a convenient
opportunity to illustrate how ramification in Kh,u at the remaining primes
should be calculable in purely group-theoretic terms.

To describe the factorization of the local algebras K ′p, we represent the
fields appearing by symbols efc as in (2.3). We simplify by just writing ef
for tame fields, since tameness implies c = e− 1. The factorizations are

2: 1638 1638 816 23 23 22 22 12 1, 11: 36 32 116 12 12 12 12 1 1 1 → 38127,

3: 1839 12221 611 33, 37: 25 24 22 2 118 13 1 1 1 1 1 1 → 212127,

5: 2540 24 24 14 12 1 1 1 1, 47: 36 32 14 14 14 14 14 12 1 → 38127.

The wild primes behave in a complicated way as always, with p-wildness at
p = 2, 3, and 5 being 48, 51, and 25. However the tame primes are much
more simply behaved.

To work at an even simpler level, we factor over the maximal unramified
extension of Qp, rather than Qp itself. For tame primes, this corresponds
to regarding the printed exponents f simply as multiplicities, and collecting
together symbols with a common base. The resulting tame ramification
partitions are indicated to the right, after arrows.

Note that there are actually four primes greater than 5 involved in (6.3).
With their naturally occurring exponents, 114 is associated to ∞, 234 to
0, and 373 and 472 to 1. In general, tame ramification partitions can be
computed from the placement of the specialization point in Uν(Qp) and braid
group considerations. In the setting of three-point covers, the general formula
is simple, and uses the standard notion of the power of a partition. Namely,
if pm is associated to τ ∈ {0, 1,∞} its tame ramification is the power λmτ of
the geometric ramification partition λτ . Applying the cd line of Table 6.1,
the partitions λ4∞ = 38127, λ40 = 151, λ31 = 212127, and λ21 = 38127 do indeed
agree with the partitions found by direct factorization of the polynomial
defining K ′.
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The mass heuristic reviewed in §1.1 is based on an equidistribution prin-
ciple. In the horizontal direction, it translates to the following conjecture,
proved form ≤ 5: when one considers full degreem fields ordered by their ab-
solute discriminant outside of p, all tame ramification partitions are asymp-
totically equally likely. We regard the fact that Hurwitz number fields escape
the mass heuristic as being directly related to their highly structured rami-
fication. In the current instance, there are 239, 943 partitions of the integer
51, and the two partitions 212127 and 38127 are far from typical.

6.6. A curve of more extreme exceptions to Principle B. The twen-
ty-two exceptions not discussed in §6.4 all have a common geometric source:
above the base curve B given by (u − v)2 = 4v, the cover splits into a full
degree 42 cover of genus five and a full degree 10 cover C of genus zero.
While decompositions 52 = 51 + 1 are governed by rational points on Xh

itself, decompositions of the form 52 = 42+10 are governed by rational points
on a resolvent variety of degree

(
52
10

)
over U2,1,1,1. As this degree is about 15

billion, the existence of a entire curve of rational points is remarkable.
To reveal the structure of the cover C→ B, we parametrize the base curve

B via

u =
4t

(t− 1)2
, v =

4

(t− 1)2
.(6.4)

In the decompositions Kh,(u,v) = K42
t ×Kt, the twenty-two K42

t are all full
degree forty-two fields, with pairwise distinct discriminants.

The genus zero curve C is given by x(4y − 3)3 = −24y2(2y − 3), and so
y is a parameter. The map from the y-line C to the t-line B is given by the
vanishing of

f10(t, y) = (4y − 3)(8y − 3)
(
32y4 − 192y3 + 360y2 − 252y + 27

)2
+ t(4y − 9)

(
96y4 − 256y3 + 216y2 − 108y + 27

)2
.

Thus one has two visible ramification partitions λ0 = λ∞ = 222211. The
discriminant of f10(t, y) is −2136357525t4(t−1)5(t−9)5. At the other singular
values, the ramification partitions are λ1 = λ9 = 32221. In fact, the decic
algebrasKt andK9/t are isomorphic via the involution y 7→ (6y−9)/(8y−6).

At the level of the decic cover only, we have just indicated a failure of Prin-
ciple A: rather than 22 distinct decic algebras, there are ten pairs switched
by t ↔ 9/t and then two algebras K3 and K−3 arising once each. The ten
algebras arising twice are all full fields and wildly ramified at all three of 2,
3, and 5. However K3 and K−3 are not full, and not wildly ramified at 5,
giving failures of Principle B and C at this decic cover level.

In terms of supporting Conjecture 1.1 for P = {2, 3, 5}, the exceptional
behavior above B is in a sense good. Instead of twenty-two contributions to
FP(52), one gets twenty-two contributions to FP(42) and then ten more to
FP(10). But in another sense this exceptional behavior is bad. It explicitly
illustrates phenomena which, if occurring ubiquitously in high degree, might
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make Conjecture 1.1 false. However our computations suggest that, far from
becoming ubiquitous, the phenomena exhibited here become rarer as degrees
increase.

7. A degree 60 family: nonfull monodromy and a prime drop

The statement of Conjecture 1.1 involves all finite nonabelian simple
groups equally. In this paper, however, we focus on the simple groups A5 and
A6 because of the computational accessibility of the corresponding families
Xh → Uν . In this section and the next, we add some balance by presenting
results on covers coming from simple groups not of the form An. The family
presented here has the particular interest that it is nongeneric in two ways.

7.1. A Hurwitz parameter with unexpectedly nonfull monodromy.
The simple group G = PSL3(F3) has order 5616 = 24 ·33 ·13 and outer auto-
morphism group of order two. It has two nonisomorphic degree 13 transitive
permutation representations, coming from an action on a projective plane
P2(F3) and its dual P̂2(F3). These actions are interchanged by the outer
involution. The two smallest nonidentity conjugacy classes in G consist of
order 2 and order 3 elements. In each of the degree 13 permutation represen-
tations, these elements act with cycle structure 2415 and 3314 respectively.

Let h = (PSL3(F3), (2
415, 3314), (3, 2)). To conform to our main reference

[12] for this section, we make a quadratic base change and work over U3,1,1

rather than U3,2. A braid group computation reveals that the degree 120
Hurwitz cover πh factors as a composition of three covers as indicated:

(7.1) Xh
2→ X∗h

15→ Quart
4→ U3,1,1.

The intermediate cover X∗h is just the quotient of Xh by the natural action
of Out(G). This failure of fullness illustrates one of the general phenomena
treated at length in [21].

However, very unusually in comparison with Table 3.2, the reduced Hur-
witz cover π∗h : X∗h → U3,1,1 is also not full. It clearly fails to be primitive,
because of the intermediate cover Quart. Moreover, the degree fifteen map
is not even full, as its monodromy group is S6 in a degree 15 transitive
representation.

The degree 13 covers of the projective line parametrized by Xh have genus
zero. Using this fact as a starting point, König [12, §7] succeeded in finding
coordinates a, b on Xh, with corresponding covers P1

s → P1
t being as follows.

Define

f0 =
abs

3
+
ab

9
+ as2 − a

3
+ s3,

f1 =
s2
(
ab2 − 4ab+ 12a− 3b2 − 9

)
(b− 3)2

+
s
(
ab2 − 4ab+ 12a− 9b− 9

)
3(b− 3)

+s3 − 1,

g0 =
abs

3
+
ab

9
+ as2 − a

3
+ s3,
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g1 =
1

9
s
(
4ab2 − 6ab+ 9a+ 9b− 27

)
+

1

3
s2(4ab− 3a+ 9) + as3 − a.

Then the two-parameter family is given by g(a, b, t, s) := f30 f1s− tg30g1 = 0.
König’s interest in this family is in producing number fields with Galois

group G. For example (a, b, t) = (−9,−6,−3) gives a totally real such field
with discriminant 31225143534. To systematically study specializations, it is
important to determine the discriminant of g(a, b, t, s). Computation shows
that it has the following form:

D(a, b, t)

=

(
−4

3
ab3 + a2b2 + 6ab2 − 3b2 − 4a2b− 18ab+ 18b+ 12a2 − 27

)28

· a12(b− 3)18t6
(
C0t

3 + C1t
2 + C2t+ C3

)4
.

Here C0, C1, C2, and C3 as expanded elements of Q[a, b] have 24, 45, 53, and
36 terms respectively. Because of the complicated nature of this discriminant,
it is hard to get field discriminants to be as small as the one exhibited above.

For König’s purposes of constructing degree thirteen fields with Galois
group G, he does not need the map to configuration space at all. To move
over into our context of constructing Hurwitz number fields, we do need this
map. Replacing t in (C0t

3 + C1t
2 + C2t+ C3) with C1t/C0 and setting the

resulting cubic proportional to t3 + t2 + ut + v gives a degree 120 map πh
from the a-b plane Xh to the u-v plane U3,1,1. Removing a from the pair of
equations gives a degree 120 polynomial f120(u, v, b) ∈ Q(u, v)[b] describing
the covering map.

7.2. Reduction to degree 60. To reduce from the degree 120 cover Xh
to the degree 60 cover X∗h, we proceed as follows. For (ai, bi) ∈ Q2, one gets
(ui, vi) = πh(ai, bi) ∈ Q2. Then f120(ui, vi, b) ∈ Q[b] factors. For almost all
choices of (ai, bi), the degrees of the irreducible factors are 90, 6, 6, 4, 4,
4, 4, 1, and 1. One of the linear factors is b − bi and we write the other
one as b − b′i. Then typically just one rational number a′i satisfies the two
equations πh(a′i, b

′
i) = (ui, vi). From enough datapoints we interpolate to get

the canonical involution on Xh. It is

a′ =
(b− 3)(4ab+ 6a+ 9)

ab2 − 4ab+ 12a− 18b+ 18
, b′ =

3b

b− 3
.(7.2)

This involution is useful even in König’s context. For example, specializing
at (a′, b′, t) = (171/58, 2,−3) gives the dual totally real number field, also
with discriminant 31225143534.

A quantity stabilized by the involution is x = b2/(b− 3). The resolvent

Resb(f120(u, v, b), (b− 3)x− b2)

is proportional the square of a degree 60 polynomial f60(u, v, x). This poly-
nomial captures the cover X∗h → U3,1,1.
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7.3. Low degree resolvents. From the braid group computation, we know
that the monodromy group has quotients of type S3, S4, and 8T40 = 23.S4.
Here the S4 quotient corresponds to the cover Quart. Equations for these
quotients and their discriminants are

f3(u, v, x) = x3 + x2 + xu+ v, D3 = d,

f4(u, v, x) = x4 − 2x2v − 8xv2 − 4uv2 + v2, D4 = −212dv6,

f8(u, v, x) = x8 + 8x4duv − 72x4dv2 D8 = −260d17v14
(
u3 − v

)4
.

+ 64x2d2v2 − 16d3v2,

Here we have seen the cubic and quartic polynomials in §3.4, with d being
given explicitly in (3.5).

7.4. Reduction to degree 24. The equation f4(u, v,m) = 0 is linear in u.
Solving it gives u = (m4− 2m2v+ v2− 8mv2)/(4v2). Expressing f60(u, v, x)
in terms of m, v, and x and factoring, one gets g15(m, v, x)g45(m, v, x). Here
g15(m, v, x) has Galois group S6 over Q(m, v), in a degree 15 permutation
representation.

Abbreviate e = m3 − mv − 2v2. Then the polynomial for the standard
sextic representation works out to

g6(m, v, x) = 2x6v2 − 3x4e
(
m2 − v

)
− 8x3e2 − 6x2e2m+ 2e3.

Returning to the original base, one gets a degree 24 polynomial,

f24(u, v, x) = Resm(f4(u, v,m), g6(m, v, x)).

Similarly, by means of the outer automorphism of S6, one has a twin polyno-
mial gt6(m, v, x) and its degree 24 polynomial f t24(u, v, x). While f60(u, v, x),
f24(u, v, x), and f t24(u, v, x) all have the same splitting field, the latter two
are much easier to work with because of their lower degree.

7.5. Specialization to number fields. We have specialized at the 507
points in U3,1,1(Z[1/6]) considered in §5, obtaining 507 algebras with dis-
criminant of the form ±2a3b. Replacing (u, v) by (v/u2, v2/u3), correspond-
ing to the involution of U3,1,1 with quotient U3,2, gives an isomorphic algebra.
We report on the fields involved in these algebras, since Galois groups are
small enough so that future comparison with other sources of fields with
these groups seems promising.

For simplicity, we exclude the twenty-three (u, v) where u = 0, so that the
involution above is everywhere defined. We switch coordinates to the coor-
dinates used in [18, §7.1] via (p, q) = (3u, 3v/u2) and (u, v) = (p/3, p2q/27).
In the new coordinates, the involution is simply (p, q) 7→ (q, p), and we nor-
malize by requiring p ≤ q. We then have 232 algebras Kp,q with p < q and
20 algebras Kp,p. Besides these algebras, we have their twins Kt

p,q, and their
common octic and quartic resolvents R̃p,q and Rp,q.
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Despite the nongeneric behavior of the family in general, Principal A
has no exceptions in the current context: the 252 algebras Kp,q and their
252 twins Kt

p,q form 504 nonisomorphic algebras. Principle C also has no
exceptions, as all algebras are wildly ramified at both 2 and 3.

There are many exceptions to Principle B. For example K153/1849,129/289

factors as 6 + 6 + 12 with the factors having Galois group 6T9, 6T15 = A6,
and 12T299 = S6 o S2. Its twin factors as 3 + 3 + 6 + 12 with factors having
Galois groups S3, S3, A6, and S6 o S2. The two A6 factors are given by the
polynomials

f6(x) = x6 − 3x5 + 3x4 − 6x2 + 6x− 2,(7.3)

f t6(x) = x6 − 3x4 − 12x3 − 9x2 + 1.(7.4)

These polynomials will be discussed further at the end of the next subsection.
For the rest of this section, we avoid Galois-theoretic complications like

those of the last paragraph by requiring that Rp,q either has an irreducible
cubic factor or is irreducible itself. There are 39 (p, q) of the first type, and
178 (p, q) of the second. Failures of Principle B in this restricted setting are
very mild, as A4

6 is a subgroup of the Galois group of all these specializations.
In the case of a cubic-times-linear quartic resolvent, we change notation by
focusing on the larger degree part, so that Kp,q, Kt

p,q, R̃p,q, and Rp,q now
have degrees 18, 18, 6, and 3.

7.6. Some number fields with small root discriminant. Table 7.1
summarizes the fields under consideration, with resolvent Galois groups in-
dicated by Q and Q̃. In all cases, if Kp,q has some Galois group mTj then its
twin Kt

p,q has the same Galois group mTj. For each Galois group, the table
gives a corresponding field in our collection with smallest root discriminant.
Thus (p, q) is chosen because one of δ = rd(Kp,q) and δt = rd(Kt

p,q) is small;
the other is sometimes substantially larger. Galois groups were computed
by Magma, making use thereby of the algorithms of [8] and works classifying
permutation groups.

For almost all groups in degree ≤ 19, the database of Klueners and Malle
presents at least one corresponding field. The database also highlights the
field presented with smallest absolute discriminant. For the five degree eigh-
teen groups appearing in Table 7.1, our fields are well under the previous
minima, these being 643.84, 51.78, 66.63, 71.35, and 57.52 in the order listed.
For the twelve degree twenty-four groups, we similarly do not know of other
fields with smaller root discriminants.

The small root discriminants of these fields is often reflected in the small-
ness of coefficients in the standardized polynomials returned by Pari’s pol-
redabs. For example, the degree eighteen field in the table of smallest root
discriminant is Kt

−3/125,1. It is defined by

f18(x) =

x18 + 9x16 − 18x15 + 18x14 − 36x13 + 72x12 − 18x11 + 36x10
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Q |Q̃| Q̃ p q Gal(Kp,q) # D δ Dt δt

S3 6 6T2 1/12 24 18T971 1 222346 38.66 224344 36.95
S3 12 6T3 −3/125 1 18T972 7 226341 33.24 226339 29.42
A3 6 6T6 9/121 11/27 18T974 3 −218346 33.14 −224344 36.95
S3 24 6T7 −3/49 7/3 18T976 1 230346 52.60 232344 50.29
S3 48 6T11 1/9 9 18T977 27 −233341 43.52 −227339 30.57
C4 16 8T7 18/25 5/6 24T24946 2 287324 37.01 297324 49.41
V 16 8T9 −72 3/16 24T24948 3 254340 29.68 270338 43.00
V 16 8T11 −27 −1/3 24T24949 3 248338 22.78 252342 30.70
D4 16 8T6 −9 1/3 24T24952 8 281324 31.12 285324 34.94
D4 16 8T8 1 9/8 24T24953 5 −252343 32.14 −260345 44.38
A4 24 8T13 −2 1/4 24T24956 5 254346 39.07 256346 41.39
D4 32 8T17 −8/3 9/16 24T24961 3 283324 32.97 281324 31.12
D4 32 8T15 −27/25 5/9 24T24962 17 252343 32.14 248345 31.38
C4 32 8T16 16/27 27/32 24T24964 1 279324 29.38 297324 49.41
S4 48 8T23 −1/3 1 24T24968 44 −246359 56.22 −246351 38.98
D4 64 8T26 −135/289 17/25 24T24974 26 258335 26.50 250339 25.26
S4 192 8T40 −7/12 32/49 24T24982 61 255359 72.91 249351 42.51

Table 7.1. Fields Kp,q and Kt
p,q with given Galois group and

small root discriminant

−180x9 + 18x8 + 54x7 + 48x6 − 108x5 + 18x4 − 30x3 + 9x2 − 1.

Similarly, the degree twenty-four field in the table of smallest root discrimi-
nant is K−27,−1/3. It is defined by

f24(x) = x24 − 8x21 + 64x18 − 36x17

−9x16 − 56x15 + 276x14 − 72x13 + 237x12 − 24x11 + 486x10 − 88x9

+513x8 + 36x7 + 256x6 + 48x5 + 18x4 + 20x3 − 6x2 + 1.

Another particularly interesting case comes from the second to last line of
Table 7.1, where both δ and δt are small.

For speculating where the fields of this section may fit into complete lists, it
is insightful to compare with the polynomials from (7.3) and (7.4). The fields
Q[x]/f6(x) and Q[x]/f t6(x) have root discriminants δ = (2838)1/6 ≈ 10.90

and δt = (21038)1/6 ≈ 13.74. These root discriminants are 12th and 44th on
the complete sextic A6 list, substantially behind the first entry (26672)1/6 ≈
8.12 [10]. On the other hand the common splitting field of f6(x) and f t6(x)

has root discriminant 213/6316/9 ≈ 31.66. This is the smallest root dis-
criminant of a Galois A6 field, substantially ahead of the second smallest
27/6325/18131/2 ≈ 37.23 [10]. We expect that the degree 18 and 24 fields
discussed in this subsection behave similarly to these sextic fields: their root
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discriminants should appear early on complete lists, and their Galois root
discriminants should appear even earlier.

8. A degree 96 family: a large degree dessin and Newton
polygons

Almost all the full number fields presented so far in this paper have been
ramified exactly at the set {2, 3, 5}. Conjecture 1.1 on the other hand envi-
sions inexhaustible supplies of full number fields with other ramification sets
P. This section presents examples with P = {2, 3, 7}.

8.1. One of two similar Hurwitz parameters. Theorems 4.1 and 4.2 of
Malle’s paper [13] each give a two-parameter family of septic covers of the
projective line with monodromy group SL3(F2) ⊂ S7 of order 168 = 23 ·3 ·7.
We focus on the family of Theorem 4.2 which is indexed by the Hurwitz
parameter

h = (SL3(F2), (22111, 421), (4, 1)).

The corresponding degree is m = 192.
The situation has much in common with König’s situation from §7.1 and

we can proceed similarly. Thus, by equating a discriminantal factor with
a standard quartic, we realize Xh as a degree 192 cover of U4,1. The outer
involution of SL3(F2) coming from projective duality gives an explicit invo-
lution analogous to (7.2). Quotienting by this involution yields the degree
96 cover X∗h → U4,1. Unlike the cover of the previous section, this cover is
full.

The family from Theorem 4.1 of [13] is very similar: the partition 421 is
replaced by 331, and the degree 192/2 = 96 is replaced by 216/2 = 108. We
are working with the degree 96 family because the curve given by f96(j, x) =
0 below has genus zero, while its analog for the degree 108 family has genus
one.

8.2. A dessin. The reduced configuration space U4,1 is the same as that
for our introductory family and has been described in §3.4. However the
specialization set is now U4,1(Z[1/42]) rather than the U4,1(Z[1/30]) drawn
in Figure 4.1. We present here only a polynomial for the degree 96 cover of
the vertical line (u, v) = (1/3, (j − 1)/27j) evident in Figure 4.1:

f96(j, x)

=
(
7411887x32 − 316240512x31 + 5718682592x30 − 57608479936x29

+ 345466405984x28 − 1143902168192x27 + 500924971008x26

+ 20121596404224x25 − 178485128485440x24 + 1076315934382080x23

− 4902849972088320x22 + 16964516971136000x21

− 45252388465854976x20 + 95197078307043328x19

− 161987009378324480x18 + 229049096903122944x17
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− 277106243726667264x16 + 295558502345637888x15

− 284898502452436992x14 + 250987121290100736x13

− 200876992270295040x12 + 143474999551229952x11

− 89556680876359680x10 + 47950288840949760x9

− 21681369027919872x8 + 8162827596988416x7

− 2520589064601600x6 + 626540088655872x5 − 122178152300544x4

+ 17986994307072x3 − 1878160048128x2

+ 123834728448x− 3869835264
)3

− 220jx6(3x− 2)2
(
x2 + 2x− 2

)6 (
7x2 − 14x+ 6

)21
·
(
2x3 − 15x2 + 18x− 6

)9
.

The printed degree thirty-two polynomial capturing behavior at j = 0 has
Galois group A32 and field discriminant only 264 336 718.

21 21666

9

9

7 9

Figure 8.1. The dessin corresponding to f96(j, x). Besides the
nine regions with indicated sizes there is a tenth region of size 1
immediately to the left of the centrally printed 21. This small
region is adjacent to two triple points and near an endpoint.
Also to the immediate right of each of the two left-printed nines,
there is one triple point and two endpoints.

Figure 8.1 draws the dessin of f96(j, x), not in the copy of C with coordi-
nate x, but rather the copy of C with coordinate x′ = 1/(1 − x), for better
geometric appearance. By definition, the figure consists of all x′ correspond-
ing to x satisfying f96(j, x) = 0 with j ∈ [0, 1]. This figure has the natural
structure of a graph with 96 edges, the preimages of (0, 1). All vertices have
degree ≤ 3: there are thirty-two triple points, the preimages of 0, and forty
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double points and sixteen endpoints, the preimages of 1. The forty double
points are not readily visible in the figure, as they lie in the middle of forty
double edges, but most of the triple points and endpoints are. There are also
ten regions, of varying size, defined as half the number of bounding edges.
The few aspects of all this structure which are not visible are described in
the caption of Figure 8.1. The topological structure could also be deduced
from a braid computation, rather than from the defining equation.

The polynomial f96(j, x) and Figure 8.1 illustrate the nature and com-
plexity of the objects we are considering. Note that the existence of this
cover shows that the Hurwitz number algebra indexed by

(A96, (332, 240 116, 212 93 7 63 2), (1, 1, 1))

has at least one factor of Q. The entire Hurwitz algebra is way out of
computational range, because the two main terms in the mass formula (3.6)
give 3× 1015 as an approximation for its degree.

A common feature of f25(j, x) from §4.2 and f96(j, x) is not accidental.
In the braid group description of their monodromy, calculable purely group-
theoretically, local monodromy operators about 0 and 1 are the images of
braid group elements of order 3 and 2 respectively. Thus the preimage of
u = 1/3 in Xh → U4,1 for any h with multiplicity vector (4, 1) likewise has
this property.

8.3. Specialization and Newton polygons. For greater explicitness, we
report only on specializing f96(j, x) to j ∈ U3,1(Z[1/42]). From complete
tables of elliptic curves [6], this specialization set has size 413. Supporting
Principle A, all 413 algebras are nonisomorphic. Supporting Principle B,
these algebras all have Galois group A96. Investigating Principle C is more
subtle. In lieu of completely factoring f96(j, x) over Qp and taking field
discriminants of the factors, we use Newton polygons. To illustrate this
computationally much simpler method, we take j = 1/3 as a representative
example, and work with

g(x) = 3f(1/3, x) = 37721x96 − 2737721x95 + · · ·+ 253332x− 248331.

Factoring modulo 2, 3, and 7 gives

g(x)
2≡ x96, g(x)

3≡ x54(x− 2)33, g(x)
7≡ h2(x)h20(x)h25(x),

with hk(x) irreducible of degree k. The 2-adic Newton polygon of g(x) has all
slopes 1/2, showing that all 96 roots α ∈ Q2 have ord2(α) = 1/2. Since the
denominator is divisible by 2, one has that the 2-adic wild degree as in §4.5
is m2-wild = 96. From a more complicated calculation with 3-adic Newton
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polygons, we get that the 96 roots α ∈ Q3 are distributed as follows:

9 roots with ord3(α) = 4/9, 22 roots with ord3(α− 1) = 13/21,
27 roots with ord3(α) = 1/3, 3 roots with ord3(3α− (1− i)) = 2/3,
3 roots with ord3(α) = −1/3, 3 roots with ord3(3α− (1 + i)) = 2/3,
9 roots with ord3(α/3− i) = 5/9, 12 roots with ord3(α− 1) = 1/2.
9 roots with ord3(α/3 + i) = 5/9,

Only the last twelve α could possibly not contribute to the 3-adic wild degree,
giving alreadym3-wild ≥ 84. But in fact these α satisfy ord3(α

2/3−2) = 5/12
so one has m3-wild = 96. Finally, the 7-adic Newton polygon of g(x) has
slopes 0 and −3/7 with multiplicities 47 and 49 respectively. The slope of 0
corresponds to the isolated roots modulo 7 and the slope of −3/7 then gives
m7-wild = 49.

The Newton polygon process can be easily automated. It says that all 413
algebras are wildly ramified at both 2 and 3. It says also that all algebras
are wildly ramified at 7 except for those coming from the specialization
points −315373/28, −73/2132, 73/29, 73/35, 73/2133, 5373/35, 2273/3 and
74/263, −74/2734, 74, −75/2138. The first seven all have tame ramification
at 7 corresponding to the partition 193139 while the last four have tame
ramification at 7 corresponding to the partition 571313. This behavior comes
from the fact that these specialization points are all 7-adically close to j = 0
and the degree 32 polynomial above has tame ramification at 7 given by the
partition 191113.

9. A degree 202 family: degenerations and generic
specialization

Continuing to increase degrees as we go through the last six sections,
we now describe a family having degree 202. Our description emphasizes
its degenerations, a relevant topic because how a family degenerates has
substantial influence on how ramification behaves in the Hurwitz number
fields within the family. We conclude by observing that specialization is
generic, both in one of the degenerations of the family and in the family
itself.

9.1. Some plane curves. To streamline the subsequent subsections, we
first present some polynomials defining affine curves in the x-y plane. The
next two subsections will place a natural function on each curve, and we
index the polynomials by the degree of this function.

Eleven relatively simple polynomials are

A10 = x, B4 = x− 1,

A13 = y, B8 = y − 1,

A14 = x− y, B32 = x2y − 4x2 − 8xy + 20x+ 10y − 20,

A16 = 3xy − 6x− 6y + 10, C22 = 3xy2 − 12xy + 8x− 15y2 + 40y − 24,
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A20 = x2y − 3x2 − 6xy C25 = 3x2y − 6x2 − 12xy + 20x+ 10y − 15,

+ 12x+ 6y − 10, D10 = 3x2 − 12x+ 10.

For all but one of these polynomials P , the curve P given by its vanishing is
obviously rational, as at least one of the variables appears to degree one in
P . In contrast, the curve D10 consists of two genus zero components, neither
one of which is defined over Q.

B52 1 x x2 x3 x4

1 1080 −2160 1296 −176 −24
y −1080 2052 −1164 156 12
y2 135 −276 180 −36
y3 50 −84 36
y4 15 −12

D32 1 x x2 x3 x4

1 160 −192 48
y −320 192 120 −48
y2 250 12 −213 12 12
y3 −300 288 −18 −12
y4 90 −108 27

D48 1 x x2 x3 x4 x5 x6

1 1600 −2880 1632 −288
y 2400 −8160 9048 −3960 576
y2 1200 −6480 11448 −8712 2880 −324
y3 −2500 6300 −4620 −108 1395 −513 54
y4 1500 −3900 3780 −1692 351 −27

Table 9.1. Three polynomials
∑
cijx

iyj , presented by listing
their coefficients cij .

Three more complicated polynomials are given in matrix form in Table 9.1.
The corresponding curves B52, D32, and D48 have genus 1, 2, and 5 respec-
tively. Each genus is much smaller than the upper bound allowed by the
support in Z2

≥0 of the coefficients; this bound, being the number of “inte-
rior” coefficients, is 6, 6, and 12 respectively. In each case, there are several
singularities causing this genus reduction, one of which is at (1, 1).

9.2. Calculation of a rational presentation. This subsection is very
similar to §6.1, illustrating that in favorable cases computation of Hurwitz
covers following the outline of §3.7 is quite mechanical. As normalized Hur-
witz parameter we take

h = (S6, (21111, 3021, 31111, 4∞11), (2, 1, 1, 1)).

Any function governed by h is of the form

g(s) =
s3(s− x)2(s− y)

a (s2 + s(d− e− 1) + e)
.
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The ramification requirement on g at 1 is that (g(1), g′(1), g′′(1)) = (1, 0, 0).
These three equations let us express a, d, and e in terms of x and y. Namely

a = −C25, d =
B2

4B8

C25
, e =

A20

C25
.

Using a resolvent as usual, we find that the critical values of g(s) besides 0,
1, and ∞ are the roots of Wt2 + (V − U −W )t+ Ut2 with

U = −2233A5
10A

4
13A

3
14A16A

2
20,(9.1)

V = −33B4B
2
8B

4
32B52,(9.2)

W = 28C5
25C22.(9.3)

Comparing with the standard quadratic t2 + (v − u − 1)t + u, one gets the
rational presentation

u =
U

W
, v =

V

W
.(9.4)

So, appealing to (9.1)-(9.3) and the explicit polynomials in §9.1, Equa-
tions (9.4) express u and v as explicit functions of x and y.

9.3. A view of Xh. Recall from §6.2 and Figure 6.1 that the complement
of U2,1,1,1 in the projective u-v-plane consists of three lines A, B, C and a
conic D. In the map from the affine x-y plane to the projective u-v plane,
we can consider the preimages of these discriminantal curves.

Figure 9.1 draws the real points of these four preimages. Using as before
a similar notation for an equation and its curve, inspection of our equations
gives

π−1h (A) = A10 ∪ A14 ∪ A13 ∪ A16 ∪ A20,

π−1h (B) = B4 ∪ B8 ∪ B32 ∪ B52,

π−1h (C) = C25 ∪ C22,

π−1h (D) = D10 ∪ D32 ∪ D48.

The figure is intended to indicate the rich geometry present in any Hurwitz
surface. Other interesting curves present whenever ν = (2, 1, 1, 1) are the
preimages of the lines ad, bd, cd, bc, ac, and ab introduced in §6. For
the current h, all of them have a complicated real locus. Their genera are
respectively 25, 18, 23, 35, 31, and 23. The curves ad, bd, and cd intersect
at the preimage of the point d, and Figure 9.1 also draws the ten real points
of this preimage.

9.4. Degree 202 polynomials and their degenerate factorizations.
Removing y and x respectively from (9.4) by resultants gives degree 202
polynomials f(u, v, x) and φ(u, v, y). Completely expanded, they have 10484
and 15555 terms respectively.
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Figure 9.1. Xh(R) is the complement of the drawn curves in
the real x-y plane. The drawn points are the ten real preimages
of (u, v) = (1, 1).

The structures studied in the previous two subsections appear when one
factors specializations corresponding to the four discriminantal components:

f(0, v, x) = x50(x2 − 4x+ 6)a13(v, x)4a14(v, x)3a16(v, x)a20(v, x)2,

f(u, 0, x) = −(x− 1)6b8(u, x)2b32(u, x)4b52(u, x),

lim
u→∞

f(u,wu, x)

u10
= −210(x− 1)7c10(w, x)3c22(w, x)c25(w, x)5,

f(r2, (1− r)2, x) = −(3x2 − 12x+ 10)5d32(r, x)3d48(r, x)2,

and

φ(0, v, y) = y52(3y2 − 8y + 8)α10(v, y)5α14(v, y)3α16(v, y)α20(v, y)2,

φ(u, 0, y) = (y − 1)16(y − 4)2β4(u, y)β32(u, y)4β52(u, y),

lim
u→∞

φ(u,wu, y)

u13
= −236(y − 2)3(y − 1)7γ6(w, y)2γ22(w, y)γ25(w, y)5,

φ(r2, (1− r)2, y) = δ10(r, y)δ32(r, y)3δ48(r, y)2.
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Our notation coordinates the different viewpoints: for example, the equa-
tions D48 = 0, d48(r, x) = 0, and δ48(r, y) = 0 all describe the genus five
curve D48.

As a sample degeneration, chosen because it makes an interesting com-
parison the degree 25 polynomials from our introductory example,

c25(w, x)

= −(2x− 5)(3x− 5)2
(
6x4 − 40x3 + 105x2 − 120x+ 50

)4
·
(
12x6 − 60x5 − 40x4 + 760x3 − 1800x2 + 1750x− 625

)
+ 4wx5(x2 − 5x+ 5)3(3x2 − 10x+ 10)2(6x2 − 20x+ 15)4

· (6x2 − 15x+ 10).

Here the x-line is identified with Xh for

h = (S6, (321, 3111, 51, 21111), (1, 1, 1, 1)),

and the the w-line with U1,1,1,1. All the other degenerations have a similar
four-point description. The discriminant of c25(w, x) is

22123665285w13(w − 1)19.

All the other degenerations are likewise three-point covers, all full except for
A14, A16, A20, C6, and D10. In every case, the target variable, be it v, u, w,
or r, is chosen such that the singular values are 0, 1, and ∞.

To be noted is that we are not expending any extra effort here to introduce
a conceptually defined completion of Xh. Indeed the curves that consist of
horizontal lines, namely A13 and B8, are seen clearly by f but only as vestigial
factors by φ. In reverse, the curves that consist of vertical lines, namely A10,
B4, and D10, are seen completely by φ but only partially by f . Finally, to
see preimages corresponding to the factors c10(w, x) and γ6(w, x), one would
have to go beyond the x-y plane as a partial completion of Xh.

A braid group computation gives the partition of 202 which captures how
local sheets of Xh are interchanged as one goes around one of the four dis-
criminantal components in the completion of U2,1,1,1. These partitions are

βA = 510413314220116+2, βB = 43228+1152+4, βC = 525310+226+2122+3,

and βD = 332248110. The boldface exponents correspond to components not
seen by our simple calculations. Thus we are missing only 2, 2, 13, and 0 of
the 202 sheets near the preimages of A, B, C, and D respectively.

9.5. Specialization. The degenerations can be specialized, and the com-
putations support Principles A, B, and C. For example, consider c25(w, x)
specialized to w in the known set U1,1,1,1(Z[1/30]). The 99 algebras are all
distinct, they are all full, and they are all wildly ramified at each of 2, 3, and
5.

Specialization of the full family at the 2947 points of U2,1,1,1(Z[1/30])
can also be satisfactorily studied by elementary techniques, despite the large
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degree. The 2947 algebras are all distinct and they all have Galois group
A202 or S202. From Newton polygons, we know they are all wildly ramified
at 2, 3, and 5. Thus, in this family, Principles A, B, and C hold without
exception.

10. A degree 1200 field: computations in large degree

Conjecture 1.1 says that for certain finite sets of primes P, there exist
full number fields of arbitrarily large degree with ramification set in P. A
natural computational challenge for a given P is then to produce an explicit
full Hurwitz number field Kh,u with degree m as large as possible. In this
short final section, we take P = {2, 3, 5} and produce such a field for degree
m = 1200.

Taking h = (S6, (21111, 30211, 4∞11), (4, 1, 1)) and normalizing as indi-
cated, the functions to consider are

g(s) =
as3(s− 1)2(s− x)

s2 + bs+ c
.

As specialization point, we take u = ((t4 − 4t− 6), {0}, {∞}). This special-
ization point indeed keeps ramification within {2, 3, 5} as the discriminant
of t4 − 4t− 6 is −2835.

The condition that the critical values besides 0 and ∞ are the roots of
t4 − 4t − 6 gives four equations in the four unknowns x, a, b, c. Of the
unknowns, we focus on x because its special values 0, 1, and ∞ are all
meaningful, corresponding to degenerations. Eliminating a and then c is
easy. Eliminating b then has a ten-minute run-time onMagma to get a degree
3700 polynomial. Factorizing this polynomial to find the relevant factor has a
one-minute run-time. The resulting monic polynomial f1200(x) ∈ Z[1/30][x]
defining Kh,u satisfies f1200(0) = 2880/5500 and f1200(1) = 3684/22565500.
After removing all factors of 2, 3, and 5, the coefficients are integers averaging
about 440 digits.

Some aspects of the polynomial are easy to analyze despite its large de-
gree and large coefficients. From the factorization partitions (989, 208, 3) at
19 and (1181, 9, 6, 4) at 47, it has Galois group S1200, in conformity with
Principle B. From Newton polygons, it is wildly ramified at 2, 3, and 5, as
predicted by Principle C. There are 34 real roots and thus 583 conjugate
pairs of nonreal roots.

In the initially submitted version of this paper, we posed the problem of
computing the discriminant of the degree 1200 field. The referee suggested
that the Montes algorithms, as developed further in [9] and [16], might suc-
ceed. At our request, Guàrdia and Nart applied these algorithms. They
found the discriminant to be −25595 32747 51087. In the process, they found
the local decompositions to have the following form, expressed using the
conventions of (2.3):

At 2: 5122444 2561208 2561166 128584 48193,
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At 3: 243633 108265 81169 54136 54136 3683 2769 2769 2766 27
2
64 27

4
61 27

2
61

27261 27
2
51 27

2
51 2748 2748 1842 1842 18

2
31 919 3

2
5 3

2
5 35 35 33 33 33 21 10,

At 5: 450467 125
3
155 125155 11660 1630 1120 190.

This example illustrates that the regularity exhibited by Hurwitz number
fields can be numerically investigated even at wild primes in quite large
degrees.
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