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A sharp Bogomolov-type bound

Sara Checcoli, Francesco Veneziano
and Evelina Viada

Abstract. We prove a sharp lower bound for the essential minimum
of a nontranslate variety in certain abelian varieties. This uses and
generalises a result of Galateau. Our bound is a new step in the direction
of an abelian analogue by David and Philippon of a toric conjecture of
Amoroso and David and has applications in the framework of anomalous
intersections.
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1. Introduction

In this paper, by variety we mean an algebraic variety defined over the
algebraic numbers. Let A be an abelian variety; with a symmetric ample
line bundle L on A we associate an embedding iL : A→ Pm defined by the
minimal power of L which is very ample. Heights and degrees corresponding
to L are computed via this embedding. More precisely, ĥL will denote the
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L-canonical Néron–Tate height, and the degree degL of a subvariety of A is
defined as the degree of its image in Pm under iL.

If A is a product of abelian varieties, we fix on each simple nonisogenous
factor a symmetric very ample line bundle. On A we consider the line bundle
L obtained as the tensor product of the pullbacks of the natural projections
of A onto its factors.

A subvariety Y of an abelian variety is translate if it is the union of trans-
lates of algebraic subgroups. We also say that a subvariety Y ⊆ A is torsion
if it is the union of components of algebraic subgroups. An irreducible Y is
called transverse (resp. weak-transverse) if it is not contained in any proper
translate (resp. in any proper torsion variety).

The torsion is a dense subset of A and, in view of the abelian analogue
of Kronecker’s theorem, it is exactly the set of points of height 0. This
statement motivates further questions about points of small height on A
and on its subvarieties.

In the context of the Lehmer problem, effective lower bounds for the
height of nontorsion points of A have been studied for example in [Sil84],
[Mas87], [DH00] and [BS04].

One is then led to study the height function on an algebraic subvariety Y
of A. For instance, by the Manin–Mumford conjecture (proved by Raynaud
[Ray83a], [Ray83b]), the points of height zero are dense in Y if and only if
Y is torsion.

More in general, setting

Y (θ) = {x ∈ Y (Q) | ĥL(x) ≤ θ}

and denoting by Y (θ) its Zariski closure, we have the following result, known
as the Bogomolov Conjecture, proved by Ullmo and Zhang (see for instance
[Ull98] and [Zha98]).

Theorem 1.1 (Bogomolov Conjecture). The essential minimum

µL(Y ) = sup{θ | Y (θ) ( Y }

is strictly positive if and only if Y is nontorsion.

The problem of giving explicit bounds for µL(Y ) in terms of geometrical
invariants of Y and of the ambient variety has been studied in several deep
works, for instance in [DP98], [DP02], [DP07] in the abelian case and in
[BZ96], [Sch96], [AD03], [AV09] in the corresponding toric case.

An effective Bogomolov Conjecture (up to η) for transverse varieties in
an abelian variety A states the following.

Effective Bogomolov Bound: For any abelian variety and for any real
η > 0 there exists a positive effective constant C(A,L, η) such that for every
transverse subvariety Y of A

(1) µL(Y ) ≥ C(A,L, η)
1

(degL Y )
1

codimY
+η
.
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Galateau, in [Gal10], proves this lower bound for varieties transverse in
an abelian variety with a positive density of ordinary primes (Hypothesis
H in [Gal10]). According to a conjecture of Serre, this shall always be true
(see [Pin98, §7]). Some cases are proved: CM abelian varieties (see [BS04,
part 5]), powers of elliptic curves (see [Ser89, chap. IV]) and abelian surfaces
(see [DMOyS82, part VI, 2.7]) have a positive density of ordinary primes.
Thus the bound (1) holds in all such abelian varieties. The constant of
Galateau is effective, for instance, for powers of elliptic curves with the
canonical embedding.

In this paper we prove a strong result for nontranslates, in the following
sense. For an irreducible variety Y , we can consider the minimal translate
H which contains Y . It is then natural to give the following definition.

Definition 1.2. An irreducible variety Y is transverse in a translate H if
Y ⊆ H is not contained in any translate strictly contained in H. The relative
codimension of Y is then the codimension of Y in H denoted codimH Y .

In our main theorem, we prove that an effective Bogomolov bound as in
(1) implies an H-effective Bogomolov bound, in which degH works in our
favour.

Theorem 1.3. Let A be an abelian variety. Assume that an effective Bogo-
molov bound (1) holds. Then, for every variety Y transverse in a translate
H ⊂ A,

µL(Y ) ≥ c(A,L, η)
(degLH)

1
codimH Y

−η

(degL Y )
1

codimH Y
+η
,

where c(A,L, η) is a positive effective constant.

As described in Section 2.3, from the result of Galateau we immediately
deduce:

Theorem 1.4. Let A be an abelian variety with a positive density of ordi-
nary primes. Let Y be a variety transverse in a translate H ⊂ A. Then, for
any η > 0, there exists a positive constant c′(A,L, η) such that

µL(Y ) ≥ c′(A,L, η)
(degLH)

1
codimH Y

−η

(degL Y )
1

codimH Y
+η
.

In our bound, as in the effective Bogomolov bound, the degree of Y ap-
pears in the denominator, but here the degree of H appears at the numera-
tor. This last dependence is crucial for applications in the context of torsion
anomalous intersections and of the Zilber–Pink conjecture, enabling a signif-
icant simplification in some classical uses of such Bogomolov-type bounds.
For instance, using a special case of Theorem 1.4, we obtain some new re-
sults. In particular, in [CVV] we show that: If V is a weak-transverse variety
in a product of elliptic curves with CM, then the V -torsion anomalous vari-
eties of relative codimension one are finitely many. In addition, their degree
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and normalised height are effectively bounded; see [CVV, Theorem 1.3] for
a precise statement.

Our theorems are analogues, up to the logarithmic correction factor, of a
toric conjecture of Amoroso and David in [AD03]; see [DP07] for a suitable
conjecture in the abelian case. In the context of the Lehmer problem, a lower
bound of similar nature to ours for translates of tori is given by Philippon
and Sombra in [PS08] and for points in CM abelian varieties is given by
Carrizosa in [Car09].

The main point in our proof is to compare the line bundle L on A with its
restriction L|H to H. To overcome this difficulty we prove an equivalence of
line bundles which enables us to describe the restriction of the line bundle to
H in terms of pull-backs through several isogenies. From the bound (1), we
immediately deduce the good behaviour of essential minima under isogenies.
We notice that our constant depends explicitly on the constant in (1). In
addition, our method applies to any lower bound of the kind (1) where
the hypothesis on Y are preserved by isogenies. We finally remark that
the hypothesis of irreducibility for Y is not restrictive, indeed the essential
minimum of a reducible variety is the maximum of the essential minima of
its components.

This paper is structured in the following way. In Section 2, we give some
preliminaries. Then, as a straightforward consequence of bound (1), we show
the good behaviour of the essential minimum under the action of an isogeny.

In Section 3 we present the main technical ingredients of the proof, which
is an equivalence of line bundles.

In Section 4 we finally prove our main theorem in two steps: we first
consider the case when H is an abelian subvariety, and then we reduce to
this case the general case of H a translate.

2. Preliminaries

Let A be an abelian variety. We consider irreducible subvarieties Y of A
and we shall analyse the sets of points of small height on Y with respect to
different line bundles; for this reason, when talking about heights, degrees
and essential minima, we always indicate which line bundle we are using.

An abelian variety is isogenous to a product of simple abelian varieties.
We suppose

(2) A = AN1
1 × · · · ×A

Nr
r ,

where the Ai’s are pairwise nonisogenous simple abelian varieties, and we
fix embeddings Ai ↪→ Pmi , given by symmetric ample line bundles on Ai.
On any product variety we consider the line bundle L obtained as the tensor
product of the pullbacks of the natural projections on its factors.

If A is as in (2) and B is an abelian subvariety of A, then

B = B1 × · · · ×Br,
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where for every i, Bi is an abelian subvariety of ANi
i ; this follows, for in-

stance, from [MW85, Lemma 7, p. 262] because ANi
i and A

Nj

j do not have
any nontrivial isomorphic subquotients, when i 6= j.

We denote by End(−) the ring of endomorphisms of abelian varieties.
Recall that End(Ai)⊗Z R is a real, complex or quaternionic algebra, and in
each of these cases we have a standard euclidean norm.

We first prove several results which hold for a power of a simple abelian
variety. Then we extend them to a general abelian variety.

In the following, we write� and� to indicate inequalities up to constants
depending only on the ambient variety, the fixed line bundles and a positive
real number η, but not on the variety Y or the isogenies involved, which
may vary.

2.1. Basic relations of degrees. We recall some basic properties of de-
grees of subvarieties. In this section, we assume that A is an abelian variety
of dimension D.

Let m be a positive integer. Let L be a symmetric ample line bundle on A
and let Lm be the tensor product of m copies of L. Let Y be an irreducible
algebraic subvariety of A of dimension d. Then,

(3) degLm Y = md degL Y.

We are interested in how the degree changes under the action of the
multiplication morphism. For a ∈ Z, we denote by |a| its absolute value and
by [a] the multiplication by a on A.

From [Mum70, Corollary 3, p. 59], we have

[a]∗L = La2 .
Hindry [Hin88, Lemma 6] proves

degL[a]−1Y = |a|2(D−d) degL Y

and

(4) degL[a]Y =
|a|2d

|StabY ∩ ker[a]|
degL Y.

Let φ : A→ A be an isogeny; then the Projection Formula gives

(5) degφ∗L Y = degL φ∗(Y ),

where φ∗(Y ) is the cycle with support φ(Y ) and multiplicity deg(φ|Y ).
Furthermore, by [BL04, Corollary 3.6.6] we have

degφ∗LA = | kerφ|degLA,

and more in general:

Lemma 2.1. Let φ : A→ A be an isogeny. Let Y be an irreducible algebraic
subvariety of A. Then

degL φ∗(Y ) = |StabY ∩ kerφ| degL φ(Y ).
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We also have:

Lemma 2.2. Let φ : A→ A be an isogeny. Then,

(i) Stabφ−1(Y ) = φ−1(StabY ).

(ii) Let φ̂ be an isogeny such that φ̂φ = φφ̂ = [a]. Then

|Stab φ̂−1(Y ) ∩ ker[a]| = | ker φ̂||StabY ∩ kerφ|.
Proof. Part (i): Let t ∈ Stabφ−1(Y ) then

φ−1(Y ) + t = φ−1(Y ).

Taking the image, Y +φ(t) = Y and φ(t) ∈ StabY , giving t ∈ φ−1(StabY ).
Conversely, let t ∈ StabY , then

Y + t = Y

and taking the preimage φ−1(Y + t) = φ−1(Y ). Then φ−1(t) ∈ Stabφ−1(Y ).

Part (ii): By part (i) applied to φ̂, we have Stab φ̂−1(Y ) = φ̂−1(StabY ).

As φφ̂ = [a], ker[a] = φ̂−1(kerφ). Then

Stab φ̂−1(Y ) ∩ ker[a] = φ̂−1 (StabY ∩ kerφ) . �

2.2. Basic relations of essential minima. We now investigate useful
relations for the essential minimum.

Recall that, by definition, for every x ∈ A and isogeny φ : A → A, we
have ĥφ∗L(x) = ĥL(φ(x)); then

(6) µφ∗L(Y ) = µL(φ(Y )).

In addition

(7) µLm(Y ) = mµL(Y ).

Another easy remark is stated in the following lemma.

Lemma 2.3. Let L1,L2 be two ample line bundles on A. Then for every
irreducible subvariety Y ⊆ A,

µL1⊗L2(Y ) ≥ µL1(Y ) + µL2(Y ).

Proof. This lemma is proved by contradiction, and it relies on the height
relation ĥL1⊗L2(x) = ĥL1(x) + ĥL2(x) for every x ∈ A.

Suppose, by contradiction, that µL1⊗L2(Y ) < µL1(Y ) + µL2(Y ). Then
there exist reals k1, k2 such that 0 < ki < µLi(Y ) and µL1⊗L2(Y ) < k1 + k2,
and a dense subset U of Y such that

(8) ĥL1⊗L2(x) ≤ k1 + k2 ∀x ∈ U.

From the definition of µLi(Y ), the set of points of Y such that ĥLi(x) ≤ ki
is contained in a closed subset Vi ( Y . Since U is dense, U ′ = U \ ∪iVi is

also dense in Y . In addition, for every x ∈ U ′, ĥLi(x) > ki. Then

ĥL1⊗L2(x) = ĥL1(x) + ĥL1(x) > k1 + k2 ∀x ∈ U ′

which contradicts (8). �
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2.3. Theorem 1.3 implies Theorem 1.4. The implication ‘Theorem 1.3
implies Theorem 1.4’ is straight forward from a result of Galateau [Gal10].
For convenience we recall his theorem.

For Y a subvariety of a (semi)abelian variety, with an ample line bundle
L, define

ωL(Y ) = min
Z
{degL Z}

where the minimum is taken over all the hypersurfaces (not necessarily ir-
reducible) containing Y .

Theorem 2.4 ([Gal10, Theorem 1.1]). Let B be an abelian variety with a
positive density of ordinary primes, and L be an ample and symmetric line
bundle on B. Let Y ⊆ B be a transverse variety. Then

µL(Y ) ≥ C0(B,L)

ωL(Y )
(log (3 degL Y ))−λ(Y )

where C0(B,L) is a positive real depending on the variety B and the line
bundle L, and λ(Y ) = (5 dimB(1 + codimB Y ))1+codimB Y . In particular,
for every η > 0, there exists a constant C(B,L, η) such that

µL(Y ) ≥ C(B,L, η)

(degL Y )
1

codimB Y
+η
.

Note that if A has a positive density of ordinary primes, then also all its
abelian subvarieties have it.

As mentioned in the introduction the hypothesis on a positive density
of ordinary primes always holds for CM abelian varieties, powers of elliptic
curves and abelian surfaces and is conjectured to hold for every abelian
variety.

2.4. Essential minimum and isogenies. In this section we derive from
the effective Bogomolov bound (1) a theorem which shows the good be-
haviour of the essential minimum under the action of an isogeny. This
result will be among the ingredients used, in Section 4, to prove the main
theorem.

Theorem 2.5. Let B be abelian variety such that an effective Bogomolov
bound (1) holds. Let Y be a transverse subvariety of B and φ : B → B an
isogeny. Then for every η > 0 we have

µφ∗L(Y )�
(
degφ∗LB

) 1
codimB Y

−η(
degφ∗L Y

) 1
codimB Y

+η
.

Proof. Let g = dimB, and let a be an integer of minimal absolute value
such that there exists an isogeny φ̂ with φφ̂ = φ̂φ = [a]. By definition of
dual we have |a| ≤ deg φ.
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Let W be an irreducible component of φ̂−1(Y ). Note that isogenies pre-
serve dimensions and transversality, so dimW = dimY = d and W is trans-
verse.

We have

[a]W = φφ̂W = φφ̂φ̂−1(Y ) = φ(Y ).

Then

(9) µφ∗L(Y ) = µL(φ(Y )) = µL([a]W ) = |a|2µL(W ).

We now need to estimate degLW .
Since Y is transverse, d > 0; then by formula (4),

degL φ(Y ) = degL[a]W =
|a|2d

|StabW ∩ ker[a]|
degLW

or equivalently

degLW =
|StabW ∩ ker[a]|

|a|2d
degL φ(Y ).

Using Lemma 2.2 (ii) and Lemma 2.1, we obtain

degLW =
| ker φ̂|
|a|2d

| StabY ∩ kerφ|degL φ(Y )

=
| ker φ̂|
|a|2d

degL φ∗(Y ).

Since W is transverse, applying bound (1) we have

µL(W )� (degLW )
− 1

g−d
−η

=

(
|a|2d

| ker φ̂|degL φ∗(Y )

) 1
g−d

+η

=

(
|a|2d degLB

| ker φ̂|degL φ∗(Y )

) 1
g−d

+η

(degLB)
−1
g−d
−η

�

(
|a|2d degLB

| ker φ̂|degL φ∗(Y )

) 1
g−d

+η

(degLB)−η,(10)

where line (10) follows absorbing the appropriate power of degLB in the
implicit constant.
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We substitute this last estimate in (9), then

µφ∗L(Y ) = |a|2µL(W )

� |a|2
(

|a|2d degLB

| ker φ̂|degL φ∗(Y )

) 1
g−d

+η

(degLB)−η

=

(
|a|2g−2d|a|2d| kerφ| degLB

| ker φ̂|| kerφ| degL φ∗(Y )

) 1
g−d

+η

(degLB)−η|a|−2(g−d)η

=

(
|a|2g degφ∗LB

|a|2g degL φ∗(Y )

) 1
g−d

+η

(degLB)−η|a|−2(g−d)η

=

(
degφ∗LB

degφ∗L Y

) 1
g−d

+η

(degLB)−η|a|−2(g−d)η,

where | ker φ̂|| kerφ| = |a|2g because φφ̂ = φ̂φ = [a]. In addition

degφ∗LB = | kerφ|degLB = deg φ degLB.

Since |a| ≤ deg φ, we have

(degLB)−η|a|−2(g−d)η ≥ (|a| degLB)−2(g−d)η ≥ (degφ∗LB)−2(g−d)η.

Then

µφ∗L(Y )�
(
degφ∗LB

) 1
g−d
−2(g−d)η+η(

degφ∗L(Y )
) 1

g−d
+η

,

which easily implies the wished bound, after changing η. �

2.5. Morphisms. Let A be a simple abelian variety of dimension D and
let M ≤ N be positive integers.

We can associate a matrix A = (ψij)ij ∈ MatM×N (End(A)) with a mor-
phism

ψA : AN → AM

(x1, . . . , xN ) 7→ (ψ11x1 + · · ·+ ψ1NxN , . . . , ψM1x1 + · · ·+ ψMNxN ).

We also associate a morphism ψ : AN → AM with a matrix

Aψ =

 ψ11 . . . ψ1N
...

. . .
...

ψM1 . . . ψMN


such that all components of kerψ are components of

(11)


ψ11x1 + · · ·+ ψ1NxN = 0
...

ψM1x1 + · · ·+ ψMNxN = 0
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and such that the product of the norms of the rows of Aψ is minimised. As

a norm for the rows we take the euclidean norm in (End(A)⊗Z R)N .
For notation’s sake, sometimes we identify the morphism with the matrix.
We associate a morphism ψ : AN → AM with an abelian subvariety A′ of

AN given by the connected component of kerψ passing through the zero of
AN .

Finally, we associate an abelian subvariety A′ ⊆ AN of codimension MD
with the projection morphism

ψ : AN → AM = AN/A′.

Then A′ = kerψ is a component of the variety defined by the system (11),
where Aψ = (ψij)ij is the matrix associated with ψ, as above.

We call the morphism (resp. the matrix) just defined the associated mor-
phism (resp. associated matrix ) of A′.

We finally define the norm of a morphism in the usual way.

3. An equivalence of line bundles

In this section we let A be a simple abelian variety of dimension D.

3.1. Definitions. Let now B be an abelian subvariety of AN of dimension
nD.

Lemma 3.1. Let B be an abelian subvariety of AN of dimension nD. Then
there exists an isogeny φ : AN → AN defined by a matrix

Aφ =

(
φB
φB′

)
such that:

(i) φB ∈ Mat(N−n)×N (End(A)) and φB′ ∈ Matn×N (End(A)) are both
of full rank.

(ii) φ(B) = {0}N−n ×An.
(iii) deg φ ≤ c(A,N), where c(A,N) is a constant depending only on A

and N .

Proof. By a lemma of Bertrand, (see [Ber87, Proposition 2, p. 15]) we can
find a supplement B′ of B such that B + B′ = AN and the cardinality of
B ∩B′ is bounded by a constant depending on A and N .

Then, there exists a matrix

φB ∈ Mat(N−n)×N (End(A))

of rank N − n such that kerφB = B + τ for τ a torsion group contained in
B′ of cardinality bounded by a constant depending only on N . Similarly, let
φB′ ∈ Matn×N (End(A)) be a matrix of rank n such that kerφB′ = B′ + τ ′

for τ ′ a torsion group contained in B of cardinality bounded only in terms
of N (see also Masser and Wüstholz [MW93, Lemma 1.3]).
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If we define the isogeny φ as follows:

φ =

(
φB
φB′

)
: AN → AN ,

then properties (i) and (ii) are satisfied by construction, and we have that

| kerφ| = |(B + τ) ∩ (B′ + τ ′)| = |(B ∩B′) + τ + τ ′| � 1. �

It is an exercise in linear algebra to show that there exists an isomorphism
T of norm bounded only in terms of N , such that all n × n minors of the
matrix consisting of the last n columns of (φT )−1 have determinant different
from zero.

Clearly, for a point P , we have

(12) ĥ(T (P ))� ||T ||2h(P ).

Moreover, as in [Via09, Proposition 4.2] for elliptic curves and in [Via10,
Lemma 4.5] for abelian varieties, for any subvariety X we get

(13) deg T (X)� ||T ||2 dimX degX.

We deduce the following lemma.

Lemma 3.2. Let T , P and X be as above. Then:

(i) ||T ||−2(N−1)ĥ(P )� ĥ(T (P ))� ||T ||2ĥ(P ).
(ii) ||T ||−2N degX � deg T (X)� ||T ||2 dimX degX.

Proof. The upper bounds are immediate from (12) and (13), while the lower

bounds are obtained applying (12) to T̂ T (P ) and and (13) to T̂ T (X). In
particular, using (13), one has

deg(T̂ T (X)) ≤ ||T̂ ||2 dimT (X) deg T (X).

On the other hand

deg(T̂ T (X)) = deg([deg T ]X);

which, combined with [Hin88, Lemma 6], give the desired bound. �

Hence T changes degrees and heights by a constant depending only on N
and D.

Note that the isogeny φ : AN → AN sends B to the last n factors,

φ(B) = 0× · · · × 0×An.

We denote the immersion of An in the last n coordinates by

i : An → AN ; (x1, . . . , xn) 7→ (0, . . . , 0, x1, . . . , xn).

Let us denote by α the minimal positive integer such that there exists an
isogeny φ̂ satisfying φφ̂ = φ̂φ = [α]. Note that, |α| ≤ deg φ. Of course, we

may take φ̂ to be the dual of φ, but, eventually, for explicit computations,
the above definition could be more convenient.
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We decompose φ̂ = (A|B) with A a matrix in MatN×(N−n)(End(A)) and
B a matrix in MatN×n(End(A)). We denote by ai the i-th row ofA; similarly

B =


b1
b2
...
bN


and (ai, bi) is the i-th row of φ̂.

Lemma 3.3. For I ∈ I = {(i1, . . . , in) ∈ {1, . . . , N}n and ij < ij+1} the
morphism

ϕI =

 bi1
...
bin

 : An → An

is an isogeny.

Proof. We are assuming that the last n columns of φ−1 have n× n minors
with nonzero determinant. Together with φφ̂ = αIdN , this implies that all
n × n minors of B have nonzero determinant. Then detϕI 6= 0. This is
equivalent to say that ϕI is an isogeny, as ϕI is a morphism associated with
a square matrix of full rank. �

We remark that the map ϕI : An → An may be described as the compo-
sition

An
i
↪→ AN

φ̂−→ AN
πI−→ An,

where πI is the projection on the n coordinates appearing in the multi-index
I.

Indeed, we can sum up the situation with the following commutative
diagram:

AN AN AN

B An An

[α]
**

φ
//

φ̂

//

?�

j

OO

?�

i

OO

πI

��

φ|B

??

φI

��

ϕB

//
ϕI

//

where j is the inclusion of B in AN , φI is defined as the composition πI ◦ φ̂,
and ϕB is the restriction to B of the morphism associated with the matrix
φB′ in Lemma 3.1. The fact that φ(B) = {0}N−n×An allows us to say that
all horizontal arrows are isogenies.

With this notation, we remark a consequence of Lemmas 2.1 and 3.1. For
φ as above we have

(14) degL ϕB∗(B) = degϕB degLA
n ≤ deg φ degLA

n � degLA
n.
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In fact degϕB = |B ∩ kerφ| ≤ | kerφ|.
Note that by our definitions of degree in AN and An, the map i preserves

the degree of subvarieties of {0}N−n ×An.

3.2. The equivalence. In this section A is a simple abelian variety. We
recall that on A we fixed a symmetric ample line bundle L1; for any integer
m, we denote by Lm the bundle on Am obtained as the tensor product of
the pullbacks of the natural projections of Am on its simple factors. We now
study LN |B for B an abelian subvariety of AN . We can express a power of
LN |B as a tensor product of pull-backs via different morphisms of the bundle
Ln on An. Of course, even if B is isogenous to An, in general LN |B is not
the natural bundle Ln.

Theorem 3.4. The following equivalence of line bundles holds

L
α2(N−1

n−1)
N ∣∣B ∼= φ∗|B

⊗
I

φ∗ILn ∼= ϕ∗B
⊗
I

ϕ∗ILn,

where φφ̂ = φ̂φ = [α] is as above and ϕI is defined in Lemma 3.3.

Proof. We denote by c1(L) a representative of the first Chern-class of L.
By � we mean the sum of cycles and by Lm we mean as before the tensor
product of m copies of L. We recall that, for f a morphism, we have

(15) c1(f∗L) = f∗c1(L).

Let ei : An → A and fi : AN → A be the projections on the i-th factor.
Note that ei’s (resp. the fi’s) generate a free Z-module of rank n (resp.
rank N) of Hom(An, A) (resp. Hom(An, A)). By definition of standard line
bundle,

c1(Ln) = �n
i=1e

∗
i (L),(16)

c1(LN ) = �N
i=1f

∗
i (L).

Note that, for any integer α, (αfi)
∗ = (fi[α])∗ = [α]∗f∗i , and more in general,

for ψ ∈ MatN×m(End(A)) and ψ′ ∈ Matm′×N (End(A)) with m,m′ ∈ N∗,
we have

(17) ψ∗(ψ′)∗ = (ψ′ψ)∗.

In addition, by [BL04, Corollary 3.6, p. 34] forM a symmetric ample line
bundle on An,

c1([α]∗M) = c1(Mα2
),

and then,

(18) c1(Lα2

N ) = �N
i=1(αfi)

∗(L).

Two line bundles are equivalent if and only if they have the same Chern-
class; the proof of the theorem is based on this remark.

For any morphism ψ : AN → An, applying (15), (16) and (17), we have

c1(ψ∗Ln) = ψ∗c1(Ln) = �n
i=1(eiψ)∗(L) = �n

i=1ψ
∗
i (L),
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where ψi : AN → A is the i-th row of ψ.
Apply this formula to each φI . Then, for I = (i1, . . . , in),

(19) c1(φ∗ILn) = (ai1 , bi1)∗(L) � · · ·� (ain , bin)∗(L).

Since the Chern class of the tensor product is the sum of the Chern classes,
we obtain

c1

(⊗
I

φ∗ILn

)
= �I∈I ((ai1 , bi1)∗(L) � · · ·� (ain , bin)∗(L))(20)

=

(
N − 1

n− 1

)
�N
i=1 (ai, bi)

∗(L),

where the last equality is justified from the fact that each multi-index I
consists of n coordinates and each of the N indices appears the same number
of times, so each row (ai, bi) appears

(
N−1
n−1

)
times, once for each possible

choice of the other n− 1 rows.
Recall that φ̂φ = [α]; by (15)

c1

(
φ∗
⊗
I

φ∗ILn

)
= φ∗c1

(⊗
I

φ∗ILn

)

=

(
N − 1

n− 1

)
�N
i=1 ((ai, bi)φ)∗(L)

=

(
N − 1

n− 1

)
�N
i=1 (αfi)

∗(L).

Hence, using (18) and restricting to B we conclude

c1

(
φ∗|B

⊗
I

φ∗ILn

)
=

(
N − 1

n− 1

)
�N
i=1 (αfi)

∗(L)|B

=

(
N − 1

n− 1

)
c1

(
Lα2

N |B

)
= c1

(
L
α2(N−1

n−1)
N |B

)
.

The last isomorphism in the statement of the theorem follows from

φI ◦ φ|B = ϕI ◦ ϕB. �

The following relation has been pointed out by Gaël Rémond.

Proposition 3.5. The following equality holds:

deg
⊗
I∈I

φ∗ILn =

(
N − 1

n− 1

)n∑
I∈I

deg φ∗ILn.
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Proof. We compute the degrees as intersection numbers. By relation (19),
we have

deg φ∗ILn = n! deg
∏
ij∈I

(aij , bij )
∗(L).

Similarly, by formula (20), we obtain

deg
⊗
I

φ∗ILn = n!

(
N − 1

n− 1

)n ∑
i1<···<in

deg

n∏
j=1

(aij , bij )
∗(L)

=

(
N − 1

n− 1

)n∑
I

deg φ∗ILn. �

4. The proof of the main theorem

Recall that
A = AN1

1 × · · · ×A
Nr
r ,

where Ai are pairwise nonisogenous simple abelian varieties. We fixed em-
beddings Ai → Pmi given by symmetric ample line bundles on Ai. The

bundles L on A and LNi on ANi
i are obtained as the tensor product of the

pullbacks of the natural projections.
We first prove a weak form of Theorem 1.3, and then we remove the more

restrictive hypothesis.

Theorem 4.1. Theorem 1.3 holds for H an abelian subvariety of A. In
particular, if Y is a transverse subvariety of H, then for any η > 0, there
exists a positive constant c1(A,L, η) such that

µL(Y ) ≥ c1(A,L, η)
(degLH)

1
codimH Y

−η

(degL Y )
1

codimH Y
+η
.

Proof. Unless specified otherwise, in this proof we keep the same notation
as in the previous section. Recall that

H = H1 × · · · ×Hr

where Hi is an abelian subvariety of ANi
i , set ni = dimHi

dimAi
and d = dimY .

We set
ΦH = ϕH1 × · · · × ϕHr : H → A′,

where A′ is the abelian variety An1
1 × · · · ×Anr

r .
Denoting by

πi : A→ ANi
i

the projection on ANi
i , we have

L =

r⊗
i=1

π∗iLNi .

Recall that
Ii = {(i1, . . . , ini) ∈ {1, . . . , Ni}ni};
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for every

I = (I1, . . . , Ir) ∈ I1 × · · · × Ir

let

ΦI = ϕI1 × · · · × ϕIr : An1
1 × · · · ×A

nr
r → An1

1 × · · · ×A
nr
r ,

which is an isogeny by Lemma 3.3.
We also define

α = max
i
α2
i

(
Ni − 1

ni − 1

)
,

where αi is the minimal positive integer such that [αi] = φiφ̂i = φ̂iφi, with
the notations and definitions of Section 3.

Finally denote by M the bundle on An1
1 × · · · ×Anr

r given by

M =

r⊗
i=1

π∗iLni .

By Lemma 2.3, we know that

µ⊗
I Φ∗IM(ΦH(Y )) ≥

∑
I

µΦ∗IM(ΦH(Y )).

We apply Theorem 2.5 to each ΦI on A′ andM. We deduce that for each
I,

µΦ∗IM(ΦH(Y ))�

(
degΦ∗IMA′

) 1
codimH Y

−η

(
degΦ∗IMΦH(Y )

) 1
codimH Y

+η
.

We obtain

µ⊗
I Φ∗IM(ΦH(Y )) ≥

∑
I

µΦ∗IM(ΦH(Y ))

�
∑
I

(
degΦ∗IMA′

) 1
codimH Y

−η

(
degΦ∗IMΦH(Y )

) 1
codimH Y

+η
.

Since each bundle is ample, for every variety X, we have

degΦ∗IMX ≤ deg⊗IΦ
∗
IMX.

Note also that, for xi ≥ 1, (
∑
xi)

1/m ≤
∑
x

1/m
i .
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Recall that, by definition, the degree of the abelian variety is the degree
of the line bundle. Using then Proposition 3.5, we deduce

∑
I

(
degΦ∗IMA′

) 1
codimH Y

−η

(
degΦ∗IMΦH(Y )

) 1
codimH Y

+η

≥

(∑
I degΦ∗IMA′

) 1
codimH Y

−η

(
deg⊗IΦ

∗
IMΦH(Y )

) 1
codimH Y

+η

≥
(

max
i

(
Ni − 1

ni − 1

)ni
) −1

codimH Y
+η

(
deg⊗

I Φ∗IMA′
) 1

codimH Y
−η

(
deg⊗

I Φ∗IMΦH(Y )
) 1

codimH Y
+η
.

Therefore

µ⊗
I Φ∗IM(ΦH(Y ))�

(
deg⊗

I Φ∗IMA′
) 1

codimH Y
−η

(
deg⊗

I Φ∗IMΦH(Y )
) 1

codimH Y
+η
.

Note that with our notation A′ = ΦH(H). Moreover, by (14),

deg⊗
I Φ∗IMA′ � deg⊗

I Φ∗IMΦH∗(H).

We deduce

(21) µ⊗
I Φ∗IM(ΦH(Y ))�

(
deg⊗

I Φ∗IMΦH∗(H)
) 1

codimH Y
−η

(
deg⊗

I Φ∗IMΦH(Y )
) 1

codimH Y
+η

.

By (5) and Theorem 3.4 we obtain

(22) deg⊗
I Φ∗IMΦH∗(H) = degΦ∗H

⊗
I Φ∗IMH ≥ degLH.

From Lemma 2.1 and relation (5) we have

(23) deg⊗
I Φ∗IMΦ|H(Y ) =

1

| ker ΦH ∩ StabY |
degΦ∗H

⊗
I Φ∗IM Y

and from Theorem 3.4 and relation (3) we get

(24)
1

| ker ΦH ∩ StabY |
degΦ∗H

⊗
I Φ∗IM Y ≤ αdimY degL Y.

Thus

(25) deg⊗
I Φ∗IMΦ|H(Y ) ≤ αdimY degL Y.

Finally

(26) µ⊗
I Φ∗IM(ΦH(Y )) = µΦ∗H

⊗
I Φ∗IM(Y ) ≤ αµL(Y ),
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where the first equality comes from relation (6), while the second inequality
by Theorem 3.4 and relation (7).

Notice that, by Lemma 3.1, α� 1. Plugging inequalities (22), (25), (26)
into (21), we deduce

µL(Y )� (degLH)
1

codimH Y
−η

(degL Y )
1

codimH Y
+η
. �

We can now weaken the hypothesis on H and prove Theorem 1.3 for Y
transverse in a translate of an abelian subvariety.

Proof of Theorem 1.3. We write the translate H as H = B + p , with B
an abelian subvariety. Let c1 be the constant in Theorem 4.1; define

θ = c1
(degLB)

1
codimB Y

−η

(degL Y )
1

codimB Y
+η
.

If the set of points of Y of height at most 1
4θ is empty then µL(Y ) ≥ 1

4θ.

If not, choose a point q ∈ Y such that ĥL(q) ≤ 1
4θ. We now translate by

−q, so to have that Y − q ⊆ B. Translations preserve transversality and
degrees, and so by Theorem 4.1 for Y − q,

µL(Y − q) ≥ θ.

If x ∈ Y and ĥL(x) ≤ 1
4θ, then x− q ∈ Y − q and

ĥL(x− q) ≤ 2ĥL(x) + 2ĥL(q) ≤ θ ≤ µL(Y − q).
This shows that

µL(Y ) ≥ 1

4
θ. �

We finally remark that the constant in Theorem 1.3 depends explicitly
on the constant in bound (1). In particular, the constant of Theorem 1.4
depends explicitly on the one given by Galateau.

Acknowledgements. The authors are grateful to the referee for his valu-
able suggestions and comments.
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variétés de variétés abéliennes. Number theory (Tiruchirapalli, 1996), 333–
364. Contemp. Math., 210. Amer. Math. Soc., Providence, RI, 1998.
MR1478502 (98j:11044), Zbl 0899.11027, doi: 10.1090/conm/210/02795.

[DP02] David, S.; Philippon, P. Minorations des hauteurs normalisées des
sous-variétés de variétés abeliennes. II. Comment. Math. Helv. 77
(2002), no. 4, 639–700. MR1949109 (2004a:11055), Zbl 1030.11026,
doi: 10.1007/PL00012437.

[DP07] David, S.; Philippon, P. Minorations des hauteurs normalisées des sous-
variétés des puissances des courbes elliptiques. Int. Math. Res. Pap. IMRP
(2007), no. 3, Art. ID rpm006, 113 pp. MR2355454 (2008h:11068), Zbl
1163.11049, doi: 10.1093/imrp/rpm006.

[DMOyS82] Deligne, P.; Milne, J. S.; Ogus, A.; Shih, K. Hodge cycles, mo-
tives, and Shimura varieties. Lecture Notes in Mathematics, 900. Springer-
Verlag, Berlin-New York, 1982. ii+414 pp. ISBN: 3-540-11174-3. MR654325
(84m:14046), Zbl 0465.00010.

[Gal10] Galateau, A. Une minoration du minimum essentiel sur les variétés
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