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On the cohomology of loop spaces for
some Thom spaces

Andrew Baker

Abstract. In this paper we identify conditions under which the co-
homology H∗(ΩMξ; k) for the loop space ΩMξ of the Thom space Mξ
of a spherical fibration ξ ↓ B can be a polynomial ring. We use the
Eilenberg–Moore spectral sequence which has a particularly simple form
when the Euler class e(ξ) ∈ Hn(B; k) vanishes, or equivalently when an
orientation class for the Thom space has trivial square. As a conse-
quence of our homological calculations we are able to show that the
suspension spectrum Σ∞ΩMξ has a local splitting replacing the James
splitting of ΣΩMξ when Mξ is a suspension.

Contents

Introduction 59

1. Thom complexes of spherical fibrations 60

2. Recollections on the Eilenberg–Moore spectral sequence 63

3. On the cohomology of sphere bundles 66

4. Results on cohomology over F2 68

5. Results on cohomology over Fp with p odd 69

6. Rational results 70

7. Local to global results 70

8. Some examples 71

9. Homology generators and a stable splitting 71

References 73

Introduction

In [1], topological methods were used to prove the algebraic Ditter’s con-
jecture on quasi-symmetric functions, which is equivalent to the assertion
that H∗(ΩΣCP∞;Z) is a polynomial ring (infinitely generated but of fi-
nite type). Most of the ingredients of the proof given there are essentially
formal within algebraic topology, the exception being James’s splitting of
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ΣΩΣCP∞. The purpose of this paper is to identify circumstances in which
the cohomology H∗(ΩMξ;k) of the loop space ΩMξ of the Thom space Mξ
of a spherical fibration ξ ↓ B can be a polynomial ring. In place of the
James splitting we use the Eilenberg–Moore spectral sequence which has a
particularly simple form when the Euler class e(ξ) ∈ Hn(B; k) vanishes, or
equivalently when an orientation class for the Thom space has trivial square.
As a consequence of our homological calculations we are able to show that
the suspension spectrum Σ∞ΩMξ has a local splitting generalizing that for
ΣΩMξ when Mξ is a suspension. Our results appear to be more general
and essentially formal in that only generic properties of the Eilenberg–Moore
spectral sequence are used; however, the above stable splitting is a weaker
result than the James splitting.

Although our examples are all associated with vector bundles, our meth-
ods are valid for arbitrary spherical fibrations, and even more generally they
apply to p-local or p-complete spherical fibrations. We hope to consider ex-
amples associated with p-compact groups in future work.

We were very influenced by the discussion of the cohomology of ΩΣX in
Smith’s article [15]. Massey’s paper [5] provides a useful background to our
work. Although we do not make direct use of it, Ray’s paper [8] has ideas
that might allow generalizations to other mapping cones. Although we do
not make direct use of the results of these papers, we remark that Bott &
Samelson [2] and Petrie [7] gave earlier versions of the arguments we use,
however neither paper contains the full range of our results; in particular
the latter does not deal with questions about multiplicative structure.

Acknowledgements. The author thanks Nigel Ray and Birgit Richter for
much help and encouragement, Larry Smith for pointing out the related
work of Petrie, and Teimuraz Pirashvilli who drew our attention to the
classic paper of Bott and Samelson which predated the James splitting.

1. Thom complexes of spherical fibrations

Let B be space and let ξ : Sn−1 −→ S −→ B be a spherical fibration
with associated disc bundle Dn −→ D −→ B. The Thom space M = Mξ is
the cofibre of the inclusion S −→ D, i.e., the quotient space D/S. In each
fibre this corresponds to the inclusion Sn−1 −→ Dn and there is a cofibre
sequence of based spaces

(1.1) S+ −→ D+ −→M
δ−→ ΣS+.

Here we implicitly allow for generalizations to include localized spheres as
fibres and bundles with structure monoids obtained from the invertible com-
ponents of Maps(Sn−1, Sn−1).

We are interested in the based loop space ΩM . There is an obvious
unbased map S −→ ΩM which sends v ∈ Sb (the fibre above b ∈ B) to the
nonconstant loop [0, 1] −→ M given by t 7→ [(2t − 1)v], running through
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b parallel to v and passing through the base point at times t = 0, 1. This
extends to a based map θ : S+ −→ ΩM . We write ev : ΣΩM −→M for the
evaluation map. See [8] for a related construction.

Our next result is surely standard but we don’t know an explicit reference.

Lemma 1.1. The composition

M
δ−→ ΣS+

Σθ−−→ ΣΩM
ev−−→M

is a homotopy equivalence.

Proof. This follows by unravelling definitions. Depending on the sign con-
ventions used for the coboundary map of a cofibration, it is homotopic to
± Id. �

Corollary 1.2. Let h∗(−) be a reduced cohomology theory. Then the co-
homology suspension map

h∗(M)
ev∗−−−→ h∗(ΣΩM)

∼=−−→ h∗−1(ΩM)

is a monomorphism.

These two results are analogues of results for a suspension ΣX in [15,
section 2] which depend on the fact that Σ,Ω is an adjoint pair.

The next result is standard, although it seems to be hard to find it stated
in this form in the literature, see for example [7, section 1]. To clarify what
is involved, we give details. First recall an algebraic notion.

Let k be a commutative unital ring; tensor products will be taken over k
unless otherwise specified. Let A be a commutative unital graded k-algebra
with product ϕ : A⊗A −→ A.

Definition 1.3. A nonunital A-algebra is a left A-module M with multi-
plication

A⊗M −→M ; a⊗m 7→ a ·m
and a nonunital associative product µ : M ⊗AM −→M . Thus the following
diagram commutes, where T: M ⊗ A −→ A ⊗M is the switch map with
appropriate signs based on gradings.

A⊗M ⊗A⊗M I⊗T⊗I //

·⊗·
��

A⊗A⊗M ⊗M
ϕ⊗µ
��

M ⊗M

µ
''

A⊗M

·
ww

M

For homogeneous elements a1, a2 ∈ A, m1,m2 ∈ M and m1m2 = µ(m1 ⊗
m2),

(a1a2) · (m1m2) = (−1)|a2| |m1|µ((a1 ·m1)⊗ (a2 ·m2)).
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There is a Thom diagonal map ∆̃: M −→ B+ ∧M fitting into a strictly
commutative diagram

(1.2) D+
∆ //

quot.

��

D+ ∧D+

quot.

��
M

∆̃ // B+ ∧M

whose vertical maps are the evident quotient maps. If h∗(−) is a multiplica-

tive cohomology theory, then ∆̃ induces an external product

· : h∗(B)⊗ h̃∗(M) −−→ h̃∗(B+ ∧M)
∆̃∗−−−→ h̃∗(M); b⊗m 7→ b ·m,

where h̃∗(−) denotes the reduced theory.

Theorem 1.4. Suppose that h∗(−) is a commutative multiplicative cohom-

ology theory. Then the external product induced from ∆̃ makes h̃∗(M) into
a left h∗(B)-module enjoying the following properties.

(a) If M has an orientation u ∈ h̃n(M) then the associated Thom iso-
morphism

h∗(B)
∼=−−→ h̃∗(M); x↔ x · u

makes h̃∗(M) into a free h∗(B)-module of rank 1.

(b) The cup product on h̃∗(M) makes it a commutative nonunital h∗(B)-
algebra.

(c) When h∗(−) = H∗(−;Fp) for a prime p, the mod p Steenrod algebra
acts compatibly so that the Cartan formula holds for products of the

form t · w with t ∈ H∗(B;Fp) and w ∈ H̃∗(M ;Fp).

Proof. The main point is to verify that the following diagram commutes,
where ∆ always denotes an internal based diagonal map X −→ X ∧X.
(1.3)

M
∆

ss

∆̃

++
M ∧M

∆̃∧∆̃ ((

B+ ∧M
∆∧∆

vv
B+ ∧M ∧B+ ∧M

switch
// B+ ∧B+ ∧M ∧M

Making use of the commutative diagram (1.2), this follows from properties
of the diagonal ∆: D+ −→ D+ ∧ D+ which is (strictly) coassociative, co-
commutative and counital (the counit is the projection D+ −→ S0). The
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diagram

D+
∆

rr

∆

,,
D+ ∧D+

∆∧∆ ))

D+ ∧D+

∆∧∆uu
D+ ∧D+ ∧D+ ∧D+

switch
// D+ ∧D+ ∧D+ ∧D+

commutes, so by passing to the diagram of quotients we obtain commuta-
tivity of (1.3).

Applying h∗(−) and h̃∗(−) now give the algebraic properties asserted. Of
course h∗(M) is also a commutative unital h∗-algebra.

The statement about the Steenrod action follows from the Cartan formula
for external smash products and naturality. �

Corollary 1.5. If the orientation u satisfies u2 = 0, then the product in

h̃∗(M) is trivial.

Notice that the condition u2 = 0 for one orientation implies that the same
is true for any orientation.

We end with another result involving the external diagonal.

Lemma 1.6. The following diagram commutes.

ΣS+
Σθ //

Σ∆

ww

ΣΩM
ev // M

∆̃
��

ΣS+ ∧ S+

��

B+ ∧M

ΣS+ ∧B+

∼= // B+ ∧ ΣS+
Id∧Σθ // B+ ∧ ΣΩM

Id∧ ev

OO

Hence if h∗(−) is a multiplicative cohomology theory, then

(ev ◦Σθ)∗ : h̃∗(M) −→ h∗(S)

is a homomorphism of h∗(B)-modules.

2. Recollections on the Eilenberg–Moore spectral sequence

There is of course an extensive literature on Eilenberg–Moore spectral
sequence, but for our purposes most of what we need can be found in Smith’s
excellent survey article [15], together with Rector and Smith’s papers on
Steenrod operations [9, 14]. For the homological algebra background and
construction, see [11]. Other useful sources are [3, 10,12,13].

In the following we will assume that k is a field, and H∗(−) = H∗(−;k).
We will also assume that our Thom space M from Section 1 has an orien-
tation in H∗(−), M is simply connected, and H∗(B) has finite type; these
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conditions are needed for convergence of the Eilenberg–Moore spectral se-
quence we will use.

Theorem 2.1. There is a second quadrant Eilenberg–Moore spectral se-
quence of k-Hopf algebras (E∗,∗r , dr) with differentials

dr : Es,tr −→ Es+r,t−r+1
r

and

Es,t2 = Tors,tH∗(M)(k,k) =⇒ Hs+t(ΩM).

The grading conventions here give

Tors,∗H∗(M) = Tor
H∗(M)
−s,∗

in the standard homological grading.
When k = Fp for a prime p, this spectral sequence admits Steenrod op-

erations; see [9,10,12–14]. We denote the mod p Steenrod algebra by A(p)∗

or A∗ when the prime p is clear.

Theorem 2.2. If H∗(−) = H∗(−;Fp) for a prime p, the Eilenberg–Moore
spectral sequence is a spectral sequence of A∗-Hopf algebras.

We will need explicit formulae for the Steenrod action. The main result
is the following.

Proposition 2.3. Suppose that X is a based space. Then in the Eilenberg–
Moore spectral sequence

E∗,∗2 = Tor∗,∗H∗(X;Fp)(Fp,Fp) =⇒ H∗(ΩX;Fp)

the action of the Steenrod operations on the E2-term is given in terms of the
cobar construction by

Sqs[x1| · · · |xn] =
∑

s1+···+sn=s

[Sqs1x1| · · · |Sqsnxn] if p = 2,

Ps[x1| · · · |xn] =
∑

s1+···+sn=s

[Ps1x1| · · · |Psnxn] if p is odd.

Sketch of Proof. There is a construction of the Eilenberg–Moore spectral
sequence for the pullback of a fibration q along a map f .

E′ //

q′

��

E

q

��
B′

f
// B
y

For details see [3,14]. This approach involves the cosimplicial space C• with

Cs = E ×B×s ×B′
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and structure maps ht : C
s −→ Cs+1 (0 6 t 6 s+ 1),

ht(e, b1, . . . , bs, b
′) =


(e, h(e), b1, . . . , bs, b

′) if t = 0,

(e, b1, . . . , bt−1, bt, bt, bt+1, . . . , bs, b
′) if 1 6 t 6 s,

(e, b1, . . . , bs, q(b
′), b′) if t = s+ 1.

The geometric realisation |C•| admits a map E′ −→ |C•|, and on applying
H∗(−;Fp) to the coskeletal filtration of |C•| we obtain the Eilenberg–Moore
spectral sequence for H∗(E′;Fp). Then the E1-term can be identified with
bar construction on H∗(B;Fp) and comes from the cohomology of the fil-

tration quotients which are suspensions of the spaces E ∧ B(s) ∧ B′. The

action of Steenrod operations on H̃∗(E ∧B(s) ∧B′;Fp) is determined using
the Cartan formula, and gives the claimed formulae in the E2-term. �

Now we come to a special situation that is our main concern.

Theorem 2.4. Suppose that the orientation u ∈ Hn(M) = Hn(M ;k) sat-
isfies u2 = 0. Then there is an isomorphism of Hopf algebras

Tor∗,∗H∗(M)(k,k) = B∗(H∗(M)),

where B∗(H∗(M)) denotes the bar construction with

B−s(H∗(M)) = (H̃∗(M))⊗s

for s > 0. The coproduct

ψ : B−s(H∗(M)) −→
s⊕
i=0

B−i(H∗(M))⊗ Bi−s(H∗(M))

is the usual one with

ψ([u1| · · · |us]) =
s∑
i=0

[u1| · · · |ui]⊗ [ui+1| · · · |us],

where we use the traditional bar notation [w1| · · · |wr] = w1 ⊗ · · · ⊗ wr.

Proof. The proof is identical to that for the case of ΣX in [15, section 2,

example 4], and uses the fact that H̃∗(N) has only trivial products by Corol-
lary 1.5. �

Remark 2.5. The product in the E2-term is the shuffle product,

[u1| · · · |ur]� [v1| · · · |vs] =
∑

(r, s) shuffles σ

(−1)Sgn(σ)[wσ(1)|wσ(2)| · · · |wσ(r+s)],

where σ ∈ Σr+s is an (r, s)-shuffle if

σ(1) < σ(2) < · · · < σ(r), σ(r + 1) < σ(r + 2) < · · · < σ(r + s),

wσ(i) =

{
uσ(i) if 1 6 σ(i) 6 r,

vσ(i)−r if r + 1 6 σ(i) 6 r + s,
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and

Sgn(σ) =
∑
(i,j)

(degwi + 1)(degwr+j + 1))

where the summation is over pairs (i, j) for which σ(i) > σ(r + j).

In the situation of this theorem we have:

Corollary 2.6. The Eilenberg–Moore spectral sequence of Theorem 2.1 col-
lapses at the E2-term.

The proof is similar to that of [15, section 2, example 4], and depends on
two observations on this spectral sequence for H∗(ΩM) under the conditions
of Theorem 2.1.

Lemma 2.7. The edge homomorphism e : E−1,∗+1
2 −→ H∗(ΩM) can be

identified with the composition

H∗+1(M)
ev∗−−→ H∗+1(ΣΩM)

∼=−→ H∗(ΩM)

using the canonical isomorphism E−1,∗+1
2

∼=−→ H∗+1(M).

Corollary 2.8. The edge homomorphism e : E−1,∗+1
2 −→ H∗(ΩM) is a

monomorphism.

Proof. This follows from Lemma 1.1 since (Σθ ◦ δ)∗ provides a left inverse
for e. �

3. On the cohomology of sphere bundles

In this section we recall some results of Massey [5, part II]. We continue
to use the notation and general set-up of Section 1.

We assume that our spherical fibration ξ is orientable in ordinary cohom-
ology H∗(−) = H∗(−;k). Choosing an orientation class u ∈ Hn(M), we
also suppose that u2 = 0. Then (1.1) induces an exact sequence

0→ H∗(B) −−→ H∗(S)
δ∗−−→ H̃∗+1(M)→ 0

in which δ∗ is a an H∗(B)-module homomorphism with respect to the obvi-

ous module structure on H∗(S) and the Thom module structure on H̃∗(M).
Since the left hand map is a monomorphism we regard H∗(B) as a subring
of H∗(S).

Now choose v ∈ Hn−1(S) so that δ∗(v) = u. Then by [5, (8.1)] there is a
relation of the form

(3.1) v2 = s+ tv,

where s ∈ H2n−2(B) and t ∈ Hn−1(B). If we make a different choice
v′ ∈ Hn−1(S) with δ∗(v′) = u, then w = v′− v ∈ Hn−1(B) and we find that

(v′)2 = s′ + t′v′,
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where

s′ = s− wt− w2,

t′ =

{
t if n is even,

t+ 2w if n is odd.

Massey also shows that when n is odd and k = F2,

(3.2) t = wn−1(ξ).

Here we define the Stiefel–Whitney class through the Wu formula in H∗(M),

wn−1(ξ) · u = Sqn−1u.

Of course this makes sense for any spherical fibration, not just those associ-
ated with vector bundles.

Here are two examples that we will discuss again later.

Example 3.1. Consider the universal Spin(2) and Spin(3) bundles ζ2 ↓
BSpin(2) and ζ3 ↓ BSpin(3) obtained from the canonical representations
into SO(2) and SO(3). Of course the bases of these bundles can be taken to
be

BSpin(2) = CP∞, BSpin(3) = HP∞,

and ζ2 = η2, the square of the universal complex line bundle η ↓ CP∞.
Since there are Spin(3)-equivariant homeomorphisms

Spin(3)/Spin(2) ∼= SO(3)/SO(2) ∼= S2,

the sphere bundle of ζ3

ESpin(3)/Spin(2)
.
=−→ ESpin(3)×Spin(3) Spin(3)/Spin(2)

−→ ESpin(3)/Spin(3)

can be realised as the natural map CP∞ −→ HP∞. In cohomology this
induces a monomorphism

H∗(HP∞;F2) = F2[y] −→ H∗(CP∞;F2) = F2[x]; y 7→ x2.

It is clear that in H∗(−;F2), w2(ζ2) = 0 = w2(ζ3) and also w3(ζ3) = 0 since
H3(HP∞) = 0.

So we can take v = x and then (3.1) becomes

x2 = y + 0x,

since t = w2(ζ3) = 0. Similarly, if p is an odd prime, we have t = 0 and the
analogous relations hold in H∗(CP∞;Fp) and in H∗(CP∞;Q).
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4. Results on cohomology over F2

Now we can give some general results for the case k = F2. Here H∗(−) =
H∗(−;F2).

We recall Borel’s theorem on the structure of Hopf algebras over perfect
fields, see [6, theorem 7.11 and proposition 7.8].

Theorem 4.1. Suppose that the orientation u ∈ Hn(M) satisfies u2 = 0,
H∗(B) has no nilpotents, and Sqn−1u 6= 0. Then H∗(ΩM) is a polynomial
algebra.

Proof. Let 0 6= x ∈ Hk(B) and consider [x · u] ∈ E−1,k+n
2 . Then the

Steenrod operation Sqn+k−1 satisfies

Sqn+k−1[x · u] = [Sqn+k−1(x · u)]

= [(Sqkx) · Sqn−1u]

= [x2 · Sqn−1u] 6= 0,

since all other terms in the sum
∑

i Sqix · Sqn+k−1−iu are easily seen to
be trivial. It follows that the element of H∗(ΩM) represented in the spec-
tral sequence by [x · u] has nontrivial square since this is represented by
Sqn+k−1[x · u] = [x2 · Sqn−1u] 6= 0.

More generally, using the description of the E2-term in Theorem 2.4, we
can similarly see that an element [x1 · u| · · · |x` · u] with xi ∈ Hki(B) has

Sqk1+···+k`+n`−`[x1 · u| · · · |x` · u] = [x2
1 · Sqn−1u| · · · |x2

` · Sqn−1u] 6= 0.

Thus the algebra generators of H∗(ΩM) are not nilpotent, so by Borel’s
theorem we see that H∗(ΩM) is a polynomial algebra. �

Theorem 4.2. Suppose that the orientation u ∈ Hn(M) = Hn(M ;F2)
satisfies u2 = 0 and Sqn−1u = 0. Then H∗(ΩM) is an exterior algebra.

Proof. First consider an element of w ∈ Hn+k−1(ΩM) in filtration 1. We
can assume that this is represented in the Eilenberg–Moore spectral sequence
by [x · u] for some x ∈ Hk(B). Then w2 = Sqn+k−1w is represented by

Sqn+k−1[x · u] = [(Sqkx) · Sqn−1u] = 0,

and is also in filtration 1. Since in positive degrees, filtration 0 is trivial, we
have w2 = 0.

Now we proceed by induction on the filtration r. Suppose that for every
positive degree element z ∈ H∗(ΩM) of filtration r > 1, we have z2 = 0.
Suppose that w ∈ H∗(ΩM) has filtration r + 1. We can assume that w
is represented by [x1 · u| · · · |xr+1 · u] where xj ∈ Hkj (B). Applying the

Steenrod operation Sqk1+···+kr+1+(r+1)n−1 we see that w2 is also in filtration
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r + 1 and is represented by

Sqk1+···+kr+1+(r+1)(n−1)[x1 · u| · · · |xr+1 · u]

= [(Sqk1x1) · Sqn−1u| · · · |(Sqkr+1xr+1) · Sqn−1u] = 0.

On the other hand, the coproduct on w is

ψ(w) = w ⊗ 1 + 1⊗ w +
∑
i

w′i ⊗ w′′i

where the w′i, w
′′
i all have filtration in the range 1 to r. On squaring and

using the inductive assumption we find that

ψ(w2) = w2 ⊗ 1 + 1⊗ w2,

so w2 is primitive and decomposable. By [6, proposition 4.21], the kernel of
the natural homomorphism PH∗(ΩM) −→ QH∗(ΩM) consists of squares of
primitives. Since the primitives must all have filtration 1, all such squares
are trivial, hence w2 = 0. This shows that all elements of filtration r + 1
square to zero, giving the inductive step.

Borel’s theorem now implies that H∗(ΩM) is an exterior algebra. �

5. Results on cohomology over Fp with p odd

In this we give analogous results for the case k = Fp where p is an odd
prime. Here H∗(−) = H∗(−;Fp). We assume that n is odd, say n = 2m+1,
and that M has an orientation class u ∈ H2m+1(M). For degree reasons,
u2 = 0.

Theorem 5.1. Suppose that H∗(B) has no nilpotents, and Pmu 6= 0. Then
H∗(ΩM) is a polynomial algebra.

Of course Pmu defines a Wu class Wm(ξ) by the formula

Wm(ξ) · u = Pmu,
and the condition Pmu 6= 0 amounts to its nonvanishing. The no nilpotents
condition implies that H∗(B) is concentrated in even degrees.

Proof. Let 0 6= x ∈ H2k(B) and consider [x · u] ∈ E−1,2k+2m+1
2 . Then the

Steenrod operation Pm+k satisfies

Pm+k[x · u] = [Pm+k(x · u)]

= (Pkx) · Pmu
= xp · Pmu 6= 0,

since all other terms in the sum
∑

i P ix · Pm+k−iu are easily seen to be
trivial. It follows that the element of H∗(ΩM) represented in the spectral
sequence by [x · u] has nontrivial p-th power since it is represented by

Pm+k[x · u] = [xp · Pmu] 6= 0.
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Similarly every element represented by [x1 · u| · · · |x` · u] with xi ∈ H2ki(B)
has nonzero p-th power since

Pk1+···+k`+m`[x1 · u| · · · |x` · u] 6= 0.

Thus the algebra generators of H∗(ΩM) are not nilpotent, so by Borel’s
theorem we see that H∗(ΩM) is a polynomial algebra. �

We will call a connective commutative graded Fp-algebra p-truncated if
every positive degree element x satisfies xp = 0. When p = 2, being 2-
truncated is equivalent to being exterior.

Theorem 5.2. Suppose that Pmu = 0. Then H∗(ΩM) is a p-truncated
algebra.

Proof. First consider an element of w ∈ H2m+2k(ΩM) in filtration 1. We
can assume this is represented in the Eilenberg–Moore spectral sequence

by [x · u] ∈ E−1,2m+2k+1
2 for some x ∈ H2k(B). Then wp = Pm+kw is

represented by
Pm+k[x · u] = [(Pkx) · Pmu] = 0,

and is also in filtration 1. Since filtration 0 is trivial in positive degrees, we
have wp = 0.

Now as in the proof of Theorem 4.2, we prove by induction on the filtra-
tion r that for every positive degree element z ∈ H∗(ΩM) of filtration r > 1
has zp = 0. Borel’s theorem now implies that every element of H∗(ΩM) has
trivial p-th power. �

6. Rational results

In this section we take k = Q. By Borel’s Theorem [6, theorem 7.11 and
proposition 7.8], we have

Theorem 6.1. There is an isomorphism of algebras

H∗(ΩM ;Q) ∼=
⊗
i

Q[xi]⊗
⊗
j

Q[yi]/(y
2
j ),

where deg xi is even and deg yi is odd. In particular, if H∗(M ;Q) is con-
centrated in odd degrees then H∗(ΩM ;Q) is a polynomial algebra on even
degree generators.

7. Local to global results

Before giving some examples, we record a variant of the local-global re-
sult [1, proposition 2.4]. We follow the convention that a prime p can be 0
or positive, and set F0 = Q.

Let S ⊆ N be the multiplicatively closed set generated by a set of nonzero
primes (if this set is empty then S = {1}). Then

Z[S−1] = {a/b : a ∈ Z, b ∈ S}.
In the following, whenever p /∈ S, Fp = Z[S−1]/(p).
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Proposition 7.1. Suppose that H∗ is a graded commutative connective
Z[S−1]-algebra which is concentrated in even degrees and with each H2n

a finitely generated free Z[S−1]-module. Suppose that for each prime p /∈ S,
H(p)∗ = H∗ ⊗ Fp is a polynomial algebra, then H∗ is a polynomial algebra
and for every prime p,

rankZ[S−1] QH2n = dimFp QH(p)2n.

Proof. The proof of [1, proposition 2.4] can be modified by systematically
replacing Z with the principal ideal domain Z[S−1] and working only with
primes not contained in S (including 0). �

8. Some examples

Our first example is a recasting of the main result of [1].

Example 8.1. Consider the universal line bundle η ↓ CP∞, viewed as a real
2-plane bundle. Then the 3-dimensional bundle ξ = η ⊕ R has Thom space
Mξ = ΣMU(1) ∼ CP∞. It is straightforward to verify that the conditions
of Theorems 4.1 and 5.1 apply. Thus H∗(ΩΣCP∞;Z) is polynomial.

Example 8.2. Recall Example 3.1.
Since w2(ζ3) = 0 = w2(ζ2), H∗(ΩMSpin(3);F2) andH∗(ΩΣMSpin(2);F2)

are exterior algebras.
For an odd prime p, the natural map ΣMSpin(2) −→ MSpin(3) induces

a monomorphism in H∗(−;Fp) and in H∗(MSpin(2);Fp) = H∗(CP∞;Fp)
we see that for the generator x ∈ H2(CP∞;Fp). P1x = xp 6= 0. Therefore
H∗(ΩMSpin(3);Fp) and H∗(ΩΣMSpin(2);Fp) are polynomial algebras.

On combining these results we see that each of H∗(ΩMSpin(3);Z[1/2])
and H∗(ΩΣMSpin(2);Z[1/2]) is a polynomial algebra.

9. Homology generators and a stable splitting

The map θ : S+ −→ ΩM introduced in Section 1 allows us to define a
canonical choice of generator v ∈ Hn−1(S) in the sense of Massey’s paper [5],
namely

v = (ev ◦Σθ)∗u.
This follows from Lemma 1.1. When n = 2m+1 is odd, in mod p cohomology
H∗(−) = H∗(−;Fp), from (3.1) we obtain

v2 = s+ tv,

where

t =

{
w2m(ξ) if p = 2,

Wm(ξ) if p is odd.

and we define these invariants by

w2m(ξ) · u = Sq2mu,

Wm(ξ) · u = Pmu.
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Notice that the multiplicativity given by Lemma 1.6 implies that for x ∈
H∗(B),

(ev ◦Σθ)∗(x · u) = xv.

Now let bi ∈ H∗(B) form an Fp-basis for H∗(B), where we suppose that
b0 = 1. Then the elements biv, bi ∈ H∗(S) form a basis for H∗(S), and the

bi · u form a basis for H̃∗(M). Since

δ∗(biv) = bi · u, δ∗(bi) = 0,

for the dual bases (bi · v)◦, (bi)
◦ of H∗(S) and (bi · u)◦ of H̃∗(M) we have

δ∗((bi · u)◦) = (biv)◦.

Furthermore, (Σθ ◦ δ)∗((bi · u)◦) is dual to the class represented in the
Eilenberg–Moore spectral sequence by the primitive [bi · u], hence the (Σθ ◦
δ)∗((bi · u)◦) form a basis for the indecomposables QH∗(ΩM). Using the
bar resolution description of the Eilenberg–Moore spectral sequence and the
dual cobar resolution for the homology spectral sequence

E2
∗,∗ = Cotor

H∗(M)
∗,∗ (Fp,Fp) =⇒ H∗(ΩM)

we obtain:

Proposition 9.1. The homology algebra H∗(ΩM ;Fp) is the free noncom-
mutative algebra on the elements (Σθ ◦ δ)∗((bi · u)◦).

Now we can give an analogue of the James splitting. We need the free
S-algebra functor T of [4, section II.4]. This is defined for an S-module X
by

TX =
∨
k>0

X(k),

where (−)(k) denotes the k-th smash power. The map Σθ ◦ δ gives rise to a
map of spectra

Θ: Σ−1Σ∞M −→ Σ∞ΩM

and by the freeness property of T, there is an induced morphism of S-
algebras

Θ̃ : T(Σ−1Σ∞M) −→ Σ∞(ΩM)+,

where Σ∞(ΩM)+ becomes an S-algebra using the natural A∞ structure on
ΩM .

Theorem 9.2. Suppose that p is a prime for which Proposition 9.1 is true.

Then Θ̃ is an HFp-equivalence of S-algebras.

Proof. Under Θ̃∗, an exterior product of classes in H∗(Σ
−kΣ∞M (k);Fp)

goes to their internal product in H∗(ΩM ;Fp). Now Proposition 9.1 shows

that Θ̃ is an Fp-equivalence for such a prime p. �

Combining our results and using an arithmetic square argument we obtain
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Theorem 9.3. Let S ⊆ N be the multiplicatively closed set generated by all

the primes p for which Proposition 9.1 is false. Then Θ̃ is an HZ[S−1]-
equivalence of S-algebras. Hence there is an HZ[S−1]-equivalence∨

k>1

Σ−kΣ∞M (k) −→ Σ∞ΩM.

Of course, this stable splitting is very different from the James splitting
for a connected based space X,

ΣΩΣX ∼
∨
k>1

ΣX(k).
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